1
|
Tang Y, Zhang H, Zhu H, Bi S, Wang X, Ji S, Ji J, Ma D, Huang C, Zhang G, Yang N, Wan F, Lü Z, Liu W. DNA methylase 1 influences temperature responses and development in the invasive pest Tuta absoluta. INSECT MOLECULAR BIOLOGY 2024; 33:503-515. [PMID: 38808749 DOI: 10.1111/imb.12919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 04/19/2024] [Indexed: 05/30/2024]
Abstract
DNA methylase 1 (Dnmt1) is an important regulatory factor associated with biochemical signals required for insect development. It responds to changes in the environment and triggers phenotypic plasticity. Meanwhile, Tuta absoluta Meyrick (Lepidoptera: Gelechiidae)-a destructive invasive pest-can rapidly invade and adapt to different habitats; however, the role of Dnmt1 in this organism has not been elucidated. Accordingly, this study investigates the mechanism(s) underlying the rapid adaptation of Tuta absoluta to temperature stress. Potential regulatory genes were screened via RNAi (RNA interference), and the DNA methylase in Tuta absoluta was cloned by RACE (Rapid amplification of cDNA ends). TaDnmt1 was identified as a potential regulatory gene via bioinformatics; its expression was evaluated in response to temperature stress and during different development stages using real-time polymerase chain reaction. Results revealed that TaDnmt1 participates in hot/cold tolerance, temperature preference and larval development. The full-length cDNA sequence of TaDnmt1 is 3765 bp and encodes a 1254 kDa protein with typical Dnmt1 node-conserved structural features and six conserved DNA-binding active motifs. Moreover, TaDnmt1 expression is significantly altered by temperature stress treatments and within different development stages. Hence, TaDnmt1 likely contributes to temperature responses and organismal development. Furthermore, after treating with double-stranded RNA and exposing Tuta absoluta to 35°C heat shock or -12°C cold shock for 1 h, the survival rate significantly decreases; the preferred temperature is 2°C lower than that of the control group. In addition, the epidermal segments become enlarged and irregularly folded while the surface dries up. This results in a significant increase in larval mortality (57%) and a decrease in pupation (49.3%) and eclosion (50.9%) rates. Hence, TaDnmt1 contributes to temperature stress responses and temperature perception, as well as organismal growth and development, via DNA methylation regulation. These findings suggest that the rapid geographic expansion of T absoluta has been closely associated with TaDnmt1-mediated temperature tolerance. This study advances the research on 'thermos Dnmt' and provides a potential target for RNAi-driven regulation of Tuta absoluta.
Collapse
Affiliation(s)
- Yanhong Tang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China
| | - Huifang Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huanqing Zhu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China
| | - Siyan Bi
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaodi Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shunxia Ji
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jianhang Ji
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dongfang Ma
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China
| | - Cong Huang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guifen Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Nianwan Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, China
| | - Fanghao Wan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhichuang Lü
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wanxue Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
2
|
Gao C, Nie H. Exploring the Heat-Responsive miRNAs and their Target Gene Regulation in Ruditapes philippinarum Under Acute Heat Stress. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 26:810-826. [PMID: 39046591 DOI: 10.1007/s10126-024-10348-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/13/2024] [Indexed: 07/25/2024]
Abstract
This study aimed to investigate the inherent molecular regulatory mechanisms of Ruditapes philippinarum in response to extremely high-temperature environments and to enhance the sustainable development of the R. philippinarum aquaculture industry. In this study, we established a differential expression profile of miRNA under acute heat stress and identified a total of 46 known miRNAs and 80 novel miRNAs, three of which were detected to be significantly differentially expressed. We analyzed the functions of target genes regulated by differentially expressed miRNAs (DEMs) of R. philippinarum. The findings of the KEGG enrichment analysis revealed that 29 enriched pathways in the group were subjected to acute heat stress. Notably, fatty acid metabolism, FoxO signaling pathway, TGF-β signaling pathway, and ubiquitin-mediated proteolysis were found to play significant roles in response to acute heat stress. We established a regulatory map of DEMs and their target genes in response to heat stress and constructed the miRNA-mRNA regulation network. This study provides valuable insights into the response of R. philippinarum to high temperature, helping to understand its underlying molecular regulatory mechanisms under high-temperature stress.
Collapse
Affiliation(s)
- Changsheng Gao
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China
- Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, Dalian Ocean University, Dalian, 116023, China
| | - Hongtao Nie
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China.
- Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, Dalian Ocean University, Dalian, 116023, China.
| |
Collapse
|
3
|
Shen X, Wang X, Yang N, Wan F, Lü Z, Guo J, Liu W. Characteristics of the Accessible Chromatin Landscape and Transcriptome under Different Temperature Stresses in Bemisia tabaci. Genes (Basel) 2023; 14:1978. [PMID: 37895327 PMCID: PMC10606294 DOI: 10.3390/genes14101978] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/12/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
Bemisia tabaci is an important invasive pest with worldwide distribution and strong temperature tolerance. Previous studies have shown that temperature tolerance varies significantly between the different invasive populations. Several key factors involved in epigenetic regulation have been identified and verified in B. tabaci; therefore, epigenetic adaptation mechanisms may also exist. This study aimed to detect changes in the chromatin accessibility landscape and genome-wide transcriptome under different temperature stresses in B. tabaci. Assay for transposase-accessible chromatin with high-throughput sequencing and RNA-seq analyses indicated that transcriptional activity of the genes strongly correlates with chromatin accessibility. Chromatin transcription-activated gene expression regulation is dominant during high-temperature stress in B. tabaci, mainly through the transcriptional repression of genes related to low-temperature stress resistance. Furthermore, B. tabaci resists low-temperature stress by regulating enzyme activities and withstands high-temperature stress by regulating metabolism and synthesis of organic substances, both achieved by altering chromatin accessibility. In summary, this study provides a theoretical basis for exploring changes in gene expression and chromatin accessibility under different temperature stresses, offering a new approach to unravelling regulatory mechanisms underlying the onset of molecular regulation in response to various temperature stress conditions.
Collapse
Affiliation(s)
- Xiaona Shen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Department of Basic Medicine, Changzhi Medical College, Changzhi 046000, China
| | - Xiaodi Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Nianwan Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Institute of Western Agriculture, The Chinese Academy of Agricultural Sciences, Changji 831100, China
| | - Fanghao Wan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Institute of Western Agriculture, The Chinese Academy of Agricultural Sciences, Changji 831100, China
| | - Zhichuang Lü
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jianying Guo
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Wanxue Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
4
|
Factors Determining Transmission of Persistent Viruses by Bemisia tabaci and Emergence of New Virus-Vector Relationships. Viruses 2021; 13:v13091808. [PMID: 34578388 PMCID: PMC8472762 DOI: 10.3390/v13091808] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/31/2021] [Accepted: 09/07/2021] [Indexed: 11/21/2022] Open
Abstract
Many plant viruses depend on insect vectors for their transmission and dissemination. The whitefly Bemisia tabaci (Hemiptera: Aleyrodidae) is one of the most important virus vectors, transmitting more than four hundred virus species, the majority belonging to begomoviruses (Geminiviridae), with their ssDNA genomes. Begomoviruses are transmitted by B. tabaci in a persistent, circulative manner, during which the virus breaches barriers in the digestive, hemolymph, and salivary systems, and interacts with insect proteins along the transmission pathway. These interactions and the tissue tropism in the vector body determine the efficiency and specificity of the transmission. This review describes the mechanisms involved in circulative begomovirus transmission by B. tabaci, focusing on the most studied virus in this regard, namely the tomato yellow leaf curl virus (TYLCV) and its closely related isolates. Additionally, the review aims at drawing attention to the recent knowhow of unorthodox virus—B. tabaci interactions. The recent knowledge of whitefly-mediated transmission of two recombinant poleroviruses (Luteoviridae), a virus group with an ssRNA genome and known to be strictly transmitted with aphids, is discussed with its broader context in the emergence of new whitefly-driven virus diseases.
Collapse
|
5
|
Olivares-Castro G, Cáceres-Jensen L, Guerrero-Bosagna C, Villagra C. Insect Epigenetic Mechanisms Facing Anthropogenic-Derived Contamination, an Overview. INSECTS 2021; 12:780. [PMID: 34564220 PMCID: PMC8468710 DOI: 10.3390/insects12090780] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 12/14/2022]
Abstract
Currently, the human species has been recognized as the primary species responsible for Earth's biodiversity decline. Contamination by different chemical compounds, such as pesticides, is among the main causes of population decreases and species extinction. Insects are key for ecosystem maintenance; unfortunately, their populations are being drastically affected by human-derived disturbances. Pesticides, applied in agricultural and urban environments, are capable of polluting soil and water sources, reaching non-target organisms (native and introduced). Pesticides alter insect's development, physiology, and inheritance. Recently, a link between pesticide effects on insects and their epigenetic molecular mechanisms (EMMs) has been demonstrated. EMMs are capable of regulating gene expression without modifying genetic sequences, resulting in the expression of different stress responses as well as compensatory mechanisms. In this work, we review the main anthropogenic contaminants capable of affecting insect biology and of triggering EMMs. EMMs are involved in the development of several diseases in native insects affected by pesticides (e.g., anomalous teratogenic reactions). Additionally, EMMs also may allow for the survival of some species (mainly pests) under contamination-derived habitats; this may lead to biodiversity decline and further biotic homogenization. We illustrate these patterns by reviewing the effect of neonicotinoid insecticides, insect EMMs, and their ecological consequences.
Collapse
Affiliation(s)
- Gabriela Olivares-Castro
- Instituto de Entomología, Universidad Metropolitana de Ciencias de la Educación, Avenida José Pedro Alessandri 774, Santiago 7760197, Chile;
| | - Lizethly Cáceres-Jensen
- Laboratorio de Físicoquímica Analítica, Departamento de Química, Facultad de Ciencias Básicas, Universidad Metropolitana de Ciencias de la Educación, Santiago 7760197, Chile;
| | - Carlos Guerrero-Bosagna
- Department of Physics, Chemistry and Biology (IFM), Linköping University, 581 83 Linköping, Sweden;
- Environmental Toxicology Program, Department of Integrative Biology, Uppsala University, 752 36 Uppsala, Sweden
| | - Cristian Villagra
- Instituto de Entomología, Universidad Metropolitana de Ciencias de la Educación, Avenida José Pedro Alessandri 774, Santiago 7760197, Chile;
| |
Collapse
|
6
|
Agwunobi DO, Zhang M, Shi X, Zhang S, Zhang M, Wang T, Masoudi A, Yu Z, Liu J. DNA Methyltransferases Contribute to Cold Tolerance in Ticks Dermacentor silvarum and Haemaphysalis longicornis (Acari: Ixodidae). Front Vet Sci 2021; 8:726731. [PMID: 34513977 PMCID: PMC8426640 DOI: 10.3389/fvets.2021.726731] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 08/05/2021] [Indexed: 12/01/2022] Open
Abstract
DNA methylation, mediated by DNA methyltransferases (Dnmts), is a typical epigenetic process that plays an important role in affecting organism acclimatization and adaptation to environmental changes. However, information about Dnmts and their associations with the cold tolerance of ticks remains meager. Hence, in the present study, the Dnmts in important vector ticks Dermacentor silvarum and Haemaphysalis longicornis were cloned and identified, and their functions in cold response were further explored. Results showed that the length of DsDnmt and DsDnmt1 in D. silvarum, and HlDnmt1 and HlDnmt in H. longicornis were 1,284, 549, 1,500, and 1,613 bp, respectively. Bioinformatics in protein analysis revealed that they were all unstable hydrophilic proteins and were mainly characterized with Dcm (DNA cytosine methyltransferase domain), Dnmt1-RFD (DNA methyltransferase replication foci domain), zf-CXXC (zinc finger-CXXC domain), and BAH (Bromo adjacent homology domain). The relative expression of these Dnmts was reduced after cold treatment for 3 days (P < 0.05), and increased with the extension of treatment. Western blot revealed that Dnmt1 decreased first and then increased significantly (P < 0.05) in both tick species, whereas other Dnmts fluctuated at varying degrees. RNA interference significantly silenced the genes Dnmts (P < 0.01), and mortality increased significantly (P < 0.05), when exposed to sub-lethal temperature, underscoring the important roles of Dnmts during the cold response of D. silvarum and H. longicornis. The above results lay the foundation for further understanding of the epigenetic regulation of DNA methylation in cold acclimatization and adaptation of ticks.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Zhijun Yu
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Jingze Liu
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| |
Collapse
|
7
|
McCaw BA, Stevenson TJ, Lancaster LT. Epigenetic Responses to Temperature and Climate. Integr Comp Biol 2020; 60:1469-1480. [PMID: 32470117 DOI: 10.1093/icb/icaa049] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Epigenetics represents a widely accepted set of mechanisms by which organisms respond to the environment by regulating phenotypic plasticity and life history transitions. Understanding the effects of environmental control on phenotypes and fitness, via epigenetic mechanisms, is essential for understanding the ability of organisms to rapidly adapt to environmental change. This review highlights the significance of environmental temperature on epigenetic control of phenotypic variation, with the aim of furthering our understanding of how epigenetics might help or hinder species' adaptation to climate change. It outlines how epigenetic modifications, including DNA methylation and histone/chromatin modification, (1) respond to temperature and regulate thermal stress responses in different kingdoms of life, (2) regulate temperature-dependent expression of key developmental processes, sex determination, and seasonal phenotypes, (3) facilitate transgenerational epigenetic inheritance of thermal adaptation, (4) adapt populations to local and global climate gradients, and finally (5) facilitate in biological invasions across climate regions. Although the evidence points towards a conserved role of epigenetics in responding to temperature change, there appears to be an element of temperature- and species-specificity in the specific effects of temperature change on epigenetic modifications and resulting phenotypic responses. The review identifies areas of future research in epigenetic responses to environmental temperature change.
Collapse
Affiliation(s)
- Beth A McCaw
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | - Tyler J Stevenson
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | | |
Collapse
|
8
|
Abstract
Understanding the genetic mechanisms underlying particular adaptations/phenotypes of organisms is one of the core issues of evolutionary biology. The use of genomic data has greatly advanced our understandings on this issue, as well as other aspects of evolutionary biology, including molecular adaptation, speciation, and even conservation of endangered species. Despite the well-recognized advantages, usages of genomic data are still limited to non-mammal vertebrate groups, partly due to the difficulties in assembling large or highly heterozygous genomes. Although this is particularly the case for amphibians, nonetheless, several comparative and population genomic analyses have shed lights into the speciation and adaptation processes of amphibians in a complex landscape, giving a promising hope for a wider application of genomics in the previously believed challenging groups of organisms. At the same time, these pioneer studies also allow us to realize numerous challenges in studying the molecular adaptations and/or phenotypic evolutionary mechanisms of amphibians. In this review, we first summarize the recent progresses in the study of adaptive evolution of amphibians based on genomic data, and then we give perspectives regarding how to effectively identify key pathways underlying the evolution of complex traits in the genomic era, as well as directions for future research.
Collapse
Affiliation(s)
- Yan-Bo Sun
- Laboratory of Ecology and Evolutionary Biology, Yunnan University, Kunming, Yunnan 650091, China.,State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China. E-mail:
| | - Yi Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Kai Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.,Sam Noble Oklahoma Museum of Natural History and Department of Biology, University of Oklahoma, Norman, Oklahoma 73072, USA
| |
Collapse
|
9
|
Chen P, Xiao WF, Pan MH, Xiao JS, Feng YJ, Dong ZQ, Zou BX, Zhou L, Zhang YH, Lu C. Comparative genome-wide DNA methylation analysis reveals epigenomic differences in response to heat-humidity stress in Bombyx mori. Int J Biol Macromol 2020; 164:3771-3779. [PMID: 32891645 DOI: 10.1016/j.ijbiomac.2020.08.251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/30/2020] [Accepted: 08/31/2020] [Indexed: 11/26/2022]
Abstract
DNA methylation is an important epigenetic modification and has been shown to be involved in the response to abiotic stress. However, there are few studies on DNA methylation in insect response to environmental signals. In this study, we conducted a comprehensive comparative analysis of DNA methylation profiles between two silkworm strains with significantly different resistance to heat and humidity by whole-genome bisulfite sequencing (WGBS). We identified, in total, 2934 differentially methylated regions (DMRs) between RT_48h (resistant strain with high-temperature/humidity treatment for 48 h) and ST_48h (sensitive strain with high-temperature/humidity treatment for 48 h) under cytosine context (CG), which corresponded to 1230 DMR-related genes (DMGs), and the DMRs were primarily located in the gene body (exon and intron) region. Gene ontology (GO) and KEGG analysis showed that these DMGs were most significantly enriched in binding, cellular metabolic process, and RNA transport pathways. Moreover, 10 DMGs have been revealed to be involved in the heat-humidity stress response in the silkworm. The results of this study indicated that DNA methylation plays crucial roles in silkworm response to environmental stressors and provides important clues to identify key resistance genes in silkworm under high-temperature/humidity stress response.
Collapse
Affiliation(s)
- Peng Chen
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Beibei 400715, China
| | - Wen-Fu Xiao
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Beibei 400715, China; Sericultural Research Institute Sichuan Academy of Agricultural Sciences, Nanchong 637000, China
| | - Min-Hui Pan
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Beibei 400715, China
| | - Jin-Shu Xiao
- Sericultural Research Institute Sichuan Academy of Agricultural Sciences, Nanchong 637000, China
| | - Yu-Jie Feng
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Beibei 400715, China
| | - Zhan-Qi Dong
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Beibei 400715, China
| | - Bang-Xing Zou
- Sericultural Research Institute Sichuan Academy of Agricultural Sciences, Nanchong 637000, China
| | - Li Zhou
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Beibei 400715, China
| | - You-Hong Zhang
- Sericultural Research Institute Sichuan Academy of Agricultural Sciences, Nanchong 637000, China.
| | - Cheng Lu
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Beibei 400715, China.
| |
Collapse
|
10
|
Shelby EA, Moss JB, Andreason SA, Simmons AM, Moore AJ, Moore PJ. Debugging: Strategies and Considerations for Efficient RNAi-Mediated Control of the Whitefly Bemisia tabaci. INSECTS 2020; 11:E723. [PMID: 33105847 PMCID: PMC7690610 DOI: 10.3390/insects11110723] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/19/2020] [Accepted: 10/21/2020] [Indexed: 01/26/2023]
Abstract
The whitefly Bemisia tabaci is a globally important pest that is difficult to control through insecticides, transgenic crops, and natural enemies. Post-transcriptional gene silencing through RNA interference (RNAi) has shown potential as a pest management strategy against B. tabaci. While genomic data and other resources are available to create highly effective customizable pest management strategies with RNAi, current applications do not capitalize on species-specific biology. This lack of specificity has the potential to have substantial ecological impacts. Here, we discuss both short- and long-term considerations for sustainable RNAi pest management strategies for B. tabaci, focusing on the need for species specificity incorporating both life history and population genetic considerations. We provide a conceptual framework for selecting sublethal target genes based on their involvement in physiological pathways, which has the greatest potential to ameliorate unintended negative consequences. We suggest that these considerations allow an integrated pest management approach, with fewer negative ecological impacts and reduced likelihood of the evolution of resistant populations.
Collapse
Affiliation(s)
- Emily A. Shelby
- Department of Entomology, University of Georgia, Athens, GA 30602, USA; (E.A.S.); (J.B.M.); (A.J.M.)
| | - Jeanette B. Moss
- Department of Entomology, University of Georgia, Athens, GA 30602, USA; (E.A.S.); (J.B.M.); (A.J.M.)
| | - Sharon A. Andreason
- U.S. Department of Agriculture, Agricultural Research Service, U.S. Vegetable laboratory, Charleston, SC 29414, USA; (S.A.A.); (A.M.S.)
| | - Alvin M. Simmons
- U.S. Department of Agriculture, Agricultural Research Service, U.S. Vegetable laboratory, Charleston, SC 29414, USA; (S.A.A.); (A.M.S.)
| | - Allen J. Moore
- Department of Entomology, University of Georgia, Athens, GA 30602, USA; (E.A.S.); (J.B.M.); (A.J.M.)
| | - Patricia J. Moore
- Department of Entomology, University of Georgia, Athens, GA 30602, USA; (E.A.S.); (J.B.M.); (A.J.M.)
| |
Collapse
|
11
|
Villagra C, Frías-Lasserre D. Epigenetic Molecular Mechanisms in Insects. NEOTROPICAL ENTOMOLOGY 2020; 49:615-642. [PMID: 32514997 DOI: 10.1007/s13744-020-00777-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 04/06/2020] [Indexed: 06/11/2023]
Abstract
Insects are the largest animal group on Earth both in biomass and diversity. Their outstanding success has inspired genetics and developmental research, allowing the discovery of dynamic process explaining extreme phenotypic plasticity and canalization. Epigenetic molecular mechanisms (EMMs) are vital for several housekeeping functions in multicellular organisms, regulating developmental, ontogenetic trajectories and environmental adaptations. In Insecta, EMMs are involved in the development of extreme phenotypic divergences such as polyphenisms and eusocial castes. Here, we review the history of this research field and how the main EMMs found in insects help to understand their biological processes and diversity. EMMs in insects confer them rapid response capacity allowing insect either to change with plastic divergence or to keep constant when facing different stressors or stimuli. EMMs function both at intra as well as transgenerational scales, playing important roles in insect ecology and evolution. We discuss on how EMMs pervasive influences in Insecta require not only the control of gene expression but also the dynamic interplay of EMMs with further regulatory levels, including genetic, physiological, behavioral, and environmental among others, as was earlier proposed by the Probabilistic Epigenesis model and Developmental System Theory.
Collapse
Affiliation(s)
- C Villagra
- Instituto de Entomología, Univ Metropolitana de Ciencias de la Educación, Santiago, Chile.
| | - D Frías-Lasserre
- Instituto de Entomología, Univ Metropolitana de Ciencias de la Educación, Santiago, Chile
| |
Collapse
|
12
|
Villalba de la Peña M, Piskobulu V, Murgatroyd C, Hager R. DNA methylation patterns respond to thermal stress in the viviparous cockroach Diploptera punctata. Epigenetics 2020; 16:313-326. [PMID: 32713247 DOI: 10.1080/15592294.2020.1795603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
It is increasingly recognized that epigenetic mechanisms play a key role in acclimatization and adaptation to thermal stress in invertebrates. DNA methylation and its response to temperature variation has been poorly studied in insects. Here, we investigated DNA methylation and hydroxymethylation patterns in the viviparous cockroach Diploptera punctata at a global and gene specific level in response to variation in temperature. We specifically studied methylation percentage in the heat shock protein 70 (Hsp70), whose function is linked to thermal plasticity and resistance. We found high levels of DNA methylation in several tissues but only low levels of DNA hydroxymethylation in the brain. Hsp70 methylation patterns showed significant differences in response to temperature. We further found that global DNA methylation variation was considerably lower at 28°C compared to higher or lower temperatures, which may be indicative of the optimal temperature for this species. Our results demonstrate that DNA methylation could provide a mechanism for insects to dynamically respond to changing temperature conditions in their environment.
Collapse
Affiliation(s)
- Mariana Villalba de la Peña
- Evolution and Genomic Sciences, Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, the University of Manchester , Manchester, UK
| | - Veysi Piskobulu
- Integrative Evolutionary Biology Department, Max-Planck Institute for Developmental Biology , Tuebingen, Germany
| | | | - Reinmar Hager
- Evolution and Genomic Sciences, Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, the University of Manchester , Manchester, UK
| |
Collapse
|
13
|
Wang Y, Wang F, Hong DK, Gao SJ, Wang R, Wang JD. Molecular characterization of DNA methyltransferase 1 and its role in temperature change of armyworm Mythimna separata Walker. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2020; 103:e21651. [PMID: 31943343 DOI: 10.1002/arch.21651] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/10/2019] [Accepted: 11/21/2019] [Indexed: 06/10/2023]
Abstract
DNA methylation refers to the addition of cytosine residues in a CpG context (5'-cytosine-phosphate-guanine-3'). As one of the most common mechanisms of epigenetic modification, it plays a crucial role in regulating gene expression and in a diverse range of biological processes across all multicellular organisms. The relationship between temperature and DNA methylation and how it acts on the adaptability of migratory insects remain unknown. In the present work, a 5,496 bp full-length complementary DNA encoding 1,436 amino acids (named MsDnmt1) was cloned from the devastating migratory pest oriental armyworm, Mythimna separata Walker. The protein shares 36.8-84.4% identity with other insect Dnmt1 isoforms. Spatial and temporal expression analysis revealed that MsDnmt1 was highly expressed in adult stages and head tissue. The changing temperature decreased the expression of MsDnmt1 in both high and low temperature condition. Besides, we found that M. separata exhibited the shortest duration time from the last instar to pupae under 36°C environment when injected with DNA methylation inhibitor. Therefore, our data highlight a potential role for DNA methylation in thermal resistance, which help us to understand the biological role adaptability and colonization of migratory pest in various environments.
Collapse
Affiliation(s)
- Yaru Wang
- National Engineering Research Center of Sugarcane, Fujian Agricultural University, Fuzhou, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agricultural and Forestry University, Fuzhou, China
| | - Falv Wang
- National Engineering Research Center of Sugarcane, Fujian Agricultural University, Fuzhou, China
| | - Ding-Kai Hong
- National Engineering Research Center of Sugarcane, Fujian Agricultural University, Fuzhou, China
| | - San-Ji Gao
- National Engineering Research Center of Sugarcane, Fujian Agricultural University, Fuzhou, China
| | - Ran Wang
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jin-da Wang
- National Engineering Research Center of Sugarcane, Fujian Agricultural University, Fuzhou, China
| |
Collapse
|
14
|
Ji SX, Wang XD, Shen XN, Liang L, Liu WX, Wan FH, Lü ZC. Using RNA Interference to Reveal the Function of Chromatin Remodeling Factor ISWI in Temperature Tolerance in Bemisia tabaci Middle East-Asia Minor 1 Cryptic Species. INSECTS 2020; 11:insects11020113. [PMID: 32050711 PMCID: PMC7074109 DOI: 10.3390/insects11020113] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 01/19/2020] [Accepted: 01/20/2020] [Indexed: 12/29/2022]
Abstract
Invasive species often encounter rapid environmental changes during invasions and only the individuals that successfully overcome environmental stresses can colonize and spread. Chromatin remodeling may be essential in environmental adaptation. To assess the functions of imitation switch (ISWI) in invasive Bemisia tabaci Middle East-Asia Minor 1 (MEAM1) cryptic species, we cloned and characterized the MEAM1 BtISWI gene and determined its functions in response to thermal stress. The full-length cDNA of BtISWI was 3712 bp, with a 3068 bp open reading frame (ORF) encoding a 118.86 kDa protein. BtISWI mRNA expression was significantly up-regulated after exposure to heat shock or cold shock conditions, indicating that BtISWI expression can be induced by thermal stress. After feeding double-stranded RNA (dsRNA), specifically for BtISWI, resistance to both heat and cold decreased significantly, suggesting that BtISWI may function directly in the thermal tolerance of MEAM1. Moreover, the preferred temperature of MEAM1 adults fed dsRNA was 1.9-3.5 °C higher than the control groups. Taken together, our findings highlight the importance of epigenetic gene regulation in the thermal response or thermal adaptation of invasive Bemisia tabaci (B. tabaci), and provide a new potential target for establishing sustainable control strategies for B. tabaci.
Collapse
Affiliation(s)
- Shun-Xia Ji
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (S.-X.J.); (X.-D.W.); (X.-N.S.); (L.L.); (W.-X.L.); (F.-H.W.)
| | - Xiao-Di Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (S.-X.J.); (X.-D.W.); (X.-N.S.); (L.L.); (W.-X.L.); (F.-H.W.)
| | - Xiao-Na Shen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (S.-X.J.); (X.-D.W.); (X.-N.S.); (L.L.); (W.-X.L.); (F.-H.W.)
| | - Lin Liang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (S.-X.J.); (X.-D.W.); (X.-N.S.); (L.L.); (W.-X.L.); (F.-H.W.)
| | - Wan-Xue Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (S.-X.J.); (X.-D.W.); (X.-N.S.); (L.L.); (W.-X.L.); (F.-H.W.)
| | - Fang-Hao Wan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (S.-X.J.); (X.-D.W.); (X.-N.S.); (L.L.); (W.-X.L.); (F.-H.W.)
- Agricultural Genome Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Zhi-Chuang Lü
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (S.-X.J.); (X.-D.W.); (X.-N.S.); (L.L.); (W.-X.L.); (F.-H.W.)
- Correspondence: ; Tel.: +86-10-8210-9572
| |
Collapse
|