1
|
Prejanò M, Romeo I, Felipe Hernández-Ayala L, Gabriel Guzmán-López E, Alcaro S, Galano A, Marino T. Evaluating Quinolines: Molecular Dynamics Approach to Assess Their Potential as Acetylcholinesterase Inhibitors for Alzheimer's Disease. Chemphyschem 2025; 26:e202400653. [PMID: 39301943 DOI: 10.1002/cphc.202400653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/06/2024] [Accepted: 09/20/2024] [Indexed: 09/22/2024]
Abstract
Quinoline represents a promising scaffold for developing potential drugs because of the wide range of biological and pharmacological activities that it exhibits. In the present study, quinoline derivatives obtained from CADMA-Chem docking protocol were investigated in the mean of molecular dynamics simulations as potential inhibitors of acetylcholinesterase enzyme. The examined species can be partitioned between neutral, dq815 (2,3 dihydroxyl-quinoline-4-carbaldehyde), dq829 (2,3 dihydroxyl-quinoline-8-carboxylic acid methane ester), dq1356 (3,4 dihydroxyl-quinoline-6-carbaldehyde), dq1368 (3,4 dihydroxyl-quinoline-8-carboxylic acid methane ester) and dq2357 (5,6 dihydroxyl-quinoline-8-carboxylic acid methane ester), and deprotonated, dq815_dep, dq829_dep, dq1356_dep and dq2357_dep. Twelve molecular dynamics simulations were performed including those of natural acetylcholine, of the well-known donepezil inhibitor and of the founder quinoline chosen as reference. Key intermolecular interactions were detected and discussed to describe the different dynamic behavior of all the considered species. Binding energies calculation from MMPBSA well accounts for the dynamic behavior observed in the simulation time proposing dq1368 as promising candidate for the inhibition of acetylcholinesterase. Retrosynthetic route for the production of the investigated compounds is also proposed.
Collapse
Affiliation(s)
- Mario Prejanò
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, 87036, Arcavacata di Rende, Italy
| | - Isabella Romeo
- Dipartimento di Scienze della Salute and Net4Science Academic Spin-Off, Università degli Studi"Magna Græcia" di Catanzaro, 88100, Catanzaro, Italy
| | - Luis Felipe Hernández-Ayala
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Av. Ferrocarril San Rafael Atlixco 186, Col. Leyes de Reforma 1 A Sección, Alcaldía Iztapalapa, Mexico City, 09310, Mexico
- Consejo Nacional de Humanidades Ciencias y Tecnologías, Ciudad de México, 03940, México
| | - Eduardo Gabriel Guzmán-López
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Av. Ferrocarril San Rafael Atlixco 186, Col. Leyes de Reforma 1 A Sección, Alcaldía Iztapalapa, Mexico City, 09310, Mexico
| | - Stefano Alcaro
- Dipartimento di Scienze della Salute and Net4Science Academic Spin-Off, Università degli Studi"Magna Græcia" di Catanzaro, 88100, Catanzaro, Italy
| | - Annia Galano
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Av. Ferrocarril San Rafael Atlixco 186, Col. Leyes de Reforma 1 A Sección, Alcaldía Iztapalapa, Mexico City, 09310, Mexico
| | - Tiziana Marino
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, 87036, Arcavacata di Rende, Italy
| |
Collapse
|
2
|
Kumari R, Lindgren C, Kumar R, Forsgren N, Andersson CD, Ekström F, Linusson A. Enzyme Dynamics Determine the Potency and Selectivity of Inhibitors Targeting Disease-Transmitting Mosquitoes. ACS Infect Dis 2024; 10:3664-3680. [PMID: 39291389 PMCID: PMC11474975 DOI: 10.1021/acsinfecdis.4c00531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/23/2024] [Accepted: 09/02/2024] [Indexed: 09/19/2024]
Abstract
Vector control of mosquitoes with insecticides is an important tool for preventing the spread of mosquito-borne diseases including malaria, dengue, chikungunya, and Zika. Development of active ingredients for insecticides are urgently needed because existing agents exhibit off-target toxicity and are subject to increasing resistance. We therefore seek to develop noncovalent inhibitors of the validated insecticidal target acetylcholinesterase 1 (AChE1) from mosquitoes. Here we use molecular dynamics simulations to identify structural properties essential for the potency of reversible inhibitors targeting AChE1 from Anopheles gambiae (AgAChE1), the malaria-transmitting mosquito, and for selectivity relative to the vertebrate Mus musculus AChE (mAChE). We show that the collective motions of apo AgAChE1 and mAChE differ, with AgAChE1 exhibiting less dynamic movement. Opening and closing of the gorge, which regulates access to the catalytic triad, is enabled by different mechanisms in the two species, which could be linked to their differing amino acid sequences. Inhibitor binding reduced the overall magnitude of dynamics of AChE. In particular, more potent inhibitors reduced the flexibility of the Ω loop at the entrance of the gorge. The selectivity of inhibitors for AgAChE1 over mAChE derives from the positioning of the α-helix lining the binding gorge. Our findings emphasize the need to consider dynamics when developing inhibitors targeting this enzyme and highlight factors needed to create potent and selective AgAChE1 inhibitors that could serve as active ingredients to combat disease-transmitting mosquitoes.
Collapse
Affiliation(s)
- Rashmi Kumari
- Department
of Chemistry, Umeå University, Umeå SE-90187, Sweden
| | | | - Rajendra Kumar
- Department
of Chemistry, Umeå University, Umeå SE-90187, Sweden
| | - Nina Forsgren
- CBRN
Defense and Security, Swedish Defense Research
Agency, Umeå SE-90621, Sweden
| | | | - Fredrik Ekström
- CBRN
Defense and Security, Swedish Defense Research
Agency, Umeå SE-90621, Sweden
| | - Anna Linusson
- Department
of Chemistry, Umeå University, Umeå SE-90187, Sweden
| |
Collapse
|
3
|
Mu X, Yuan S, Zhang D, Lai R, Liao C, Li G. Selective modulation of alkali metal ions on acetylcholinesterase. Phys Chem Chem Phys 2023; 25:30308-30318. [PMID: 37934509 DOI: 10.1039/d3cp02887a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Acetylcholinesterase (AChE) is an important hydrolase in cholinergic synapses and a candidate target in the treatment of Alzheimer's disease. The lithium treatment widely used in neurological disorders can alter the AChE activity, yet the underlying mechanism of how the ion species regulate the enzymatic activity remains unclear. In this work, we performed combined quantum mechanics/molecular mechanics (QM/MM) and molecular dynamics (MD) simulations and well-tempered metadynamics to understand the modulation of human AChE (hAChE) activity using three alkali metal ions (Li+, Na+, and K+) in different concentrations. Our simulations show that the binding affinity and catalytic activity are affected by different ion species through allosteric ion coordination geometries on the hAChE complex and distant electrostatic screening effect. A Li+ cluster involving D330, E393, and D397 residues and three Li+ ions was found to be highly conserved and can be critical to the enzyme activity. Binding energy calculations indicate that the electrostatic screening from allosterically bound cations can affect the key residues at the catalytic site and active-site gorge, including E199. Furthermore, an increase in ion concentration can lead to lower reactivity, especially for Li+ ions, which exhibit more cation-hAChE contacts than Na+ and K+. The selective ion binding and their preferred modulation on hAChE are highly related to ion species. This work provides a molecular perspective on selective modulation by different ion species of the enzyme catalytic processes.
Collapse
Affiliation(s)
- Xia Mu
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.
| | - Shengwei Yuan
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.
- University of Chinese Academy of Sciences, Beijing, China
| | - Dinglin Zhang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.
| | - Rui Lai
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.
| | - Chenyi Liao
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.
| | - Guohui Li
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.
| |
Collapse
|
4
|
Conceição RAD, von Ranke N, Azevedo L, Franco D, Nadur NF, Kummerle AE, Barbosa MLDC, Souza AMT. Structure-based design of new N-benzyl-piperidine derivatives as multitarget-directed AChE/BuChE inhibitors for Alzheimer's disease. J Cell Biochem 2023; 124:1734-1748. [PMID: 37796142 DOI: 10.1002/jcb.30483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/16/2023] [Accepted: 09/20/2023] [Indexed: 10/06/2023]
Abstract
The pathogenic complexity of Alzheimer's disease (AD) demands the development of multitarget-directed agents aiming at improving actual pharmacotherapy. Based on the cholinergic hypothesis and considering the well-established role of butyrylcholinesterase (BuChE) in advanced stages of AD, the chemical structure of the acetylcholinesterase (AChE) inhibitor drug donepezil (1) was rationally modified for the design of new N-benzyl-piperidine derivatives (4a-d) as potential multitarget-direct AChE and BuChE inhibitors. The designed analogues were further studied through the integration of in silico and in vitro methods. ADMET predictions showed that 4a-d are anticipated to be orally bioavailable, able to cross the blood-brain barrier and be retained in the brain, and to have low toxicity. Computational docking and molecular dynamics indicated the formation of favorable complexes between 4a-d and both cholinesterases. Derivative 4a presented the lowest binding free energy estimation due to interaction with key residues from both target enzymes (-36.69 ± 4.47 and -32.23 ± 3.99 kcal/mol with AChE and BuChE, respectively). The in vitro enzymatic assay demonstrated that 4a was the most potent inhibitor of AChE (IC50 2.08 ± 0.16 µM) and BuChE (IC50 7.41 ± 0.44 µM), corroborating the in silico results and highlighting 4a as a novel multitarget-directed AChE/BuChE inhibitor.
Collapse
Affiliation(s)
- Raissa Alves da Conceição
- Laboratory of Molecular Modeling & QSAR (ModMolQSAR), Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratory of Organic Synthesis and Medicinal Chemistry (LaSOQuiM), Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Natalia von Ranke
- Laboratory of Molecular Modeling & QSAR (ModMolQSAR), Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luciana Azevedo
- Laboratory of Molecular Diversity and Medicinal Chemistry (LaDMol-QM), Institute of Chemistry, Federal Rural University of Rio de Janeiro, Seropédica, Brazil
| | - Daiana Franco
- Laboratory of Molecular Diversity and Medicinal Chemistry (LaDMol-QM), Institute of Chemistry, Federal Rural University of Rio de Janeiro, Seropédica, Brazil
| | - Nathalia Fonseca Nadur
- Laboratory of Molecular Diversity and Medicinal Chemistry (LaDMol-QM), Institute of Chemistry, Federal Rural University of Rio de Janeiro, Seropédica, Brazil
| | - Arthur Eugen Kummerle
- Laboratory of Molecular Diversity and Medicinal Chemistry (LaDMol-QM), Institute of Chemistry, Federal Rural University of Rio de Janeiro, Seropédica, Brazil
| | - Maria Letícia de C Barbosa
- Laboratory of Organic Synthesis and Medicinal Chemistry (LaSOQuiM), Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alessandra M T Souza
- Laboratory of Molecular Modeling & QSAR (ModMolQSAR), Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
5
|
Richmond V, Falcone BN, Maier MS, Arroyo Máñez P. Putting the Puzzle Together To Get the Whole Picture: Molecular Basis of the Affinity of Two Steroid Derivatives to Acetylcholinesterase. ACS OMEGA 2023; 8:25610-25622. [PMID: 37483177 PMCID: PMC10357547 DOI: 10.1021/acsomega.3c03749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 06/14/2023] [Indexed: 07/25/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that has no cure because its etiology is still unknown, and its main treatment is the administration of acetylcholinesterase (AChE) inhibitors. The study of the mechanism of action of this family of compounds is critical for the design of new more potent and specific inhibitors. In this work, we study the molecular basis of an uncompetitive inhibitor (compound 1, 2β, 3α-dihydroxy-5α-cholestan-6-one disulfate), which we have proved to be a peripheral anionic site (PAS)-binding AChE inhibitor. The pipeline designed in this work is key to the development of other PAS inhibitors that not only inhibit the esterase action of the enzyme but could also modulate the non-cholinergic functions of AChE linked to the process of amylogenesis. Our studies showed that 1 inhibits the enzyme not simply by blocking the main gate but by an allosteric mechanism. A detailed and careful analysis of the ligand binding position and the protein dynamics, particularly regarding their secondary gates and active site, was necessary to conclude this. The same analysis was executed with an inactive analogue (compound 2, 2β, 3α-dihydroxy-5α-cholestan-6-one). Our first computational results showed no differences in affinity to AChE between both steroids, making further analysis necessary. This work highlights the variables to be considered and develops a refined methodology, for the successful design of new potent dual-action drugs for AD, particularly PAS inhibitors, an attractive strategy to combat AD.
Collapse
Affiliation(s)
- Victoria Richmond
- Facultad
de Ciencias Exactas y Naturales, Departamento de Química Orgánica, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
- Unidad
de Microanálisis y Métodos Físicos aplicados
a la Química Orgánica (UMYMFOR), CONICET-Universidad de Buenos Aires, Pabellón 2 de Ciudad Universitaria, Buenos Aires C1428EGA, Argentina
| | - Bruno N. Falcone
- Facultad
de Ciencias Exactas y Naturales, Departamento de Química Orgánica, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
- Unidad
de Microanálisis y Métodos Físicos aplicados
a la Química Orgánica (UMYMFOR), CONICET-Universidad de Buenos Aires, Pabellón 2 de Ciudad Universitaria, Buenos Aires C1428EGA, Argentina
| | - Marta S. Maier
- Facultad
de Ciencias Exactas y Naturales, Departamento de Química Orgánica, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
- Unidad
de Microanálisis y Métodos Físicos aplicados
a la Química Orgánica (UMYMFOR), CONICET-Universidad de Buenos Aires, Pabellón 2 de Ciudad Universitaria, Buenos Aires C1428EGA, Argentina
| | - Pau Arroyo Máñez
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico (IDM), Universitat
Politècnica de València, Universitat de València, Doctor Moliner 50, Burjassot, Valencia 46100, Spain
- Departamento
de Química Orgánica, Universitat
de València, Doctor Moliner 50, Burjassot, Valencia 46100, Spain
| |
Collapse
|
6
|
Dolezal R. Accuracy and precision of binding free energy prediction for a tacrine related lead inhibitor of acetylcholinesterase with an arsenal of supercomputerized molecular modelling methods: a comparative study. J Biomol Struct Dyn 2022; 40:11291-11319. [PMID: 34323654 DOI: 10.1080/07391102.2021.1957716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Nowadays, advanced computational chemistry methods offer various strategies for revealing prospective hit structures in drug development essentially through accurate binding free energy predictions. After the era of molecular docking and quantitative structure-activity relationships, much interest has been lately oriented to perturbed molecular dynamic approaches like replica exchange with solute tempering and free energy perturbation (REST/FEP) and the potential of the mean force with adaptive biasing and accelerated weight histograms (PMF/AWH). Both of these receptor-based techniques can exploit exascale CPU&GPU supercomputers to achieve high throughput performance. In this fundamental study, we have compared the predictive power of a panel of supercomputerized molecular modelling methods to distinguish the major binding modes and the corresponding binding free energies of a promising tacrine related potential antialzheimerics in human acetylcholinesterase. The binding free energies were estimated using flexible molecular docking, molecular mechanics/generalized Born surface area/Poisson-Boltzmann surface area (MM/GBSA/PBSA), transmutation REST/FEP with 12 x 5 ns/λ windows, annihilation FEP with 20 x 5 ns/λ steps, PMF with weight histogram analysis method (WHAM) and 40 x 5 ns samples, and PMF/AWH with 10 x 100 ns replicas. Confrontation of the classical approaches such as canonical molecular dynamics and molecular docking with alchemical calculations and steered molecular dynamics enabled us to show how large errors in ΔG predictions can be expected if these in silico methods are employed in the elucidation of a common case of enzyme inhibition.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Rafael Dolezal
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic.,Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| |
Collapse
|
7
|
Correira JM, Webb LJ. Formation and Characterization of a Stable Monolayer of Active Acetylcholinesterase on Planar Gold. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:3501-3513. [PMID: 35276042 DOI: 10.1021/acs.langmuir.1c03399] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Enzyme activity is the basis for many biosensors where a catalytic event is used to detect the presence and amount of a biomolecule of interest. To create a practical point-of-care biosensor, these enzymes need to be removed from their native cellular environments and immobilized on an abiological surface to rapidly transduce a biochemical signal into an interpretable readout. This immobilization often leads to loss of activity due to unfolded, aggregated, or improperly oriented enzymes when compared to the native state. In this work, we characterize the formation and surface packing density of a stable monolayer of acetylcholinesterase (AChE) immobilized on a planar gold surface and quantify the extent of activity loss following immobilization. Using spectroscopic ellipsometry, we determined that the surface concentration of AChE on a saturated Au surface in a buffered solution was 2.77 ± 0.21 pmol cm-2. By calculating the molecular volume of hydrated AChE, corresponding to a sphere of 6.19 nm diameter, divided by the total volume at the AChE-Au interface, we obtain a surface packing density of 33.4 ± 2.5% by volume. This corresponds to 45.1 ± 3.4% of the theoretical maximum monolayer coverage, assuming hexagonal packing. The true value, however, may be larger due to unfolding of enzymes to occupy a larger volume. The enzyme activity and kinetic measurements showed a 90.6 ± 1.4% decrease in specific activity following immobilization. Finally, following storage in a buffered solution for over 100 days at both room temperature and 4 °C, approximately 80% of this enzyme activity was retained. This contrasts with the native aqueous enzyme, which loses approximately 75% of its activity within 1 day and becomes entirely inactive within 6 days.
Collapse
Affiliation(s)
- Joshua M Correira
- Department of Chemistry, Texas Materials Institute, and Interdisciplinary Life Sciences Program, The University of Texas at Austin, 105 E 24th St. STOP A5300, Austin, Texas 78712-1224, United States
| | - Lauren J Webb
- Department of Chemistry, Texas Materials Institute, and Interdisciplinary Life Sciences Program, The University of Texas at Austin, 105 E 24th St. STOP A5300, Austin, Texas 78712-1224, United States
| |
Collapse
|
8
|
João KG, Videira RA, Paiva-Martins F, Valentão P, Pereira DM, Andrade PB. Homarine Alkyl Ester Derivatives as Promising Acetylcholinesterase Inhibitors. ChemMedChem 2021; 16:3315-3325. [PMID: 34342141 DOI: 10.1002/cmdc.202100265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/13/2021] [Indexed: 11/08/2022]
Abstract
Reversible acetylcholinesterase (AChE) inhibitors are key therapeutic tools to modulate the cholinergic connectivity compromised in several degenerative pathologies. In this work, four alkyl esters of homarine were synthesized and screened by using Electrophorus electricus AChE and rat brain AChE-rich fraction. Results showed that all homarine alkyl esters are able to inhibit AChE by a competitive inhibition mode. The effectiveness of AChE inhibition increases with the alkyl side chain length of the homarine esters, being HO-C16 (IC50 =7.57±3.32 μM and Ki =18.96±2.28 μM) the most potent inhibitor. The fluorescence quenching studies confirmed that HO-C16 is the compound with higher selectivity and affinity for the tryptophan residues in the catalytic active site of AChE. Preliminary cell viability studies showed that homarine esters display no toxicity for human neuronal SH-SY5Y cells. Thus, the long-chain homarine esters emerge as new anti-cholinesterase agents, with potential to be considered for therapeutic applications development.
Collapse
Affiliation(s)
- Karen G João
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, N° 228, 4050-313, Porto, Portugal
| | - Romeu A Videira
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, N° 228, 4050-313, Porto, Portugal
| | - Fátima Paiva-Martins
- REQUIMTE/LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 1021/1055, 4169-007, Porto, Portugal
| | - Patrícia Valentão
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, N° 228, 4050-313, Porto, Portugal
| | - David M Pereira
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, N° 228, 4050-313, Porto, Portugal
| | - Paula B Andrade
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, N° 228, 4050-313, Porto, Portugal
| |
Collapse
|
9
|
Bagri K, Kumar A, Manisha, Kumar P. Computational Studies on Acetylcholinesterase Inhibitors: From Biochemistry to Chemistry. Mini Rev Med Chem 2021; 20:1403-1435. [PMID: 31884928 DOI: 10.2174/1389557520666191224144346] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/23/2019] [Accepted: 10/28/2019] [Indexed: 11/22/2022]
Abstract
Acetylcholinesterase inhibitors are the most promising therapeutics for Alzheimer's disease treatment as these prevent the loss of acetylcholine and slows the progression of the disease. The drugs approved for the management of Alzheimer's disease by the FDA are acetylcholinesterase inhibitors but are associated with side effects. Consistent and stringent efforts by the researchers with the help of computational methods opened new ways of developing novel molecules with good acetylcholinesterase inhibitory activity. In this manuscript, we reviewed the studies that identified the essential structural features of acetylcholinesterase inhibitors at the molecular level as well as the techniques like molecular docking, molecular dynamics, quantitative structure-activity relationship, virtual screening, and pharmacophore modelling that were used in designing these inhibitors.
Collapse
Affiliation(s)
- Kiran Bagri
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science & Technology, Hisar 125001, India
| | - Ashwani Kumar
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science & Technology, Hisar 125001, India
| | - Manisha
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science & Technology, Hisar 125001, India
| | - Parvin Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra, India
| |
Collapse
|
10
|
Moghadam B, Ashouri M, Roohi H, Karimi-Jafari MH. Computational evidence of new putative allosteric sites in the acetylcholinesterase receptor. J Mol Graph Model 2021; 107:107981. [PMID: 34246109 DOI: 10.1016/j.jmgm.2021.107981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 06/27/2021] [Accepted: 06/29/2021] [Indexed: 10/21/2022]
Abstract
Acetylcholinesterase (AChE), with a rigid structure and buried active site at the end of a deep narrow gorge, is interesting enough to solve the paradox between high catalytic activity and unavailability of the active site in treatment of Alzheimer's disease (AD). In this way, the blind docking process is performed on an ensemble of AChE structures created with molecular dynamics (MD) simulations to survey the whole space of AChE to find multiple access pathways to the active site and ranking them based on their affinity scores. Our results show that there are other allosteric binding sites in the protein structure whose inhibition, can affect protein function by disrupting the release of the Acetylcholine (AC) degradation products. In this study, inhibitory activities of Hybride14 and two natural compounds (Papaverine and Palmatine) were evaluated for all possible allosteric sites via docking method. The results confirmed the non-competitive inhibition mechanism. The best binding mode for these inhibitors and efficacy of hydrogen bonds and hydrophobic interactions on inhibitory activities of ligands were also disclosed. Furthermore, our studies provide significant molecular insight for AChE inhibition that could aid in the development of new drugs for AD's treatment.
Collapse
Affiliation(s)
- Behnaz Moghadam
- Department of Chemistry, Faculty of Science, University of Guilan, Iran
| | - Mitra Ashouri
- Department of Physical Chemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran.
| | - Hossein Roohi
- Department of Chemistry, Faculty of Science, University of Guilan, Iran.
| | | |
Collapse
|
11
|
De Boer D, Nguyen N, Mao J, Moore J, Sorin EJ. A Comprehensive Review of Cholinesterase Modeling and Simulation. Biomolecules 2021; 11:580. [PMID: 33920972 PMCID: PMC8071298 DOI: 10.3390/biom11040580] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/08/2021] [Accepted: 04/11/2021] [Indexed: 01/18/2023] Open
Abstract
The present article reviews published efforts to study acetylcholinesterase and butyrylcholinesterase structure and function using computer-based modeling and simulation techniques. Structures and models of both enzymes from various organisms, including rays, mice, and humans, are discussed to highlight key structural similarities in the active site gorges of the two enzymes, such as flexibility, binding site location, and function, as well as differences, such as gorge volume and binding site residue composition. Catalytic studies are also described, with an emphasis on the mechanism of acetylcholine hydrolysis by each enzyme and novel mutants that increase catalytic efficiency. The inhibitory activities of myriad compounds have been computationally assessed, primarily through Monte Carlo-based docking calculations and molecular dynamics simulations. Pharmaceutical compounds examined herein include FDA-approved therapeutics and their derivatives, as well as several other prescription drug derivatives. Cholinesterase interactions with both narcotics and organophosphate compounds are discussed, with the latter focusing primarily on molecular recognition studies of potential therapeutic value and on improving our understanding of the reactivation of cholinesterases that are bound to toxins. This review also explores the inhibitory properties of several other organic and biological moieties, as well as advancements in virtual screening methodologies with respect to these enzymes.
Collapse
Affiliation(s)
- Danna De Boer
- Department of Chemistry & Biochemistry, California State University, Long Beach, CA 90840, USA;
| | - Nguyet Nguyen
- Department of Chemical Engineering, California State University, Long Beach, CA 90840, USA; (N.N.); (J.M.)
| | - Jia Mao
- Department of Chemical Engineering, California State University, Long Beach, CA 90840, USA; (N.N.); (J.M.)
| | - Jessica Moore
- Department of Biomedical Engineering, California State University, Long Beach, CA 90840, USA;
| | - Eric J. Sorin
- Department of Chemistry & Biochemistry, California State University, Long Beach, CA 90840, USA;
| |
Collapse
|
12
|
Hollander M, Rasp D, Aziz M, Helms V. ProPores2: Web Service and Stand-Alone Tool for Identifying, Manipulating, and Visualizing Pores in Protein Structures. J Chem Inf Model 2021; 61:1555-1559. [PMID: 33844545 DOI: 10.1021/acs.jcim.1c00154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Surface pockets, cavities, and tunnels in the 3D structures of proteins play integral functional roles such as enabling enzymatic catalysis, ligand binding, or transport of ions or small molecules across biomembranes. ProPores2 facilitates understanding and analysis of these processes by identifying pores and lining residues, determining their axes, and opening closed connections via side-chain rotation. The fast stand-alone tool introduces a novel mode for pore identification, improved axis determination, and additional features such as parallel batch processing and a graphical user interface. The new web service features an integrated and customizable protein viewer with an option to analyze and view more than one structure at once. This feature facilitates side-by-side comparisons of pores in different conformations of the same protein or of identified pores before and after opening gates within the same protein. ProPores2 is freely and publicly available at https://service.bioinformatik.uni-saarland.de/propores.
Collapse
Affiliation(s)
- Markus Hollander
- Center for Bioinformatics, Saarland Informatics Campus, Saarland University, D-66041 Saarbrücken, Germany
| | - David Rasp
- Center for Bioinformatics, Saarland Informatics Campus, Saarland University, D-66041 Saarbrücken, Germany
| | - Moomal Aziz
- Center for Bioinformatics, Saarland Informatics Campus, Saarland University, D-66041 Saarbrücken, Germany
| | - Volkhard Helms
- Center for Bioinformatics, Saarland Informatics Campus, Saarland University, D-66041 Saarbrücken, Germany
| |
Collapse
|
13
|
Baruah P, Das A, Paul D, Chakrabarty S, Aguan K, Mitra S. Sulfonylurea Class of Antidiabetic Drugs Inhibit Acetylcholinesterase Activity: Unexplored Auxiliary Pharmacological Benefit toward Alzheimer's Disease. ACS Pharmacol Transl Sci 2021; 4:193-205. [PMID: 33615172 PMCID: PMC7887854 DOI: 10.1021/acsptsci.0c00168] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Indexed: 12/21/2022]
Abstract
Contemporary literature documents extensive research on common causative mechanisms, pathogenic pathways and dual effective remedies for Alzheimer's disease (AD) and Type 2 diabetes mellitus (T2DM). Tolbutamide (TBM), chlorpropamide (CPM), and glyburide (GLY) are three sulfonylurea antidiabetic drugs of different generations. All these drugs were found to exhibit moderate to strong inhibitory efficiency on the neurotransmitter degrading enzyme acetylcholinesterase (AChE) with GLY (IC50 = 0.74 ± 0.02 μM) being the most potent, followed by CPM (IC50 = 5.72 ± 0.24 μM) and TBM (IC50 = 28.9 ± 1.60 μM). Notably, the inhibition efficiency of GLY is even comparable with the FDA approved AD drug, donepezil (DON). The larger size of GLY spans almost the full gorge of AChE ranging from catalytic active site (CAS) to the peripheral active site (PAS) with relatively strong binding affinity (6.0 × 105 M-1) and acts as a competitive inhibitor for AChE. On the other hand, while they show relatively weak binding ((2-6) × 104 M-1), both CPM and TBM act as noncompetitive binders. While these two drugs can bind to PAS, MD simulation results predict an alternative noncompetitive inhibition mechanism for CPM. These results open the possibility of repurposing the antidiabetic drugs, particularly GLY, in the treatment of AD. The consequential side effect of excess acetylcholine production, due to the administration of these drugs to AD-unaffected patients, can be rectified by using colloidal gold and silver nanofluids as potential AChE activity boosters.
Collapse
Affiliation(s)
- Prayasee Baruah
- Centre
for Advanced Studies in Chemistry and Department of Biotechnology &
Bioinformatics, North-Eastern Hill University, Shillong 793022, India
| | - Abhinandan Das
- Department
of Chemical, Biological & Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Salt Lake City, Kolkata 700106, India
| | - Debojit Paul
- Department
of Chemistry, Indian Institute of Technology
Guwahati, Guwahati 781039, India
| | - Suman Chakrabarty
- Department
of Chemical, Biological & Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Salt Lake City, Kolkata 700106, India
| | - Kripamoy Aguan
- Centre
for Advanced Studies in Chemistry and Department of Biotechnology &
Bioinformatics, North-Eastern Hill University, Shillong 793022, India
| | - Sivaprasad Mitra
- Centre
for Advanced Studies in Chemistry and Department of Biotechnology &
Bioinformatics, North-Eastern Hill University, Shillong 793022, India
| |
Collapse
|
14
|
Kumawat A, Raheem S, Ali F, Dar TA, Chakrabarty S, Rizvi MA. Organoselenium Compounds as Acetylcholinesterase Inhibitors: Evidence and Mechanism of Mixed Inhibition. J Phys Chem B 2021; 125:1531-1541. [PMID: 33538163 DOI: 10.1021/acs.jpcb.0c08111] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Acetylcholinesterase (AChE) inhibitors are actively used for the effective treatment of Alzheimer's disease. In recent years, the neuroprotective effects of organoselenium compounds such as ebselen and diselenides on the AChE activity have been investigated as potential therapeutic agents. In this work, we have carried out systematic kinetic and intrinsic fluorescence assays in combination with docking and molecular dynamics (MD) simulations to elucidate the molecular mechanism of the mixed inhibition of AChE by ebselen and diphenyl diselenide (DPDSe) molecules. Our MD simulations demonstrate significant heterogeneity in the binding modes and allosteric hotspots for DPDSe on AChE due to non-specific interactions. We have further identified that both ebselen and DPDSe can strongly bind around the peripheral anionic site (PAS), leading to non-competitive inhibition similar to other PAS-binding inhibitors. We also illustrate the entry of the DPDSe molecule into the gorge through a "side door", which offers an alternate entry point for AChE inhibitors as compared to the usual substrate entry point of the gorge. Together with results from experiments, these simulations provide mechanistic insights into the mixed type of inhibition for AChE using DPDSe as a promising inhibitor for AChE.
Collapse
Affiliation(s)
- Amit Kumawat
- Department of Chemical, Biological & Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Kolkata 700106, India
| | - Shabnam Raheem
- Department of Chemistry, University of Kashmir, Srinagar, 190006, Jammu and Kashmir, India
| | - Fasil Ali
- Department of Clinical Bio-Chemistry, University of Kashmir, Srinagar, 190006, Jammu and Kashmir, India
| | - Tanveer Ali Dar
- Department of Clinical Bio-Chemistry, University of Kashmir, Srinagar, 190006, Jammu and Kashmir, India
| | - Suman Chakrabarty
- Department of Chemical, Biological & Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Kolkata 700106, India
| | - Masood Ahmad Rizvi
- Department of Chemistry, University of Kashmir, Srinagar, 190006, Jammu and Kashmir, India
| |
Collapse
|
15
|
Computational studies on cholinesterases: Strengthening our understanding of the integration of structure, dynamics and function. Neuropharmacology 2020; 179:108265. [DOI: 10.1016/j.neuropharm.2020.108265] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/21/2020] [Accepted: 07/27/2020] [Indexed: 12/17/2022]
|
16
|
An activity prediction model for steroidal and triterpenoidal inhibitors of Acetylcholinesterase enzyme. J Comput Aided Mol Des 2020; 34:1079-1090. [PMID: 32632601 DOI: 10.1007/s10822-020-00324-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 06/14/2020] [Indexed: 12/31/2022]
Abstract
Nowadays, the importance of computational methods in the design of therapeutic agents in a more efficient way is indisputable. Particularly, these methods have been important in the design of novel acetylcholinesterase enzyme inhibitors related to Alzheimer's disease. In this sense, in this report a computational model of linear prediction of acetylcholinesterase inhibitory activity of steroids and triterpenes is presented. The model is based in a correlation between binding energies obtained from molecular dynamic simulations (after docking studies) and [Formula: see text] values of a training set. This set includes a family of natural and semi-synthetic structurally related alkaloids reported in bibliography. These types of compounds, with some structural complexity, could be used as building blocks for the synthesis of many important biologically active compounds Therefore, the present study proposes an alternative based on the use of conventional and easily accessible tools to make progress on the rational design of molecules with biological activity.
Collapse
|
17
|
In silico, in vitro and in vivo studies indicate resveratrol analogue as a potential alternative for neuroinflammatory disorders. Life Sci 2020; 249:117538. [DOI: 10.1016/j.lfs.2020.117538] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 03/03/2020] [Accepted: 03/08/2020] [Indexed: 12/18/2022]
|
18
|
Ali MR, Mezei M. Observation of quantum signature in rivastigmine chemical bond break-up and quantum energetics, spectral studies of anti-Alzheimer inhibitors. J Biomol Struct Dyn 2019; 39:118-128. [PMID: 31870208 DOI: 10.1080/07391102.2019.1708462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Semi-empirical calculations on the torsion potential for dihedral angle of rivastigmine linking NAP and Carbamyle moieties consistently show regions of several discontinuities and a cusp indicating molecular instability and eventual break-up of rivastigmine observed in the X-ray structure. The phenomena can be explained both by definition of large classical force or quantum nature of chemical bond break-up. Also, to better understand the molecular properties and quantum energetics of the inhibitor molecules, we have performed several ab initio based calculations on all four inhibitors at equilibrium geometry, in ground state and gas phase using the density functional theory level wB97X/6-31G* and HF/6-31G*. A number of properties like computational vibrational (IR), Raman and nuclear magnetic resonance (NMR) spectra as well as HOMO and LUMO orbital energies at optimized geometries have been computed by SPARTAN16 and Gaussian16 utilities. Also, the thermodynamic and QSAR properties of the inhibitors have been assessed and compared by a number of different semi-quantum, Hartree-Fock and density functional methods. The theoretical NMR and IR spectra have been benchmarked against experimental spectrum to compare and assess suitability of the computational methodologies and basis set levels for the calculations.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- M Rejwan Ali
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mihaly Mezei
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
19
|
Chandar NB, Efremenko I, Silman I, Martin JM, Sussman JL. Molecular dynamics simulations of the interaction of Mouse and Torpedo acetylcholinesterase with covalent inhibitors explain their differential reactivity: Implications for drug design. Chem Biol Interact 2019; 310:108715. [DOI: 10.1016/j.cbi.2019.06.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 06/04/2019] [Accepted: 06/13/2019] [Indexed: 10/26/2022]
|
20
|
Abdul Manap AS, Wei Tan AC, Leong WH, Yin Chia AY, Vijayabalan S, Arya A, Wong EH, Rizwan F, Bindal U, Koshy S, Madhavan P. Synergistic Effects of Curcumin and Piperine as Potent Acetylcholine and Amyloidogenic Inhibitors With Significant Neuroprotective Activity in SH-SY5Y Cells via Computational Molecular Modeling and in vitro Assay. Front Aging Neurosci 2019; 11:206. [PMID: 31507403 PMCID: PMC6718453 DOI: 10.3389/fnagi.2019.00206] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 07/22/2019] [Indexed: 12/21/2022] Open
Abstract
Hallmarks of Alzheimer's disease (AD) pathology include acetylcholine (ACh) deficiency and plaque deposition. Emerging studies suggest that acetylcholinesterase (AChE) may interact with amyloid β (Aβ) to promote aggregation of insoluble Aβ plaques in brains of patients. Current therapeutic options available for AD patients, such as AChE inhibitors, provide only symptomatic relief. In this study, we screened four natural compounds believed to harbor cognitive benefits-curcumin, piperine, bacoside A, and chebulinic acid. In the first section, preliminary screening through computational molecular docking simulations gauged the suitability of the compounds as novel AChE inhibitors. From here, only compounds that met the in silico selection criteria were selected for the second section through in vitro investigations, including AChE enzyme inhibition assay, 3-(4,5-dimenthylthiazol-2-yl)-2,5-dimethyltetrazolium bromide (MTT) assay, Thioflavin T (ThT) assay, and biochemical analysis via a neuronal cell line model. Of the four compounds screened, only curcumin (-9.6 kcal/mol) and piperine (-10.5 kcal/mol) showed favorable binding affinities and interactions towards AChE and were hence selected. In vitro AChE inhibition demonstrated that combination of curcumin and piperine showed greater AChE inhibition with an IC50 of 62.81 ± 0.01 μg/ml as compared to individual compounds, i.e., IC50 of curcumin at 134.5 ± 0.06 μg/ml and IC50 of piperine at 76.6 ± 0.08 μg/ml. In the SH-SY5Y cell model, this combination preserved cell viability up to 85%, indicating that the compounds protect against Aβ-induced neuronal damage (p < 0.01). Interestingly, our results also showed that curcumin and piperine achieved a synergistic effect at 35 μM with an synergism quotient (SQ) value of 1.824. Synergistic behavior indicates that the combination of these two compounds at lower concentrations may provide a better outcome than singularly used for Aβ proteins. Combined curcumin and piperine managed to inhibit aggregation (reduced ThT intensity at 0.432 a.u.; p < 0.01) as well as disaggregation (reduced ThT intensity at 0.532 a.u.; p < 0.01) of fibrillar Aβ42. Furthermore, combined curcumin and piperine reversed the Aβ-induced up-regulation of neuronal oxidative stress (p < 0.01). In conclusion, curcumin and piperine demonstrated promising neuroprotective effects, whereas bacoside A and chebulinic acid may not be suitable lead compounds. These results are hoped to advance the field of natural products research as potentially therapeutic and curative AD agents.
Collapse
Affiliation(s)
- Aimi Syamima Abdul Manap
- School of Biosciences, Faculty of Health and Sciences, Taylor’s University, Subang Jaya, Malaysia
| | - Amelia Cheng Wei Tan
- School of Biosciences, Faculty of Health and Sciences, Taylor’s University, Subang Jaya, Malaysia
| | - Weng Hhin Leong
- School of Biosciences, Faculty of Health and Sciences, Taylor’s University, Subang Jaya, Malaysia
| | - Adeline Yoke Yin Chia
- School of Biosciences, Faculty of Health and Sciences, Taylor’s University, Subang Jaya, Malaysia
| | - Shantini Vijayabalan
- School of Pharmacy, Faculty of Health and Sciences, Taylor’s University, Subang Jaya, Malaysia
| | - Aditya Arya
- School of Medicine, Faculty of Health and Sciences, Taylor’s University, Subang Jaya, Malaysia
| | - Eng Hwa Wong
- School of Medicine, Faculty of Health and Sciences, Taylor’s University, Subang Jaya, Malaysia
| | - Farzana Rizwan
- School of Medicine, Faculty of Health and Sciences, Taylor’s University, Subang Jaya, Malaysia
| | - Umesh Bindal
- School of Medicine, Faculty of Health and Sciences, Taylor’s University, Subang Jaya, Malaysia
| | - Shajan Koshy
- School of Medicine, Faculty of Health and Sciences, Taylor’s University, Subang Jaya, Malaysia
| | - Priya Madhavan
- School of Medicine, Faculty of Health and Sciences, Taylor’s University, Subang Jaya, Malaysia
| |
Collapse
|
21
|
Baruah P, Rohman MA, Yesylevskyy SO, Mitra S. Therapeutic potency of substituted chromones as Alzheimer's drug: Elucidation of acetylcholinesterase inhibitory activity through spectroscopic and molecular modelling investigation. BIOIMPACTS : BI 2019; 9:79-88. [PMID: 31334039 PMCID: PMC6637216 DOI: 10.15171/bi.2019.11] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 11/13/2018] [Accepted: 11/17/2018] [Indexed: 11/09/2022]
Abstract
Introduction: Documentation on the potency of chromones as acetylcholinesterase (AChE) antagonists has paved the way for the design and usage of new chromone analogues as inhibitors of AChE modelled on the hypothesis based on cholinergic pathway of Alzheimer's disease (AD). Here, 2 minimally substituted chromones, namely 3-cyanochromone (CyC) and 7-amino-3- methylchromone (AMC), were checked for their AChE inhibition efficacies and plasma protein modulation. Methods: Colorimetric enzymatic assay as well as fluorescence measurements were performed for obtaining the experimental results, which were further corroborated by molecular docking and simulation studies. Results: The investigated systems exhibited strong inhibition activities against AChE, with CyC (IC50= 85.12 ± 6.70 nM) acting as better inhibitor than AMC (IC50 = 103.09 ± 11.90 nM) and both having IC50 values in the range of FDA approved cholinergic drug Donepezil (IC50 = 74.13 ± 8.30 nM). Non-competitive inhibition was observed in both the cases with the inhibitors binding near the peripheral anionic site (PAS) of the enzyme. Having one planar nitrile group in CyC as compared to sp3 hybridised substituents in AMC facilitated stacking interactions in the former, accounting for its higher inhibitory efficacy. A significant decrease in the inhibition potency of CyC (~32%) was noted in comparison with AMC (~5%) when the experiments were performed in presence of human serum albumin (HSA) instead of pure aqueous buffer. Conclusion: This comparative study affirms the importance of meticulous substitution in the chromone scaffold to promote maximum inhibition potency, while considering their usage as AD drugs.
Collapse
Affiliation(s)
- Prayasee Baruah
- Centre for Advanced Studies in Chemistry, North-Eastern Hill University, Shillong – 793 022, India
| | - Mostofa Ataur Rohman
- Centre for Advanced Studies in Chemistry, North-Eastern Hill University, Shillong – 793 022, India
| | - Semen O. Yesylevskyy
- Department of Physics of Biological Systems, Institute of Physics of the National Academy of Sciences of Ukraine, Prospect Nauky 46, 03028 Kyiv, Ukraine
| | - Sivaprasad Mitra
- Centre for Advanced Studies in Chemistry, North-Eastern Hill University, Shillong – 793 022, India
| |
Collapse
|
22
|
Wan Y, Guan S, Qian M, Huang H, Han F, Wang S, Zhang H. Structural basis of fullerene derivatives as novel potent inhibitors of protein acetylcholinesterase without catalytic active site interaction: insight into the inhibitory mechanism through molecular modeling studies. J Biomol Struct Dyn 2019; 38:410-425. [DOI: 10.1080/07391102.2019.1576543] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Yongfeng Wan
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun, People’s Republic of China
| | - Shanshan Guan
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun, People’s Republic of China
- College of Biology and Food Engineering, Jilin Engineering Normal University, Changchun, Jilin, China
| | - Mengdan Qian
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, China
| | - Houhou Huang
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun, People’s Republic of China
| | - Fei Han
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun, People’s Republic of China
| | - Song Wang
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun, People’s Republic of China
| | - Hao Zhang
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun, People’s Republic of China
| |
Collapse
|
23
|
Ho KC, Hamelberg D. Combinatorial Coarse-Graining of Molecular Dynamics Simulations for Detecting Relationships between Local Configurations and Overall Conformations. J Chem Theory Comput 2018; 14:6026-6034. [DOI: 10.1021/acs.jctc.8b00333] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Ka Chun Ho
- Department of Chemistry and the Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, Georgia 30302-3965, United States
| | - Donald Hamelberg
- Department of Chemistry and the Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, Georgia 30302-3965, United States
| |
Collapse
|
24
|
Andersson CD, Martinez N, Zeller D, Allgardsson A, Koza MM, Frick B, Ekström F, Peters J, Linusson A. Influence of Enantiomeric Inhibitors on the Dynamics of Acetylcholinesterase Measured by Elastic Incoherent Neutron Scattering. J Phys Chem B 2018; 122:8516-8525. [DOI: 10.1021/acs.jpcb.8b05485] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
| | - Nicolas Martinez
- Institut Laue Langevin, F-38042 Grenoble Cedex 9, France
- Université Grenoble Alpes, IBS and LiPhy, F-38000 Grenoble, France
| | - Dominik Zeller
- Institut Laue Langevin, F-38042 Grenoble Cedex 9, France
- Université Grenoble Alpes, IBS and LiPhy, F-38000 Grenoble, France
| | - Anders Allgardsson
- CBRN Defence and Security, Swedish Defence Research Agency, SE-90621 Umeå, Sweden
| | | | - Bernhard Frick
- Institut Laue Langevin, F-38042 Grenoble Cedex 9, France
| | - Fredrik Ekström
- CBRN Defence and Security, Swedish Defence Research Agency, SE-90621 Umeå, Sweden
| | - Judith Peters
- Institut Laue Langevin, F-38042 Grenoble Cedex 9, France
- Université Grenoble Alpes, IBS and LiPhy, F-38000 Grenoble, France
| | - Anna Linusson
- Department of Chemistry, Umeå University, SE-90187 Umeå, Sweden
| |
Collapse
|
25
|
Xu Y, Cheng S, Sussman JL, Silman I, Jiang H. Computational Studies on Acetylcholinesterases. Molecules 2017; 22:molecules22081324. [PMID: 28796192 PMCID: PMC6152020 DOI: 10.3390/molecules22081324] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 08/07/2017] [Accepted: 08/07/2017] [Indexed: 01/18/2023] Open
Abstract
Functions of biomolecules, in particular enzymes, are usually modulated by structural fluctuations. This is especially the case in a gated diffusion-controlled reaction catalyzed by an enzyme such as acetylcholinesterase. The catalytic triad of acetylcholinesterase is located at the bottom of a long and narrow gorge, but it catalyzes the extremely rapid hydrolysis of the neurotransmitter, acetylcholine, with a reaction rate close to the diffusion-controlled limit. Computational modeling and simulation have produced considerable advances in exploring the dynamical and conformational properties of biomolecules, not only aiding in interpreting the experimental data, but also providing insights into the internal motions of the biomolecule at the atomic level. Given the remarkably high catalytic efficiency and the importance of acetylcholinesterase in drug development, great efforts have been made to understand the dynamics associated with its functions by use of various computational methods. Here, we present a comprehensive overview of recent computational studies on acetylcholinesterase, expanding our views of the enzyme from a microstate of a single structure to conformational ensembles, strengthening our understanding of the integration of structure, dynamics and function associated with the enzyme, and promoting the structure-based and/or mechanism-based design of new inhibitors for it.
Collapse
Affiliation(s)
- Yechun Xu
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), Shanghai 201203, China.
| | - Shanmei Cheng
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), Shanghai 201203, China.
| | - Joel L Sussman
- Israel Structural Proteomics Center, Weizmann Institute of Science, Rehovot 76100, Israel.
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 76100, Israel.
| | - Israel Silman
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel.
| | - Hualiang Jiang
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), Shanghai 201203, China.
| |
Collapse
|