1
|
Forghani P, Liu W, Wang Z, Ling Z, Takaesu F, Yang E, Tharp GK, Nielsen S, Doraisingam S, Countryman S, Davis ME, Wu R, Jia S, Xu C. Spaceflight alters protein levels and gene expression associated with stress response and metabolic characteristics in human cardiac spheroids. Biomaterials 2025; 317:123080. [PMID: 39809079 PMCID: PMC11788069 DOI: 10.1016/j.biomaterials.2024.123080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 12/30/2024] [Indexed: 01/16/2025]
Abstract
Cardiomyocytes derived from human induced pluripotent stem cells (hiPSC-CMs) possess tremendous advantage for cardiac regeneration. However, cell survival is challenging upon cell transplantation. Since microgravity can profoundly affect cellular properties, we investigated the effect of spaceflight on hiPSC-CMs. Cardiac spheroids derived from hiPSCs were transported to the International Space Station (ISS) via the SpaceX Crew-8 mission and cultured under space microgravity for 8 days. Beating cardiac spheroids were observed on the ISS and upon successful experimentation by the astronauts in space, the live cultures were returned to Earth. These cells had normal displacement (an indicator of contraction) and Ca2+ transient parameters in 3D live cell imaging. Proteomic analysis revealed that spaceflight upregulated many proteins involved in metabolism (n = 90), cellular component of mitochondrion (n = 62) and regulation of proliferation (n = 10). Specific metabolic pathways enriched by spaceflight included glutathione metabolism, biosynthesis of amino acids, and pyruvate metabolism. In addition, the top upregulated proteins in spaceflight samples included those involved in cellular stress response, cell survival, and metabolism. Transcriptomic profiles indicated that spaceflight upregulated genes associated with cardiomyocyte development, and cellular components of cardiac structure and mitochondrion. Furthermore, spaceflight upregulated genes in metabolic pathways associated with cell survival such as glycerophospholipid metabolism and glycerolipid metabolism. These findings indicate that short-term exposure of 3D hiPSC-CMs to the space environment led to significant changes in protein levels and gene expression involved in cell survival and metabolism.
Collapse
Affiliation(s)
- Parvin Forghani
- Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Wenhao Liu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Zeyu Wang
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
| | - Zhi Ling
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Felipe Takaesu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Evan Yang
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Gregory K Tharp
- Emory National Primate Research Center, Emory University, Atlanta, GA, USA
| | | | | | | | - Michael E Davis
- Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Ronghu Wu
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
| | - Shu Jia
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Chunhui Xu
- Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.
| |
Collapse
|
2
|
Villa M, Sharma GG, Malighetti F, Mauri M, Arosio G, Cordani N, Lobello C, Larose H, Pirola A, D'Aliberti D, Massimino L, Criscuolo L, Pagani L, Chinello C, Mastini C, Fontana D, Bombelli S, Meneveri R, Lovisa F, Mussolin L, Janikova A, Pospíšilová Š, Turner SD, Inghirami G, Magni F, Urso M, Pagni F, Ramazzotti D, Piazza R, Chiarle R, Gambacorti-Passerini C, Mologni L. Recurrent somatic mutations of FAT family cadherins induce an aggressive phenotype and poor prognosis in anaplastic large cell lymphoma. Br J Cancer 2024; 131:1781-1795. [PMID: 39478125 PMCID: PMC11589140 DOI: 10.1038/s41416-024-02881-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 10/03/2024] [Accepted: 10/11/2024] [Indexed: 11/27/2024] Open
Abstract
BACKGROUND Anaplastic Large Cell Lymphoma (ALCL) is a rare and aggressive T-cell lymphoma, classified into ALK-positive and ALK-negative subtypes, based on the presence of chromosomal translocations involving the ALK gene. The current standard of treatment for ALCL is polychemotherapy, with a high overall survival rate. However, a subset of patients does not respond to or develops resistance to these therapies, posing a serious challenge for clinicians. Recent targeted treatments such as ALK kinase inhibitors and anti-CD30 antibody-drug conjugates have shown promise but, for a fraction of patients, the prognosis is still unsatisfactory. METHODS We investigated the genetic landscape of ALK + ALCL by whole-exome sequencing; recurring mutations were characterized in vitro and in vivo using transduced ALCL cellular models. RESULTS Recurrent mutations in FAT family genes and the transcription factor RUNX1T1 were found. These mutations induced changes in ALCL cells morphology, growth, and migration, shedding light on potential factors contributing to treatment resistance. In particular, FAT4 silencing in ALCL cells activated the β-catenin and YAP1 pathways, which play crucial roles in tumor growth, and conferred resistance to chemotherapy. Furthermore, STAT1 and STAT3 were hyper-activated in these cells. Gene expression profiling showed global changes in pathways related to cell adhesion, cytoskeletal organization, and oncogenic signaling. Notably, FAT mutations associated with poor outcome in patients. CONCLUSIONS These findings provide novel insights into the molecular portrait of ALCL, that could help improve treatment strategies and the prognosis for ALCL patients.
Collapse
Affiliation(s)
- Matteo Villa
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Geeta G Sharma
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Federica Malighetti
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Mario Mauri
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Giulia Arosio
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Nicoletta Cordani
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Cosimo Lobello
- Center of Molecular Medicine, Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
| | - Hugo Larose
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Cambridge, UK
| | | | - Deborah D'Aliberti
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Luca Massimino
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- Division of Immunology, Transplantation and Infectious Disease, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Lucrezia Criscuolo
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Lisa Pagani
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Clizia Chinello
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Cristina Mastini
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Diletta Fontana
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Silvia Bombelli
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- Neurogenomics Research Center, Fondazione Human Technopole, Milano, Italy
| | - Raffaella Meneveri
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Federica Lovisa
- Maternal and Child Health, Department Pediatric Hematology, Oncology and Stem Cell Transplant Center, University of Padua, Padua, Italy
- Pediatric Research Institute "Città della Speranza", Padua, Italy
| | - Lara Mussolin
- Maternal and Child Health, Department Pediatric Hematology, Oncology and Stem Cell Transplant Center, University of Padua, Padua, Italy
- Pediatric Research Institute "Città della Speranza", Padua, Italy
| | - Andrea Janikova
- Center of Molecular Medicine, Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
- Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Šárka Pospíšilová
- Center of Molecular Medicine, Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
- Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Suzanne D Turner
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Cambridge, UK
- Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | | | - Fulvio Magni
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Mario Urso
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- Department of Pathology, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Fabio Pagni
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- Department of Pathology, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Daniele Ramazzotti
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Rocco Piazza
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Roberto Chiarle
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
- Department of Pathology, Children's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Haematopathology, European Institute of Oncology IRCCS, Milan, Italy
| | - Carlo Gambacorti-Passerini
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- Department of Haematology, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Luca Mologni
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.
| |
Collapse
|
3
|
Burek M, Kaupp V, Blecharz-Lang K, Dilling C, Meybohm P. Protocadherin gamma C3: a new player in regulating vascular barrier function. Neural Regen Res 2023. [PMID: 35799511 PMCID: PMC9241426 DOI: 10.4103/1673-5374.343896] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Defects in the endothelial cell barrier accompany diverse malfunctions of the central nervous system such as neurodegenerative diseases, stroke, traumatic brain injury, and systemic diseases such as sepsis, viral and bacterial infections, and cancer. Compromised endothelial sealing leads to leaking blood vessels, followed by vasogenic edema. Brain edema as the most common complication caused by stroke and traumatic brain injury is the leading cause of death. Brain microvascular endothelial cells, together with astrocytes, pericytes, microglia, and neurons form a selective barrier, the so-called blood-brain barrier, which regulates the movement of molecules inside and outside of the brain. Mechanisms that regulate blood-brain barrier permeability in health and disease are complex and not fully understood. Several newly discovered molecules that are involved in the regulation of cellular processes in brain microvascular endothelial cells have been described in the literature in recent years. One of these molecules that are highly expressed in brain microvascular endothelial cells is protocadherin gamma C3. In this review, we discuss recent evidence that protocadherin gamma C3 is a newly identified key player involved in the regulation of vascular barrier function.
Collapse
|
4
|
Protocadherin 15 suppresses oligodendrocyte progenitor cell proliferation and promotes motility through distinct signalling pathways. Commun Biol 2022; 5:511. [PMID: 35637313 PMCID: PMC9151716 DOI: 10.1038/s42003-022-03470-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 05/10/2022] [Indexed: 12/15/2022] Open
Abstract
Oligodendrocyte progenitor cells (OPCs) express protocadherin 15 (Pcdh15), a member of the cadherin superfamily of transmembrane proteins. Little is known about the function of Pcdh15 in the central nervous system (CNS), however, Pcdh15 expression can predict glioma aggression and promote the separation of embryonic human OPCs immediately following a cell division. Herein, we show that Pcdh15 knockdown significantly increases extracellular signal-related kinase (ERK) phosphorylation and activation to enhance OPC proliferation in vitro. Furthermore, Pcdh15 knockdown elevates Cdc42-Arp2/3 signalling and impairs actin kinetics, reducing the frequency of lamellipodial extrusion and slowing filopodial withdrawal. Pcdh15 knockdown also reduces the number of processes supported by each OPC and new process generation. Our data indicate that Pcdh15 is a critical regulator of OPC proliferation and process motility, behaviours that characterise the function of these cells in the healthy CNS, and provide mechanistic insight into the role that Pcdh15 might play in glioma progression. Protocadherin 15 promotes lamellipodial and filopodial dynamics in oligodendrocyte progenitor cells by regulating Cdc42-Arp2/3 activity, but also suppresses ERK1/2 phosphorylation to reduce proliferation.
Collapse
|
5
|
Müller D, Győrffy B. DNA methylation-based diagnostic, prognostic, and predictive biomarkers in colorectal cancer. Biochim Biophys Acta Rev Cancer 2022; 1877:188722. [PMID: 35307512 DOI: 10.1016/j.bbcan.2022.188722] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/21/2022] [Accepted: 03/13/2022] [Indexed: 12/12/2022]
Abstract
DNA methylation is an epigenetic mechanism regulating gene expression. Changes in DNA methylation were suggested to be useful biomarkers for diagnosis, and for the determination of prognosis and treatment response. Here, we provide an overview of methylation-based biomarkers in colorectal cancer. First, we start with the two methylation-based diagnostic biomarkers already approved for colorectal cancer, SEPT9 and the combination of NDRG4 and BMP3. Then, we provide a list-based overview of new biomarker candidates depending on the sample source including plasma, stool, urine, and surgically removed tumor tissues. The most often identified markers like SDC2, VIM, APC, MGMT, SFRP1, SFRP2, and NDRG4 have distinct functions previously linked to tumor progression. Although numerous studies have identified tumor-specific methylation changes, most of these alterations were observed in a single study only. The lack of validation in independent samples means low reproducibility and is a major limitation. The genome-wide determination of methylation status (methylome) can provide data to solve these issues. In the third section of the review, methylome studies focusing on different aspects related to CRC, including precancerous lesions, CRC-specific changes, molecular subtypes, aging, and chemotherapy response are summarized. Notably, techniques simultaneously analyzing a large set of regions can also uncover epigenetic regulation of genes which have not yet been associated with tumorigenesis previously. A remaining constraint of studies published to date is the low patient number utilized in these preventing the identification of clinically valuable biomarker candidates. Either future large-scale studies or the integration of already available methylome-level data will be necessary to uncover biomarkers sufficiently robust for clinical application.
Collapse
Affiliation(s)
- Dalma Müller
- Dept. of Bioinformatics, Semmelweis University, Budapest, Hungary; Cancer Biomarker Research Group, RCNS, Budapest, Hungary
| | - Balázs Győrffy
- Dept. of Bioinformatics, Semmelweis University, Budapest, Hungary; Cancer Biomarker Research Group, RCNS, Budapest, Hungary.
| |
Collapse
|
6
|
Nassar FJ, Msheik ZS, Nasr RR, Temraz SN. Methylated circulating tumor DNA as a biomarker for colorectal cancer diagnosis, prognosis, and prediction. Clin Epigenetics 2021; 13:111. [PMID: 34001239 PMCID: PMC8130320 DOI: 10.1186/s13148-021-01095-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/02/2021] [Indexed: 12/23/2022] Open
Abstract
Worldwide, colorectal cancer (CRC) is a deadly disease whose death rate ranks second among cancers though its incidence ranks third. Early CRC detection is key and is associated with improved survival outcomes. However, existing tests for CRC diagnosis have several weaknesses thus rendering them inefficient. Moreover, reliable prognostic tests that can predict the overall cancer outcome and recurrence of the disease as well as predictive markers that can assess effectiveness of therapy are still lacking. Thus, shifting to noninvasive liquid biopsy or blood-based biomarkers is vital to improving CRC diagnosis, prognosis, and prediction. Methylated circulating tumor DNA (ctDNA) has gained increased attention as a type of liquid biopsy that is tumor-derived fragmented DNA with epigenetic alterations. Methylated ctDNA are more consistently present in blood of cancer patients as compared to mutated ctDNA. Hence, methylated ctDNA serves as a potential biomarker for CRC that is worth investigating. In this review, we explore what has been reported about methylated ctDNA as a biomarker for CRC diagnosis that can distinguish between CRC patients or those having adenoma and healthy controls as validated specifically through ROC curves. We also examine methylated ctDNA as a biomarker for CRC prognosis and prediction as confirmed through robust statistical analyses. Finally, we discuss the major technical challenges that limits the use of methylated ctDNA for clinical application and suggest possible recommendations to enhance its usage.
Collapse
Affiliation(s)
- Farah J Nassar
- Department of Internal Medicine, Faculty of Medicine, American University of Beirut, P.O. Box: 11-0236, Beirut, Lebanon
| | - Zahraa S Msheik
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, P.O. Box: 11-0236, Beirut, Lebanon
| | - Rihab R Nasr
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, P.O. Box: 11-0236, Beirut, Lebanon.
| | - Sally N Temraz
- Department of Internal Medicine, Faculty of Medicine, American University of Beirut, P.O. Box: 11-0236, Beirut, Lebanon.
| |
Collapse
|
7
|
Zhou D, Tang W, Xu Y, Xu Y, Xu B, Fu S, Wang Y, Chen F, Chen Y, Han Y, Wang G. METTL3/YTHDF2 m6A axis accelerates colorectal carcinogenesis through epigenetically suppressing YPEL5. Mol Oncol 2021; 15:2172-2184. [PMID: 33411363 PMCID: PMC8333777 DOI: 10.1002/1878-0261.12898] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 11/29/2020] [Accepted: 01/05/2021] [Indexed: 01/10/2023] Open
Abstract
N6‐methyladenosine (m6A) has emerged as the most prevalent post‐transcriptional modification on mRNA that contributes prominently to tumorigenesis. However, the specific function of m6A methyltransferase methyltransferase‐like 3 (METTL3) in colorectal cancer (CRC) remains elusive. Herein, we explored the biological function of METTL3 in CRC progression. Clinically, METTL3 was frequently upregulated in CRC tissues, cell lines, and plasma samples and its high expression predicted poor prognosis of CRC patients. Functionally, knockdown of METTL3 significantly repressed CRC cell proliferation and migration in vitro, while its overexpression accelerated CRC tumor formation and metastasis both in vitro and in vivo. Mechanistically, METTL3 epigenetically repressed YPEL5 in an m6A‐YTHDF2‐dependent manner by targeting the m6A site in the coding sequence region of the YPEL5 transcript. Moreover, overexpression of YPEL5 significantly reduced CCNB1 and PCNA expression. Collectively, we identified the pivotal role of METTL3‐catalyzed m6A modification in CRC tumorigenesis, wherein it facilitates CRC tumor growth and metastasis through suppressing YPEL5 expression in an m6A‐YTHDF2‐dependent manner, suggesting a promising strategy for the diagnosis and therapy of CRC.
Collapse
Affiliation(s)
- Dan Zhou
- Research Center of Natural Cosmeceuticals Engineering, Xiamen Medical College, China.,Application Technique Engineering Center of Natural Cosmeceuticals, College of Fuijan Province, Xiamen Medical College, China.,Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Medical College, Xiamen University, China
| | - Weiwei Tang
- Department of Medical Oncology, Cancer Hospital, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Teaching Hospital of Fujian Medical University, China
| | - Yidan Xu
- Research Center of Natural Cosmeceuticals Engineering, Xiamen Medical College, China.,Application Technique Engineering Center of Natural Cosmeceuticals, College of Fuijan Province, Xiamen Medical College, China
| | - Yajie Xu
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Medical College, Xiamen University, China
| | - Binbin Xu
- Research Center of Natural Cosmeceuticals Engineering, Xiamen Medical College, China.,Application Technique Engineering Center of Natural Cosmeceuticals, College of Fuijan Province, Xiamen Medical College, China
| | - Shanshan Fu
- Research Center of Natural Cosmeceuticals Engineering, Xiamen Medical College, China.,Application Technique Engineering Center of Natural Cosmeceuticals, College of Fuijan Province, Xiamen Medical College, China
| | - Yanting Wang
- Research Center of Natural Cosmeceuticals Engineering, Xiamen Medical College, China.,Application Technique Engineering Center of Natural Cosmeceuticals, College of Fuijan Province, Xiamen Medical College, China
| | - Fangfang Chen
- Research Center of Natural Cosmeceuticals Engineering, Xiamen Medical College, China.,Application Technique Engineering Center of Natural Cosmeceuticals, College of Fuijan Province, Xiamen Medical College, China
| | - Yongxiong Chen
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Medical College, Xiamen University, China
| | - Yinshu Han
- Research Center of Natural Cosmeceuticals Engineering, Xiamen Medical College, China.,Application Technique Engineering Center of Natural Cosmeceuticals, College of Fuijan Province, Xiamen Medical College, China
| | - Gueyhorng Wang
- Research Center of Natural Cosmeceuticals Engineering, Xiamen Medical College, China.,Application Technique Engineering Center of Natural Cosmeceuticals, College of Fuijan Province, Xiamen Medical College, China
| |
Collapse
|
8
|
Marzec J, Ross-Adams H, Pirrò S, Wang J, Zhu Y, Mao X, Gadaleta E, Ahmad AS, North BV, Kammerer-Jacquet SF, Stankiewicz E, Kudahetti SC, Beltran L, Ren G, Berney DM, Lu YJ, Chelala C. The Transcriptomic Landscape of Prostate Cancer Development and Progression: An Integrative Analysis. Cancers (Basel) 2021; 13:345. [PMID: 33477882 PMCID: PMC7838904 DOI: 10.3390/cancers13020345] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/07/2021] [Accepted: 01/12/2021] [Indexed: 11/16/2022] Open
Abstract
Next-generation sequencing of primary tumors is now standard for transcriptomic studies, but microarray-based data still constitute the majority of available information on other clinically valuable samples, including archive material. Using prostate cancer (PC) as a model, we developed a robust analytical framework to integrate data across different technical platforms and disease subtypes to connect distinct disease stages and reveal potentially relevant genes not identifiable from single studies alone. We reconstructed the molecular profile of PC to yield the first comprehensive insight into its development, by tracking changes in mRNA levels from normal prostate to high-grade prostatic intraepithelial neoplasia, and metastatic disease. A total of nine previously unreported stage-specific candidate genes with prognostic significance were also found. Here, we integrate gene expression data from disparate sample types, disease stages and technical platforms into one coherent whole, to give a global view of the expression changes associated with the development and progression of PC from normal tissue through to metastatic disease. Summary and individual data are available online at the Prostate Integrative Expression Database (PIXdb), a user-friendly interface designed for clinicians and laboratory researchers to facilitate translational research.
Collapse
Affiliation(s)
- Jacek Marzec
- Bioinformatics Unit, Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK; (J.M.); (S.P.); (J.W.); (E.G.)
| | - Helen Ross-Adams
- Bioinformatics Unit, Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK; (J.M.); (S.P.); (J.W.); (E.G.)
| | - Stefano Pirrò
- Bioinformatics Unit, Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK; (J.M.); (S.P.); (J.W.); (E.G.)
| | - Jun Wang
- Bioinformatics Unit, Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK; (J.M.); (S.P.); (J.W.); (E.G.)
| | - Yanan Zhu
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK; (Y.Z.); (X.M.); (S.-F.K.-J.); (E.S.); (S.C.K.); (D.M.B.); (Y.-J.L.)
| | - Xueying Mao
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK; (Y.Z.); (X.M.); (S.-F.K.-J.); (E.S.); (S.C.K.); (D.M.B.); (Y.-J.L.)
| | - Emanuela Gadaleta
- Bioinformatics Unit, Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK; (J.M.); (S.P.); (J.W.); (E.G.)
| | - Amar S. Ahmad
- Centre for Cancer Prevention, Wolfson Institute of Preventive Medicine, Barts and the London School of Medicine, Queen Mary University of London, London EC1M 6BQ, UK; (A.S.A.); (B.V.N.)
| | - Bernard V. North
- Centre for Cancer Prevention, Wolfson Institute of Preventive Medicine, Barts and the London School of Medicine, Queen Mary University of London, London EC1M 6BQ, UK; (A.S.A.); (B.V.N.)
| | - Solène-Florence Kammerer-Jacquet
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK; (Y.Z.); (X.M.); (S.-F.K.-J.); (E.S.); (S.C.K.); (D.M.B.); (Y.-J.L.)
| | - Elzbieta Stankiewicz
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK; (Y.Z.); (X.M.); (S.-F.K.-J.); (E.S.); (S.C.K.); (D.M.B.); (Y.-J.L.)
| | - Sakunthala C. Kudahetti
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK; (Y.Z.); (X.M.); (S.-F.K.-J.); (E.S.); (S.C.K.); (D.M.B.); (Y.-J.L.)
| | - Luis Beltran
- Department of Pathology, Barts Health NHS, London E1 F1R, UK;
| | - Guoping Ren
- Department of Pathology, The First Affiliated Hospital, Zhejiang University Medical College, Hangzhou 310058, China;
| | - Daniel M. Berney
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK; (Y.Z.); (X.M.); (S.-F.K.-J.); (E.S.); (S.C.K.); (D.M.B.); (Y.-J.L.)
- Department of Pathology, Barts Health NHS, London E1 F1R, UK;
| | - Yong-Jie Lu
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK; (Y.Z.); (X.M.); (S.-F.K.-J.); (E.S.); (S.C.K.); (D.M.B.); (Y.-J.L.)
| | - Claude Chelala
- Bioinformatics Unit, Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK; (J.M.); (S.P.); (J.W.); (E.G.)
- Centre for Computational Biology, Life Sciences Initiative, Queen Mary University London, London EC1M 6BQ, UK
| |
Collapse
|
9
|
Sutter PA, Karki S, Crawley I, Singh V, Bernt KM, Rowe DW, Crocker SJ, Bayarsaihan D, Guzzo RM. Mesenchyme-specific loss of Dot1L histone methyltransferase leads to skeletal dysplasia phenotype in mice. Bone 2021; 142:115677. [PMID: 33022452 PMCID: PMC7744341 DOI: 10.1016/j.bone.2020.115677] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/20/2020] [Accepted: 10/01/2020] [Indexed: 12/17/2022]
Abstract
Chromatin modifying enzymes play essential roles in skeletal development and bone maintenance, and deregulation of epigenetic mechanisms can lead to skeletal growth and malformation disorders. Here, we report a novel skeletal dysplasia phenotype in mice with conditional loss of Disruptor of telomeric silencing 1-like (Dot1L) histone methyltransferase in limb mesenchymal progenitors and downstream descendants. Phenotypic characterizations of mice with Dot1L inactivation by Prrx1-Cre (Dot1L-cKOPrrx1) revealed limb shortening, abnormal bone morphologies, and forelimb dislocations. Our in vivo and in vitro data support a crucial role for Dot1L in regulating growth plate chondrocyte proliferation and differentiation, extracellular matrix production, and secondary ossification center formation. Micro-computed tomography analysis of femurs revealed that partial loss of Dot1L expression is sufficient to impair trabecular bone formation and microarchitecture in young mice. Moreover, RNAseq analysis of Dot1L deficient chondrocytes implicated Dot1L in the regulation of key genes and pathways necessary to promote cell cycle regulation and skeletal growth. Collectively, our data show that early expression of Dot1L in limb mesenchyme provides essential regulatory control of endochondral bone morphology, growth, and stability.
Collapse
Affiliation(s)
- Pearl A Sutter
- Department of Neuroscience, School of Medicine, University of Connecticut Health, Farmington, CT, United States of America
| | - Sangita Karki
- Department of Neuroscience, School of Medicine, University of Connecticut Health, Farmington, CT, United States of America
| | - Ilan Crawley
- Department of Neuroscience, School of Medicine, University of Connecticut Health, Farmington, CT, United States of America
| | - Vijender Singh
- Bioinformatics, University of Connecticut, Storrs, CT, United States of America
| | - Kathrin M Bernt
- Division of Pediatric Oncology, Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania and Abramson Cancer Center, Philadelphia, PA, United States of America
| | - David W Rowe
- Department of Reconstructive Sciences, School of Dental Medicine, University of Connecticut Health, Farmington, CT, United States of America; Center for Regenerative Medicine and Skeletal Development, Farmington, CT, United States of America
| | - Stephen J Crocker
- Department of Neuroscience, School of Medicine, University of Connecticut Health, Farmington, CT, United States of America
| | - Dashzeveg Bayarsaihan
- Department of Reconstructive Sciences, School of Dental Medicine, University of Connecticut Health, Farmington, CT, United States of America; Center for Regenerative Medicine and Skeletal Development, Farmington, CT, United States of America
| | - Rosa M Guzzo
- Department of Neuroscience, School of Medicine, University of Connecticut Health, Farmington, CT, United States of America.
| |
Collapse
|
10
|
Pancho A, Aerts T, Mitsogiannis MD, Seuntjens E. Protocadherins at the Crossroad of Signaling Pathways. Front Mol Neurosci 2020; 13:117. [PMID: 32694982 PMCID: PMC7339444 DOI: 10.3389/fnmol.2020.00117] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/08/2020] [Indexed: 12/25/2022] Open
Abstract
Protocadherins (Pcdhs) are cell adhesion molecules that belong to the cadherin superfamily, and are subdivided into clustered (cPcdhs) and non-clustered Pcdhs (ncPcdhs) in vertebrates. In this review, we summarize their discovery, expression mechanisms, and roles in neuronal development and cancer, thereby highlighting the context-dependent nature of their actions. We furthermore provide an extensive overview of current structural knowledge, and its implications concerning extracellular interactions between cPcdhs, ncPcdhs, and classical cadherins. Next, we survey the known molecular action mechanisms of Pcdhs, emphasizing the regulatory functions of proteolytic processing and domain shedding. In addition, we outline the importance of Pcdh intracellular domains in the regulation of downstream signaling cascades, and we describe putative Pcdh interactions with intracellular molecules including components of the WAVE complex, the Wnt pathway, and apoptotic cascades. Our overview combines molecular interaction data from different contexts, such as neural development and cancer. This comprehensive approach reveals potential common Pcdh signaling hubs, and points out future directions for research. Functional studies of such key factors within the context of neural development might yield innovative insights into the molecular etiology of Pcdh-related neurodevelopmental disorders.
Collapse
Affiliation(s)
- Anna Pancho
- Laboratory of Developmental Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Tania Aerts
- Laboratory of Developmental Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Manuela D Mitsogiannis
- Laboratory of Developmental Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Eve Seuntjens
- Laboratory of Developmental Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
| |
Collapse
|
11
|
Losi L, Zanocco-Marani T, Grande A. Cadherins down-regulation: towards a better understanding of their relevance in colorectal cancer. Histol Histopathol 2020; 35:1391-1402. [PMID: 32567668 DOI: 10.14670/hh-18-236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The down-regulation of cadherin expression in colorectal cancer (CRC) has been widely studied. However, existing data on cadherin expression are highly variable and its relevance to CRC development has not been completely established. This review examines published studies on cadherins whose down-regulation has been already demonstrated in CRC, trying to establish a relationship with promoter methylation, the capacity to influence the Wnt / CTNNB1 (catenin beta 1, beta-catenin) signalling pathway and the clinical implications for disease outcome. Moreover, it also analyses factors that may explain data variability and highlights the importance of considering the altered subcellular localization of the examined cadherins. The results of this survey reveal that thirty of one hundred existing cadherins appear to be down-regulated in CRC. Among these, ten are cadherins, sixteen are protocadherins, equally divided between clustered and non clustered, and four are cadherin - related. These findings suggest that, to better define the role played by cadherin down-regulation in CRC pathogenesis, the expression of multiple rather than individual cadherins should be taken into account and further functional studies are necessary to clarify the relative ability of individual cadherins to inhibit CTNNB1 therefore acting as tumor suppressors.
Collapse
Affiliation(s)
- Lorena Losi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy.
| | | | - Alexis Grande
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
12
|
Wei J, Xie Q, Liu X, Wan C, Wu W, Fang K, Yao Y, Cheng P, Deng D, Liu Z. Identification the prognostic value of glutathione peroxidases expression levels in acute myeloid leukemia. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:678. [PMID: 32617298 PMCID: PMC7327321 DOI: 10.21037/atm-20-3296] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background Glutathione peroxidases (GPXs) are an enzyme family with peroxidase activity. Abnormal GPX expression is associated with carcinogenesis. However, the potential role of the GPX gene family in acute myeloid leukemia (AML) remains to be comprehensively examined. Methods We analyzed GPX mRNA expression levels and determined the correlation between gene expression and the prognostic value via multiple universally acknowledged databases including the Oncomine, Gene Expression Profiling Interactive Analysis (GEPIA), PROGgeneV2, UALCAN, Cancer Cell Line Encyclopedia (CCLE), and The European Bioinformatics Institute (EMBL-EBI) databases. The functional network of differentially expressed GPXs was investigated via the NetworkAnalyst platform. Correlated genes as well as kinase, microRNA (miRNA), and transcription factor (TF) targets were identified using LinkedOmics. Results We observed that the transcriptional expression levels of GPX-1, -2, -4, -7, and -8 had significant difference between AML patients samples and normal samples, and that AML patients with high expression of GPX-1, -3, -4, and -7 were associated with poorer prognosis of overall survival (OS). Functional enrichment analysis showed that the differentially expressed GPXs were mainly enriched in response to oxidative stress, regulation of immune response, and inflammatory response, along with glutathione metabolism and ferroptosis. Overexpression of correlated genes, PSMB10, VPS13D, NDUFS8, ATP5D, POLR2E, and HADH were linked to adverse OS in AML. Regulatory network analysis indicated that differentially expressed GPXs regulated cell proliferation, cancer progression, apoptosis, and cell cycle signaling via pathways involving cancer-related kinases (such as DAPK1 and SRC), miRNAs (such as miR-202 and miR-181), and TFs (such as SRF and E2F1). Conclusions Our findings offer novel insights into the differential expression and prognostic potential of the GPX family in AML, and lay a foundation for subsequent research of GPX’s role in the carcinogenesis and regulatory network of AML.
Collapse
Affiliation(s)
- Jie Wei
- Department of Hematology, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Qiongni Xie
- Department of Hematology, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xinran Liu
- Department of Hematology, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Chengyao Wan
- Department of Hematology, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Wenqi Wu
- Department of Hematology, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Kuiyan Fang
- Department of Hematology, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yibin Yao
- Department of Hematology, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Peng Cheng
- Department of Hematology, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Donghong Deng
- Department of Hematology, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhenfang Liu
- Department of Hematology, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
13
|
Zhou D, Tang W, Zhang Y, An HX. JAM3 functions as a novel tumor suppressor and is inactivated by DNA methylation in colorectal cancer. Cancer Manag Res 2019; 11:2457-2470. [PMID: 30988641 PMCID: PMC6441464 DOI: 10.2147/cmar.s189937] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Purpose JAM3, an adhesion and transmigration regulatory element, is abundantly expressed in intestinal epithelial cells. However, its expression and function in colorectal cancer (CRC) remain unknown. In this study, we explored its epigenetic mechanism and biological role in CRC. Patients and methods Bioinformatics analysis was used to analyze the expression and methylation level of JAM3 in CRC. Methylation and expression status of JAM3 were then validated by quantitative methylation-specific PCR (qMSP) and quantitative PCR in tissues, plasma samples, and cell lines. Flow cytometry, Western blot, transwell, siRNA, colony formation, and transfection were used to evaluate the biological function of JAM3. Results We initially found that JAM3 was frequently methylated and downregulated in CRC based on bioinformatics tools. qMSP validation showed that the methylation levels of JAM3 were increased in 75% (18/24) of CRC tissues, 61% (11/18) plasma samples, and all four CRC cell lines and were significantly associated with tumor stage in CRC tissues. Moreover, JAM3 was downregulated in primary CRC tissues, plasma samples, and CRC cell lines as compared with that in nonmalignant controls, although its expression could be recovered after demethylation treatment. Restoration of JAM3 repressed CRC cell viability, colony formation, and migration. In addition, siRNA-mediated depletion of JAM3 in NCM460 cells improved the clonogenicity and migration capability, whereas it suppressed cell apoptosis and cell-cycle arrest. These functional effects were accompanied with alterations of several epithelial cell markers, including E-cadherin, vimentin, phosphor-β-catenin (ser552), and TJP1, which were responsible for epithelial–mesenchymal transition. Conclusion The findings indicated that JAM3 may be a novel tumor suppressor gene with epigenetic reduction in CRC and can be used as a potential noninvasive biomarker for CRC diagnosis.
Collapse
Affiliation(s)
- Dan Zhou
- Department of Medical Oncology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China, ; .,Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China, .,Department of Translational Medicine, Xiamen Institute of Rare Earth Materials, Chinese Academy of Sciences, Xiamen, Fujian, China,
| | - Weiwei Tang
- Department of Medical Oncology, Cancer Hospital, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Teaching Hospital of Fujian Medical University, Xiamen, Fujian, China
| | - Yun Zhang
- Department of Medical Oncology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China, ; .,Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China, .,Department of Translational Medicine, Xiamen Institute of Rare Earth Materials, Chinese Academy of Sciences, Xiamen, Fujian, China,
| | - Han-Xiang An
- Department of Medical Oncology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China, ;
| |
Collapse
|
14
|
|
15
|
Pan R, Zhou C, Dai J, Ying X, Yu H, Zhong J, Zhang Y, Wu B, Mao Y, Wu D, Ying J, Zhang W, Duan S. Endothelial PAS domain protein 1 gene hypomethylation is associated with colorectal cancer in Han Chinese. Exp Ther Med 2018; 16:4983-4990. [PMID: 30542453 PMCID: PMC6257466 DOI: 10.3892/etm.2018.6856] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 08/23/2018] [Indexed: 12/17/2022] Open
Abstract
Endothelial PAS domain-containing protein 1 (EPAS1) serves a role in angiogenesis, which is important for the development of tumors, including colorectal cancer (CRC). The current study aimed to estimate whether EPAS1 methylation was associated with CRC. A two-stage association study of EPAS1 methylation and CRC was conducted. In the first phase, EPAS1 methylation was evaluated in the tumor and adjacent non-tumor tissue samples from 41 patients with sporadic CRC in Jiangsu province, China. The diagnostic value of methylation of EPAS1 for CRC in the second phase was evaluated in 79 patients with sporadic CRC and 22 normal individuals in Zhejiang province, China. The methylation assay was performed using a quantitative methylation-specific polymerase chain reaction (qMSP) method. The percentage of methylated reference (PMR) was used to quantify the methylation level. The first-stage results indicated that EPAS1 promoter methylation was significantly lower in CRC tumor tissues compared with 5-cm-para-tumor tissues (median PMR, 0.59 vs. 1.22%; P=0.027) and 10-cm-para-tumor tissues (median PMR, 0.59 vs. 1.89%; P=0.001). In addition, the second-stage results indicated that EPAS1 promoter methylation was significantly lower in tumor tissues compared with 5-cm-para-tumor tissues (median PMR, 1.91 vs. 6.25%; P=3×10−7) and normal intestinal tissues from healthy controls (median PMR, 1.91 vs. 28.4%; P=5×10−7). Receiver Operating Characteristic curve analysis of the second-stage data indicated that the highest area under the curve of EPAS1 hypomethylation was 0.851 between Zhejiang CRC tissues and Zhejiang normal intestinal tissues (sensitivity, 95.5%; specificity, 60.8%).
Collapse
Affiliation(s)
- Ranran Pan
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Cong Zhou
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Jie Dai
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Xiuru Ying
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Hang Yu
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Jie Zhong
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Yihan Zhang
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Boyi Wu
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Yiyi Mao
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Dongping Wu
- Department of Medical Oncology, Shaoxing People's Hospital, Shaoxing, Zhejiang 312000, P.R. China
| | - Jieer Ying
- Department of Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, P.R. China
| | - Wei Zhang
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.,The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Shiwei Duan
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| |
Collapse
|
16
|
Yuan Y, Sun S, Jiao N, Shu Y, Zhang Y. Upregulation of HOXA10 Protein Expression Predicts Poor Prognosis for Colorectal Cancer. Genet Test Mol Biomarkers 2018; 22:390-397. [PMID: 29870276 DOI: 10.1089/gtmb.2017.0240] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIMS The homeobox (HOX) genes function as transcriptional factors that can promote tumorigenesis. However, the expression profile of HOXA10 and the role this protein plays in solid tumors are unclear. Here we examined HOXA10 protein expression in samples from colorectal cancer (CRC) patients to address the clinical significance of this protein. MATERIALS AND METHODS Seven independent investigations from the Oncomine database were retrieved. A total of 85 patients who underwent radical excision followed by 5-fluorouracil (5-FU)-based adjuvant chemotherapy were enrolled. Immunohistochemistry was performed on pairs of cancerous and normal tissues to detect the expression of both HOXA10, and the phosphatase and tensin homolog deleted on chromosome ten (PTEN). Lentivirus-mediated RNA interference was used to knock down HOXA10 expression in LoVo and HT-29 cell lines, then cells' proliferation, apoptosis, and tumor growth in vivo were detected. RESULTS Oncomine data showed that HOXA10 expression was significantly upregulated in CRC tissues compared with relevant normal controls. In our study, 58 cases (68.2%) showed positive HOXA10 protein expression in tumor tissue and negative expression in normal tissues. HOXA10 protein upregulation was consistent with PTEN downregulation. Although not related to clinicopathological parameters, a significant correlation was found between HOXA10 upregulation and a decreased 5-year disease-free survival (DFS). A Cox proportional hazards model further suggested that HOXA10 overexpression was an independent factor to predict DFS of CRC patients. Furthermore, HOXA10 knockdown significantly increased sensitivity to 5-FU chemotherapy in vitro and in vivo. CONCLUSIONS Significant HOXA10 overexpression in CRC may be a potential biomarker indicating poor prognosis and 5-FU resistance.
Collapse
Affiliation(s)
- Yuan Yuan
- 1 Department of Oncology, First Affiliated Hospital of Nanjing Medical University , Nanjing, China
| | - Sanyuan Sun
- 2 Department of Oncology, Affiliated Xuzhou Central Hospital, Southeast University , Xuzhou, China
| | - Nanlin Jiao
- 3 Department of Pathology, Wannan Medical College, Yijishan Hospital , Wuhu, China
| | - Yongqian Shu
- 1 Department of Oncology, First Affiliated Hospital of Nanjing Medical University , Nanjing, China
| | - Youwei Zhang
- 2 Department of Oncology, Affiliated Xuzhou Central Hospital, Southeast University , Xuzhou, China
| |
Collapse
|
17
|
Islam F, Gopalan V, Pillai S, Lu CT, Kasem K, Lam AKY. Promoter hypermethylation inactivate tumor suppressor FAM134B and is associated with poor prognosis in colorectal cancer. Genes Chromosomes Cancer 2018; 57:240-251. [PMID: 29318692 DOI: 10.1002/gcc.22525] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 01/05/2018] [Accepted: 01/07/2018] [Indexed: 01/04/2023] Open
Abstract
The present study aims to examine promoter methylation status of FAM134B in a large cohort of patients with colorectal adenocarcinomas. The clinical significances and correlations of FAM134B promoter methylation with its expression are also analysed. Methylation-specific high-resolution melt-curve analysis followed by sequencing was used to identify FAM134B promoter methylation in colorectal adenomas (N = 32), colorectal adenocarcinomas (N = 164), matched adjacent non-neoplastic colorectal mucosae (N = 83) and colon cancer cell lines (N = 4). FAM134B expression was studied by real-time quantitative polymerase chain reaction, immunohistochemistry, and Western blots. FAM134B promoter methylation was more frequent in adenocarcinomas (52%; 85/164) when compared to that of adenomas (28%; 9/32) and non-neoplastic mucosae (35%; 29/83). Cancer cells exhibited higher methylation when compared to non-neoplastic cells. FAM134B promoter methylation was inversely correlated with low FAM134B copy number and mRNA/protein expressions, whereas in-vitro demethylation has restored FAM134B expression in colon cancer cells. FAM134B promoter methylation was associated with high histological grade (P = .025), presence of peri-neural infiltration (P = .012), lymphovascular invasion (P = .021), lymph node metastasis (P = .0001), distant metastasis (P = .0001) and advanced pathological stages (P = .0001). In addition, FAM134B promoter methylation correlated with cancer recurrence and poor survival rates of patients with colorectal adenocarcinomas. To conclude, FAM134B promoter methylation plays a key role in regulating FAM134B expression in vitro and in vivo, which in turn contributes to the prediction of the biological aggressiveness of colorectal adenocarcinomas. Furthermore, FAM134B methylation might act as a marker in predicting clinical prognosis in patients with colorectal adenocarcinomas.
Collapse
Affiliation(s)
- Farhadul Islam
- Cancer Molecular Pathology, School of Medicine and Menzies Health Institute Queensland, Griffith University, Queensland, Australia.,Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Vinod Gopalan
- Cancer Molecular Pathology, School of Medicine and Menzies Health Institute Queensland, Griffith University, Queensland, Australia
| | - Suja Pillai
- Cancer Molecular Pathology, School of Medicine and Menzies Health Institute Queensland, Griffith University, Queensland, Australia.,School of Biomedical Sciences, University of Queensland, Queensland, Australia
| | - Cu-Tai Lu
- Department of Surgery, Gold Coast Hospital, Gold Coast, Queensland, Australia
| | - Kais Kasem
- Cancer Molecular Pathology, School of Medicine and Menzies Health Institute Queensland, Griffith University, Queensland, Australia
| | - Alfred King-Yin Lam
- Cancer Molecular Pathology, School of Medicine and Menzies Health Institute Queensland, Griffith University, Queensland, Australia
| |
Collapse
|