1
|
Mahdavi P, Panahipoor Javaherdehi A, Khanjanpoor P, Aminian H, Zakeri M, Zafarani A, Razizadeh MH. The role of c-Myc in Epstein-Barr virus-associated cancers: Mechanistic insights and therapeutic implications. Microb Pathog 2024; 197:107025. [PMID: 39426639 DOI: 10.1016/j.micpath.2024.107025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/26/2024] [Accepted: 10/16/2024] [Indexed: 10/21/2024]
Abstract
c-Myc is an important proto-oncogene belonging to the MYC family. In normal conditions, c-Myc regulates different aspects of cellular function. However, its dysregulation can result in the development of cancer due to various mechanisms. Epstein-Barr virus is a ubiquitous viral pathogen that infects a huge proportion of the global population. This virus is linked to various cancers, such as different types of lymphoma, nasopharyngeal, and gastric cancers. It can manipulate host cells, and many cellular and viral genes are important in the Epstein-Barr virus carcinogenesis. This review explores the complex relationship between c-Myc and Epstein-Barr virus in the context of cancer development. Also, potential therapeutic strategies targeting c-Myc to treat EBV-related cancers are discussed.
Collapse
Affiliation(s)
- Pooya Mahdavi
- College of Public Health, University of South Florida, Tampa, FL, 33612, USA
| | | | - Parinaz Khanjanpoor
- Department of Health and Science, University of Piedmont Orientale (UPO), Novara, Italy
| | - Hesam Aminian
- Department of Health and Science, University of Piedmont Orientale (UPO), Novara, Italy
| | - Mehrasa Zakeri
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran
| | - Alireza Zafarani
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Hematology & Blood Banking, School of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Razizadeh
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Antimicrobial Resistance Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Maharati A, Moghbeli M. Forkhead box proteins as the critical regulators of cisplatin response in tumor cells. Eur J Pharmacol 2023; 956:175937. [PMID: 37541368 DOI: 10.1016/j.ejphar.2023.175937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/11/2023] [Accepted: 07/31/2023] [Indexed: 08/06/2023]
Abstract
Cisplatin (CDDP) is one of the most common chemotherapy drugs used in a wide range of cancer patients; however, there is a high rate of CDDP resistance among cancer patients. Considering the side effects of cisplatin in normal tissues, it is necessary to predict the CDDP response in cancer patients. Therefore, identifying the molecular mechanisms involved in CDDP resistance can help to introduce the prognostic markers. Several molecular mechanisms such as apoptosis inhibition, drug efflux, drug detoxification, and increased DNA repair are involved in CDDP resistance. Regarding the key role of transcription factors in regulation of many cellular processes related to drug resistance, in the present review, we discussed the role of Forkhead box (FOX) protein family in CDDP response. It has been reported that FOX proteins mainly promote CDDP resistance through the regulation of DNA repair, autophagy, epithelial-mesenchymal transition (EMT), and signaling pathways. Therefore, FOX proteins can be introduced as the prognostic markers to predict CDDP response in cancer patients. In addition, considering that oncogenic role of FOX proteins, the CDDP treatment along with FOX inhibition can be used as a therapeutic strategy in cancer patients.
Collapse
Affiliation(s)
- Amirhosein Maharati
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
3
|
Yao J, Ma C, Feng K, Tan G, Wen Q. Focusing on the Role of Natural Products in Overcoming Cancer Drug Resistance: An Autophagy-Based Perspective. Biomolecules 2022; 12:1565. [PMID: 36358919 PMCID: PMC9687214 DOI: 10.3390/biom12111565] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/21/2022] [Accepted: 10/24/2022] [Indexed: 10/15/2023] Open
Abstract
Autophagy is a critical cellular adaptive response in tumor formation. Nutritional deficiency and hypoxia exacerbate autophagic flux in established malignancies, promoting tumor cell proliferation, migration, metastasis, and resistance to therapeutic interventions. Pro-survival autophagy inhibition may be a promising treatment option for advanced cancer. Furthermore, excessive or persistent autophagy is cytotoxic, resulting in tumor cell death. Targeted autophagy activation has also shown significant promise in the fight against tumor drug resistance. Several research groups have examined the ability of natural products (NPs) such as alkaloids, terpenoids, polyphenols, and anthraquinones to serve as autophagy inhibitors or activators. The data support the capacity of NPs that promote lethal autophagy or inhibit pro-survival autophagy from being employed against tumor drug resistance. This paper discusses the potential applications of NPs that regulate autophagy in the fight against tumor drug resistance, some limitations of the current studies, and future research needs and priorities.
Collapse
Affiliation(s)
- Jiaqi Yao
- Department of Anesthesiology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Chi Ma
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Kaixuan Feng
- Department of Anesthesiology, The Affiliated Xinhua Hospital of Dalian University, Dalian 116021, China
| | - Guang Tan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Qingping Wen
- Department of Anesthesiology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| |
Collapse
|
4
|
TCRP1 activated by mutant p53 promotes NSCLC proliferation via inhibiting FOXO3a. Oncogenesis 2022; 11:19. [PMID: 35459265 PMCID: PMC9033812 DOI: 10.1038/s41389-022-00392-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 02/17/2022] [Accepted: 03/24/2022] [Indexed: 11/08/2022] Open
Abstract
Previously, our lab explored that tongue cancer resistance-associated protein (TCRP1) plays a central role in cancer chemo-resistance and progression. Absolutely, TCRP1 was significantly increased in lung cancer. But the mechanism is far from elucidated. Here, we found that TCRP1 was increased in p53-mutant non-small-cell lung cancer (NSCLC), comparing to that in NSCLC with wild type p53. Further study showed that mutant p53 couldn't bind to the promoter of TCRP1 to inhibit its expression. While the wild type p53 did so. Next, loss-and gain-of-function assays demonstrated that TCRP1 promoted cell proliferation and tumor growth in NSCLC. Regarding the mechanism, TCRP1 encouraged AKT phosphorylation and blocked FOXO3a nuclear localization through favoring FOXO3a ubiquitination in cytoplasm, thus, promoted cell cycle progression. Conclusionly, TCRP1 was upregulated in NSCLC cells with mutant p53. TCRP1 promoted NSCLC progression via regulating cell cycle.
Collapse
|
5
|
Yes-associated protein 1 exerts its tumor-promoting effects and increases cisplatin resistance in tongue squamous cell carcinoma cells by dysregulating Hippo signal pathway. Anticancer Drugs 2022; 33:352-361. [DOI: 10.1097/cad.0000000000001269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
6
|
The isoflavone puerarin exerts anti-tumor activity in pancreatic ductal adenocarcinoma by suppressing mTOR-mediated glucose metabolism. Aging (Albany NY) 2021; 13:25089-25105. [PMID: 34863080 PMCID: PMC8714170 DOI: 10.18632/aging.203725] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 11/22/2021] [Indexed: 12/21/2022]
Abstract
Puerarin (8-(β-D-glucopyranosyl)-4′, 7-dihydroxyisoflavone), a natural flavonoid compound isolated from the traditional Chinese herb Radix puerariae, have been demonstrated has potential anti-tumor effects via induction of apoptosis and inhibition of proliferation. However, the effect and molecular mechanism of puerarin in pancreatic ductal adenocarcinoma (PDAC) remains unknown. In this study, the tumor-suppressive effects of puerarin were determined by both in-vitro and in-vivo assays. The effects of puerarin on the proliferation, apoptosis, migration and invasion of pancreatic cancer cells (PCCs), and tumor growth and metastasis in PDAC xenograft mouse model were performed. Puerarin treatment significantly repressed PCC proliferation. Puerarin induced the mitochondrial-dependent apoptosis of PCCs by causing a Bcl-2/Bax imbalance. Moreover, puerarin inhibited PCC migration and invasion by antagonizing epithelial-mesenchymal transition (EMT). In nude mouse model, PDAC growth and metastasis were reduced by puerarin administration. Mechanistically, puerarin exerted its therapeutic effects on PDAC by suppressing Akt/mTOR signaling. Importantly, puerarin bound to the kinase domain of mTOR protein, affecting the activity of the surrounding amino acid residues associated with the binding of the ATP-Mg2+ complex. Further studies showed that the inhibitory effects of puerarin on PCCs were abolished by a mTOR activator, indicating a crucial role of mTOR in anti-tumor effects of puerarin in PDAC. As a result, puerarin hindered glucose uptake and metabolism by downregulating the oxygen consumption rate (OCR) and the extracellular acidification rate (ECAR) dependent upon HIF-1α and glucose transporter GLUT1. Therefore, these findings indicated that puerarin has therapeutic potential for the treatment of PDAC by suppressing glucose uptake and metabolism via Akt/mTOR activity.
Collapse
|
7
|
Shi L, Xiong Y, Hu X. MicroRNA-1254 Suppresses Epithelial-Mesenchymal Transition by Upregulating c-Cellular Myelocytomatosis Oncogene (c-Myc) and Alleviates Drug Resistance in Lung Cancer. J BIOMATER TISS ENG 2021. [DOI: 10.1166/jbt.2021.2794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Drug resistance is a huge challenge during the management of diseases. MicroRNA (miRNA) dys-regulation is known to contribute to tumor progression. Herein we aimed to explore miR-1254’s role in drug resistance in lung cancer. In the present study, we used Pabolizumab to treat
drug-resistant and non-drug resistant lung cancer cells followed by analysis of miR-1254 expression by RT-qPCR, epithelial-mesenchymal transition (EMT) related protein and c-Myc expression by western blot, E-cadherin and N-cadherin level by immunofluorescence. Additionally, mouse model of
lung cancer was treated with miR-1254 mimic and/or Pabolizumab to assess miR-1254’s role in lung cancer in vivo. Drug-resistant lung cancer cells exhibited significantly increased viability upon treatment with Pabolizumab with decreased miR-1254 expression. Besides, Pabolizumab
upregulated E-caderin and downregulated N-cadherin. Importantly, miR-1254 bound to c-Myc in cancer cells. In the presence of miR-1254 mimic or siRNA (si)-c-Myc, the chemosensitivity of lung cancer cells was increased whereas miR-1254 inhibitor augmented cell resistance to Pabolizumab. Furthermore,
the chemosensitivity induced by c-Myc could be depleted by miR-1254 inhibitor. Combined treatment of miR-1254 mimic and Pabolizumab significantly decreased tumor weight and volume, and reduced c-Myc level. In conclusion, miR-1254 might suppress EMT by inhibiting c-Myc expression in lung cancer
and decrease drug resistance.
Collapse
Affiliation(s)
- Liu Shi
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Hubei, 430000, China; Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Hubei, 430000, China; Clinical Cancer Study Center, Zhongnan
Hospital of Wuhan University, Wuhan, Hubei, 430000, China
| | - Yu Xiong
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Hubei, 430000, China; Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Hubei, 430000, China; Clinical Cancer Study Center, Zhongnan
Hospital of Wuhan University, Wuhan, Hubei, 430000, China
| | - Xiaoyan Hu
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Hubei, 430000, China; Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Hubei, 430000, China; Clinical Cancer Study Center,
Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430000, China
| |
Collapse
|
8
|
Fatma H, Siddique HR. Pluripotency inducing Yamanaka factors: role in stemness and chemoresistance of liver cancer. Expert Rev Anticancer Ther 2021; 21:853-864. [PMID: 33832395 DOI: 10.1080/14737140.2021.1915137] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Introduction: Liver cancer is a major cause of mortality and is characterized by the transformation of cells into an uncontrolled mass of tumor cells with many genetic and epigenetic changes, which lead to the development of tumors. A small subpopulation of cell population known as Cancer Stem Cells (CSCs) is responsible for cancer stemness and chemoresistance. Yamanaka factors [octamer-binding transcription factor 4 (OCT4), SRY (sex-determining region Y)-box 2 (SOX2), kruppel-like factor 4 (KLF4), and Myelocytomatosis (MYC); OSKM] are responsible for cancer cell stemness, chemoresistance, and recurrence.Area covered: We cover recent discoveries and investigate the role of OSKM in inducing pluripotency and stem cell-like properties in various cancers with special emphasis on liver cancer. We review Yamanaka factors' role in stemness and chemoresistance of liver cancer.Expert opinion: In CSCs, including liver CSCs, the deregulation of various signaling pathways is one of the major reasons for stemness and drug resistance and is primarily due to OSKM. OSKM are responsible for tumor heterogeneity which renders targeting drug useless after a certain period. These factors can be exploited to understand the underlying mechanism of cancer stemness and resistance to chemotherapeutic drugs.
Collapse
Affiliation(s)
- Homa Fatma
- Molecular Cancer Genetics & Translational Research Laboratory, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh-Uttar Pradesh, India
| | - Hifzur Rahman Siddique
- Molecular Cancer Genetics & Translational Research Laboratory, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh-Uttar Pradesh, India
| |
Collapse
|
9
|
Hsiao TH, Wang RC, Lu TJ, Shih CH, Su YC, Tsai JR, Jhan PP, Lia CS, Chuang HN, Chang KH, Teng CL. Chemoresponse of de novo Acute Myeloid Leukemia to "7+3" Induction can Be Predicted by c-Myc-facilitated Cytogenetics. Front Pharmacol 2021; 12:649267. [PMID: 33897436 PMCID: PMC8061304 DOI: 10.3389/fphar.2021.649267] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/01/2021] [Indexed: 11/17/2022] Open
Abstract
Background: Identifying patients with de novo acute myeloid leukemia (AML) who will probably respond to the “7 + 3” induction regimen remains an unsolved clinical challenge. This study aimed to identify whether c-Myc could facilitate cytogenetics to predict a “7 + 3” induction chemoresponse in de novo AML. Methods: We stratified 75 untreated patients (24 and 51 from prospective and retrospective cohorts, respectively) with de novo AML who completed “7 + 3” induction into groups with and without complete remission (CR). We then compared Myc-associated molecular signatures between the groups in the prospective cohort after gene set enrichment analysis. The expression of c-Myc protein was assessed by immunohistochemical staining. We defined high c-Myc-immunopositivity as > 40% of bone marrow myeloblasts being c-Myc (+). Results: Significantly more Myc gene expression was found in patients who did not achieve CR by “7 + 3” induction than those who did (2439.92 ± 1868.94 vs. 951.60 ± 780.68; p = 0.047). Expression of the Myc gene and c-Myc protein were positively correlated (r = 0.495; p = 0.014). Although the non-CR group did not express more c-Myc protein than the CR group (37.81 ± 25.13% vs. 29.04 ± 19.75%; p = 0.151), c-Myc-immunopositivity could be a surrogate to predict the “7 + 3” induction chemoresponse (specificity: 81.63%). More importantly, c-Myc-immunopositivity facilitated cytogenetics to predict a “7 + 3” induction chemoresponse by increasing specificity from 91.30 to 95.92%. Conclusion: The “7 + 3” induction remains the standard of care for de novo AML patients, especially for those without a high c-Myc-immunopositivity and high-risk cytogenetics. However, different regimens might be considered for patients with high c-Myc-immunopositivity or high-risk cytogenetics.
Collapse
Affiliation(s)
- Tzu-Hung Hsiao
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Ren Ching Wang
- Department of Pathology, Taichung Veterans General Hospital, Taichung, Taiwan.,Department of Nursing, College of Nursing, Hungkuang University, Taichung, Taiwan
| | - Tsai-Jung Lu
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Chien-Hung Shih
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Yu-Chen Su
- Division of Hematology/Medical Oncology, Department of Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Jia-Rong Tsai
- Division of Hematology/Medical Oncology, Department of Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Pei-Pei Jhan
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Cai-Sian Lia
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Han-Ni Chuang
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Kuang-Hsi Chang
- Department of Medical Research, Tungs' Taichung Metroharbor Hospital, Taichung, Taiwan.,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.,General Education Center, Jen-The Junior College of Medicine, Nursing and Management, Miaoli, Taiwan
| | - Chieh-Lin Teng
- Division of Hematology/Medical Oncology, Department of Medicine, Taichung Veterans General Hospital, Taichung, Taiwan.,Department of Life Science, Tunghai University, Taichung, Taiwan.,School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| |
Collapse
|
10
|
Li L, Wang F, Zhang J, Wang K, De X, Li L, Zhang Y. Typical phthalic acid esters induce apoptosis by regulating the PI3K/Akt/Bcl-2 signaling pathway in rat insulinoma cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111461. [PMID: 33091774 DOI: 10.1016/j.ecoenv.2020.111461] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 07/29/2020] [Accepted: 10/01/2020] [Indexed: 06/11/2023]
Abstract
Di-(2-ethylhexyl) phthalate (DEHP) and dibutyl phthalate (DBP) are representative phthalic acid esters (PAEs), a class of environmental endocrine disruptors used as plasticizers. PAEs exposure is associated with glucose metabolism, insulin resistance, and glucose tolerance; however, the mechanism and various PAE effects on human glucose metabolism remain largely unknown. In this study, we investigated the effects of DEHP, DBP, and their mixture on rat insulinoma (INS-1) cell apoptosis and the mechanism involved in vitro. The INS-1 cells were cultured in RPMI-1640 + 10% fetal bovine serum for 24 h and pretreated with dimethyl sulfoxide (vehicle, <0.1%), DEHP (30 μM), DBP (30 μM), and their mixture (30 μM DEHP + 30 μM DBP). The methyl-thiazolyl tetrazolium bromide test was used to measure cell viability. Hoechst 33342/propidium iodide (PI) staining and Annexin V-FITC/PI staining, 2',7'-dichlorofluorescein diacetate assay, and glucose-induced insulin secretion assay were used to detect cell apoptosis rates, intracellular reactive oxygen species (ROS), and insulin secretion in INS-1, respectively. The mRNA expression levels of Bcl-2, Bax, Caspase 9, Caspase 8, Caspase 3, phosphoinositide 3-kinase (PI3K), and Akt were detected using real-time quantitative reverse transcription PCR; their protein expression levels were detected using western blotting. To the best of our knowledge, this study was the first to show that the combined effect of the two PAEs promotes a ROS-mediated PI3K/Akt/Bcl-2 pathway-induced pancreatic β cell apoptosis that is significantly higher than the effects of each PAE. Thus, safety standards and studies do not consider this effect as a significant oversight when blending PAEs. We assert that this must be addressed and corrected for establishing more impactful and safer standards.
Collapse
Affiliation(s)
- Liping Li
- School of Public Health and Management, Ningxia Medical University, Yinchuan 750004, Ningxia, China; Key Laboratory of Fertility Preservation and Maintenance of the Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia, China.
| | - Faxuan Wang
- School of Public Health and Management, Ningxia Medical University, Yinchuan 750004, Ningxia, China.
| | - Jianjun Zhang
- Department of Epidemiology, Richard M. Fairbanks School of Public Health, Indiana University, Indianapolis, Indiana, United States.
| | - Kai Wang
- School of Public Health and Management, Ningxia Medical University, Yinchuan 750004, Ningxia, China.
| | - Xiaoming De
- School of Public Health and Management, Ningxia Medical University, Yinchuan 750004, Ningxia, China.
| | - Ling Li
- School of Public Health and Management, Ningxia Medical University, Yinchuan 750004, Ningxia, China.
| | - Yuhong Zhang
- School of Public Health and Management, Ningxia Medical University, Yinchuan 750004, Ningxia, China; Key Laboratory of Fertility Preservation and Maintenance of the Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia, China.
| |
Collapse
|
11
|
Vishnoi K, Viswakarma N, Rana A, Rana B. Transcription Factors in Cancer Development and Therapy. Cancers (Basel) 2020. [PMID: 32824207 DOI: 10.339/cancers12082296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cancer is a multi-step process and requires constitutive expression/activation of transcription factors (TFs) for growth and survival. Many of the TFs reported so far are critical for carcinogenesis. These include pro-inflammatory TFs, hypoxia-inducible factors (HIFs), cell proliferation and epithelial-mesenchymal transition (EMT)-controlling TFs, pluripotency TFs upregulated in cancer stem-like cells, and the nuclear receptors (NRs). Some of those, including HIFs, Myc, ETS-1, and β-catenin, are multifunctional and may regulate multiple other TFs involved in various pro-oncogenic events, including proliferation, survival, metabolism, invasion, and metastasis. High expression of some TFs is also correlated with poor prognosis and chemoresistance, constituting a significant challenge in cancer treatment. Considering the pivotal role of TFs in cancer, there is an urgent need to develop strategies targeting them. Targeting TFs, in combination with other chemotherapeutics, could emerge as a better strategy to target cancer. So far, targeting NRs have shown promising results in improving survival. In this review, we provide a comprehensive overview of the TFs that play a central role in cancer progression, which could be potential therapeutic candidates for developing specific inhibitors. Here, we also discuss the efforts made to target some of those TFs, including NRs.
Collapse
Affiliation(s)
- Kanchan Vishnoi
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Navin Viswakarma
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Ajay Rana
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA.,University of Illinois Hospital and Health Sciences System Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA.,Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| | - Basabi Rana
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA.,University of Illinois Hospital and Health Sciences System Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA.,Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
12
|
Vishnoi K, Viswakarma N, Rana A, Rana B. Transcription Factors in Cancer Development and Therapy. Cancers (Basel) 2020; 12:cancers12082296. [PMID: 32824207 PMCID: PMC7464564 DOI: 10.3390/cancers12082296] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/04/2020] [Accepted: 08/12/2020] [Indexed: 12/12/2022] Open
Abstract
Cancer is a multi-step process and requires constitutive expression/activation of transcription factors (TFs) for growth and survival. Many of the TFs reported so far are critical for carcinogenesis. These include pro-inflammatory TFs, hypoxia-inducible factors (HIFs), cell proliferation and epithelial-mesenchymal transition (EMT)-controlling TFs, pluripotency TFs upregulated in cancer stem-like cells, and the nuclear receptors (NRs). Some of those, including HIFs, Myc, ETS-1, and β-catenin, are multifunctional and may regulate multiple other TFs involved in various pro-oncogenic events, including proliferation, survival, metabolism, invasion, and metastasis. High expression of some TFs is also correlated with poor prognosis and chemoresistance, constituting a significant challenge in cancer treatment. Considering the pivotal role of TFs in cancer, there is an urgent need to develop strategies targeting them. Targeting TFs, in combination with other chemotherapeutics, could emerge as a better strategy to target cancer. So far, targeting NRs have shown promising results in improving survival. In this review, we provide a comprehensive overview of the TFs that play a central role in cancer progression, which could be potential therapeutic candidates for developing specific inhibitors. Here, we also discuss the efforts made to target some of those TFs, including NRs.
Collapse
Affiliation(s)
- Kanchan Vishnoi
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA; (K.V.); (N.V.); (A.R.)
| | - Navin Viswakarma
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA; (K.V.); (N.V.); (A.R.)
| | - Ajay Rana
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA; (K.V.); (N.V.); (A.R.)
- University of Illinois Hospital and Health Sciences System Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA
- Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| | - Basabi Rana
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA; (K.V.); (N.V.); (A.R.)
- University of Illinois Hospital and Health Sciences System Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA
- Jesse Brown VA Medical Center, Chicago, IL 60612, USA
- Correspondence:
| |
Collapse
|
13
|
Hu X, Cai J, Zhu J, Lang W, Zhong J, Zhong H, Chen F. Arsenic trioxide potentiates Gilteritinib-induced apoptosis in FLT3-ITD positive leukemic cells via IRE1a-JNK-mediated endoplasmic reticulum stress. Cancer Cell Int 2020; 20:250. [PMID: 32565734 PMCID: PMC7298957 DOI: 10.1186/s12935-020-01341-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 06/12/2020] [Indexed: 02/06/2023] Open
Abstract
Background Acute myeloid leukemia (AML) patients with FMS-like tyrosine kinase 3-internal tandem duplication (FLT3-ITD) have a high relapse rate and poor prognosis. This study aims to explore the underlying mechanism of combining Gilteritinib with ATO at low concentration in the treatment of FLT3-ITD positive leukemias. Methods We used both in vitro and in vivo studies to investigate the effects of combination of Gilteritinib with ATO at low concentration on FLT3-ITD positive leukemias, together with the underlying molecular mechanisms of these processes. Results Combination of Gilteritinib with ATO showed synergistic effects on inhibiting proliferation, increasing apoptosis and attenuating invasive ability in FLT3-ITD-mutated cells and reducing tumor growth in nude mice. Results of western blot indicated that Gilteritinib increased a 160KD form of FLT3 protein on the surface of cell membrane. Detection of endoplasmic reticulum stress marker protein revealed that IRE1a and its downstream signal phosphorylated JNK were suppressed in Gilteritinib-treated FLT3-ITD positive cells. The downregulation of IRE1a induced by Gilteritinib was reversed with addition of ATO. Knockdown of IRE1a diminished the combinatorial effects of Gilteritinib plus ATO treatment and combination of tunicamycin (an endoplasmic reticulum pathway activator) with Gilteritinib achieved the similar effect as treatment with Gilteritinib plus ATO. Conclusions Thus, ATO at low concentration potentiates Gilteritinib-induced apoptosis in FLT3-ITD positive leukemic cells via IRE1a-JNK signal pathway, targeting IRE1a to cooperate with Gilteritinib may serve as a new theoretical basis on FLT3-ITD mutant AML treatment.
Collapse
Affiliation(s)
- Xiaoli Hu
- Department of Hematology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127 China
| | - Jiayi Cai
- Department of Hematology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127 China
| | - Jianyi Zhu
- Department of Hematology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127 China
| | - Wenjing Lang
- Department of Hematology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127 China
| | - Jihua Zhong
- Department of Hematology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127 China
| | - Hua Zhong
- Department of Hematology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127 China
| | - Fangyuan Chen
- Department of Hematology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127 China
| |
Collapse
|
14
|
García-Guede Á, Vera O, Ibáñez-de-Caceres I. When Oxidative Stress Meets Epigenetics: Implications in Cancer Development. Antioxidants (Basel) 2020; 9:antiox9060468. [PMID: 32492865 PMCID: PMC7346131 DOI: 10.3390/antiox9060468] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 02/06/2023] Open
Abstract
Cancer is one of the leading causes of death worldwide and it can affect any part of the organism. It arises as a consequence of the genetic and epigenetic changes that lead to the uncontrolled growth of the cells. The epigenetic machinery can regulate gene expression without altering the DNA sequence, and it comprises methylation of the DNA, histones modifications, and non-coding RNAs. Alterations of these gene-expression regulatory elements can be produced by an imbalance of the intracellular environment, such as the one derived by oxidative stress, to promote cancer development, progression, and resistance to chemotherapeutic treatments. Here we review the current literature on the effect of oxidative stress in the epigenetic machinery, especially over the largely unknown ncRNAs and its consequences toward cancer development and progression.
Collapse
Affiliation(s)
- Álvaro García-Guede
- Epigenetics Laboratory, INGEMM, Hospital La PAZ. 28046 Madrid, Spain; (Á.G.-G.); (I.I.-d.-C.)
- Experimental Therapies and Novel Biomarkers in Cancer, Instituto de Investigación Sanitaria del Hospital La Paz. IdiPAZ, 28046 Madrid, Spain
| | - Olga Vera
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
- Correspondence:
| | - Inmaculada Ibáñez-de-Caceres
- Epigenetics Laboratory, INGEMM, Hospital La PAZ. 28046 Madrid, Spain; (Á.G.-G.); (I.I.-d.-C.)
- Experimental Therapies and Novel Biomarkers in Cancer, Instituto de Investigación Sanitaria del Hospital La Paz. IdiPAZ, 28046 Madrid, Spain
| |
Collapse
|
15
|
Zhao S, Li X, Yin L, Hou L, Lan J, Zhu X. TCRP1 induces tamoxifen resistance by promoting the activation of SGK1 in MCF‑7 cells. Oncol Rep 2020; 43:2017-2027. [PMID: 32323833 PMCID: PMC7160545 DOI: 10.3892/or.2020.7577] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 03/04/2020] [Indexed: 02/07/2023] Open
Abstract
Tamoxifen is widely used as a highly effective drug for treating estrogen‑receptor (ER) alpha‑positive breast cancer. However, tamoxifen resistance developed during cancer treatment remains a significant challenge. Tongue cancer resistance‑related protein1 (TCRP1), which is recognized as a novel drug target, is related to chemo‑resistance in human cancers, moreover, it is often overexpressed in various cancer cells, such as in lung cancer, breast cancer, and tongue cancer. However, the effects of TCRP1 on tamoxifen‑resistant breast cancer cells and tissues are far from clear. The present study revealed that TCRP1 induced tamoxifen resistance in breast cancer cells. Western blotting, quantitative real‑time polymerase chain reaction (RT‑PCR) and immunohistochemical staining were performed to detect the expression level of TCRP1 in vivo and in vitro between primary breast cancer tissues and tamoxifen‑resistant breast cancer tissues. The data revealed that the expression of TCRP1 was upregulated in the tamoxifen‑resistant breast cancer tissues and human breast cancer cell line, MCF‑7. Further study revealed that knocking down TCRP1 inhibited the growth of MCF‑7 cells with tamoxifen‑resistance (MCF7‑R cells) and induced cell apoptosis. Moreover, TCRP1 promoted serum‑ and glucocorticoid‑inducible kinase 1 (SGK1) activation via phosphorylation of phosphoinositide‑dependent kinase 1 (PDK1) in MCF7‑R cells. In addition, it was also observed that knocking down TCRP1 inhibited tumorigenesis of MCF‑7 cells in nude mice. In conclusion, these data indicated that TCRP1 could induce tamoxifen resistance by regulating the PDK1/SGK1 signaling pathway. Thus, TCRP1 could be explored as a promising candidate for treating tamoxifen‑resistant breast cancer in the future.
Collapse
Affiliation(s)
- Shuai Zhao
- Department of Breast and Thyroid Surgery, Wuzhong People's Hospital of Suzhou City, Suzhou, Jiangsu 215128, P.R. China
| | - Xiaohua Li
- Department of Breast and Thyroid Surgery, Wuzhong People's Hospital of Suzhou City, Suzhou, Jiangsu 215128, P.R. China
| | - Lei Yin
- Department of Breast and Thyroid Surgery, Wuzhong People's Hospital of Suzhou City, Suzhou, Jiangsu 215128, P.R. China
| | - Lili Hou
- Department of Breast and Thyroid Surgery, Wuzhong People's Hospital of Suzhou City, Suzhou, Jiangsu 215128, P.R. China
| | - Jing Lan
- Department of General Surgery, The First Hospital Affiliated of Suzhou University, Suzhou, Jiangsu 215006, P.R. China
| | - Xun Zhu
- Department of Breast and Thyroid Surgery, The Second Affiliated Hospital of Suzhou University, Suzhou, Jiangsu 215004, P.R. China
| |
Collapse
|
16
|
Li Y, Zu X, Hu X, Wang L, He W. Forkhead Box R2 Knockdown Decreases Chemoresistance to Cisplatin via MYC Pathway in Bladder Cancer. Med Sci Monit 2019; 25:8928-8939. [PMID: 31761897 PMCID: PMC6894368 DOI: 10.12659/msm.917345] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background Bladder cancer is a very common urological cancer globally, and cisplatin- or gemcitabine-based chemotherapy is essential for advanced bladder cancer patients. Many patients with bladder cancer have a relatively poor response to chemotherapy, leading to failure of clinical treatment. We mined the GSE77883 GEO dataset, identifying FoxR2 as being a significantly upregulated gene in T24 chemoresistant cells. Herein, we assessed how FoxR2 functions in bladder cancer cell chemoresistance. Material/Methods Cisplatin-resistant T24 (T24/DDP) cells were constructed by administering increasing concentrations of cisplatin, and differences in expression of FoxR2 were examined in T24/DDP and T24 cells. FoxR2 loss- and gain-of-function cells models were established in T24/DDP and T24 cells, respectively. Cell survival, clone formation, cell cycle, and cell apoptosis were assessed, and the MYC pathway was verified. Results FoxR2 was significantly upregulated in T24/DDP cells compared to T24 cells. Knockdown of FoxR2 in T24/DDP cells, survival rate, and clone formation were decreased, G1/S phase transition was suppressed, and cell apoptosis was promoted. These results were reversed by restoration of FoxR2 levels in T24 cells. We found that FoxR2 knockdown enhanced sensitivity to cisplatin, whereas MYC overexpression antagonized chemosensitivity in T24/DDP cells. Conclusions FoxR2 knockdown decreases chemoresistance to cisplatin via the MYC pathway in bladder cancer cells, and this may be a target for overcoming chemoresistance in bladder cancer.
Collapse
Affiliation(s)
- Yangle Li
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, China (mainland)
| | - Xiongbing Zu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, China (mainland)
| | - Xiheng Hu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, China (mainland)
| | - Long Wang
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, China (mainland)
| | - Wei He
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, China (mainland)
| |
Collapse
|
17
|
Ma Y, Yuwen D, Chen J, Zheng B, Gao J, Fan M, Xue W, Wang Y, Li W, Shu Y, Xu Q, Shen Y. Exosomal Transfer Of Cisplatin-Induced miR-425-3p Confers Cisplatin Resistance In NSCLC Through Activating Autophagy. Int J Nanomedicine 2019; 14:8121-8132. [PMID: 31632022 PMCID: PMC6790351 DOI: 10.2147/ijn.s221383] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 09/24/2019] [Indexed: 12/11/2022] Open
Abstract
Introduction Exosomes are important mediators of intercellular communication. Previously, we characterized circulating exosomal miR-425-3p as a non-invasive prognostic marker for predicting clinical response to platinum-based chemotherapy in patients with non-small cell lung cancer (NSCLC). Methods Circulating exosomal miR-425-3p was validated by qRT-PCR in paired serum samples from NSCLC patients during the course of platinum-based chemotherapy. Cell coculture was performed to examine the effects of exosomal miR-425-3p on the sensitivity of recipient A549 cells to cisplatin. Using bioinformatics, ChIP and luciferase reporter assays, the transcription factor essential for miR-425-3p expression was identified. Autophagic activity in the recipient cells was determined by Western blot and fluorescence microscopy. Results Higher levels of exosomal miR-425-3p were found in serum samples from the patients in tolerance versus those at baseline. An upward trend in the expression of circulating exosomal miR-425-3p was revealed during chemotherapy. Furthermore, the expression of exosomal miR-425-3p could be induced by cisplatin in NSCLC cells. Exosomes isolated from either cisplatin-treated or cisplatin-resistant NSCLC cells conferred chemoresistance to sensitive A549 cells in a miR-425-3p-dependent manner. Cisplatin-induced c-Myc was found to directly bind the miR-425-3p promoter and transactivated its expression. Exosomal miR-425-3p facilitated autophagic activation in the recipient cells by targeting AKT1, eventually leading to chemoresistance. Discussion Our results suggest that apart from a prognostic marker of treatment response, exosomal miR-425-3p might be a potential dynamic biomarker to tailor cisplatin resistance in NSCLC patients during the treatment and represent a promising therapeutic target for therapy-resistant NSCLC.
Collapse
Affiliation(s)
- Yuzhu Ma
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, People's Republic of China
| | - Daolu Yuwen
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, People's Republic of China
| | - Jingwei Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, People's Republic of China
| | - Bingfeng Zheng
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, People's Republic of China
| | - Jian Gao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, People's Republic of China
| | - Minmin Fan
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, People's Republic of China
| | - Wenwen Xue
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, People's Republic of China
| | - Yixuan Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, People's Republic of China
| | - Wuhao Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, People's Republic of China
| | - Yongqian Shu
- Department of Clinical Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, People's Republic of China
| | - Qiang Xu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, People's Republic of China
| | - Yan Shen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, People's Republic of China
| |
Collapse
|
18
|
Liu X, Mai H, Jiang H, Xing Z, Peng D, Kong Y, Zhu C, Chen Y. FAM168A participates in the development of chronic myeloid leukemia via BCR-ABL1/AKT1/NFκB pathway. BMC Cancer 2019; 19:679. [PMID: 31291942 PMCID: PMC6617578 DOI: 10.1186/s12885-019-5898-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 07/02/2019] [Indexed: 11/10/2022] Open
Abstract
Background Although the prognosis of chronic myeloid leukemia (CML) has dramatically improved, the pathogenesis of CML remains elusive. Studies have shown that sustained phosphorylation of AKT1 plays a crucial role in the proliferation of CML cells. Evidence indicates that in tongue cancer cells, FAM168A, also known as tongue cancer resistance-associated protein (TCRP1), can directly bind to AKT1 and regulate AKT1/NFκB signaling pathways. This study aimed to investigate the role of FAM168A in regulation of AKT1/NFκB signaling pathway and cell cycle in CML. Methods FAM168A interference was performed, and the expression and phosphorylation of FAM168A downstream proteins were measured in K562 CML cell line. The possible roles of FAM168A in the proliferation of CML cells were investigated using in vitro cell culture, in vivo animal models and clinical specimens. Results We found that the expression of FAM168A significantly increased in the peripheral blood mononuclear cells of CML patients, compared with normal healthy controls. FAM168A interference did not change AKT1 protein expression, but significantly decreased AKT1 phosphorylation, significantly increased IκB-α protein level, and significantly reduced nuclear NFκB protein level. Moreover, there was a significant increase of G2/M phase cells and Cyclin B1 level. Immunoprecipitation results showed that FAM168A interacts with breakpoint cluster region (BCR) -Abelson murine leukemia (ABL1) fusion protein and AKT1, respectively. Animal experiments confirmed that FAM168A interference prolonged the survival and reduced the tumor formation in mice inoculated with K562 cells. The results of clinical specimens showed that FAM168A expression and AKT1 phosphorylation were significantly elevated in CML patients. Conclusion This study demonstrates that FAM168A may act as a linker protein that binds to BCR-ABL1 and AKT1, which further mediates the downstream signaling pathways in CML. Our findings demonstrate that FAM168A may be involved in the regulation of AKT1/NFκB signaling pathway and cell cycle in CML. Electronic supplementary material The online version of this article (10.1186/s12885-019-5898-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiaorong Liu
- Clinical laboratory, Shenzhen Children's Hospital, No. 7019, Yitian Road, Shenzhen, Guangdong, 518038, People's Republic of China
| | - Huirong Mai
- Division of Hematology and Oncology, Shenzhen Children's Hospital, Shenzhen, Guangdong, 518038, People's Republic of China
| | - Hanfang Jiang
- Clinical laboratory, Shenzhen Children's Hospital, No. 7019, Yitian Road, Shenzhen, Guangdong, 518038, People's Republic of China
| | - Zhihao Xing
- Clinical laboratory, Shenzhen Children's Hospital, No. 7019, Yitian Road, Shenzhen, Guangdong, 518038, People's Republic of China
| | - Dong Peng
- Clinical laboratory, Shenzhen Children's Hospital, No. 7019, Yitian Road, Shenzhen, Guangdong, 518038, People's Republic of China
| | - Yuan Kong
- Clinical laboratory, Shenzhen Children's Hospital, No. 7019, Yitian Road, Shenzhen, Guangdong, 518038, People's Republic of China
| | - Chunqing Zhu
- Clinical laboratory, Shenzhen Children's Hospital, No. 7019, Yitian Road, Shenzhen, Guangdong, 518038, People's Republic of China
| | - Yunsheng Chen
- Clinical laboratory, Shenzhen Children's Hospital, No. 7019, Yitian Road, Shenzhen, Guangdong, 518038, People's Republic of China.
| |
Collapse
|
19
|
Jia X, Shi L, Wang X, Luo L, Ling L, Yin J, Song Y, Zhang Z, Qiu N, Liu H, Deng M, He Z, Li H, Zheng G. KLF5 regulated lncRNA RP1 promotes the growth and metastasis of breast cancer via repressing p27kip1 translation. Cell Death Dis 2019; 10:373. [PMID: 31073122 PMCID: PMC6509113 DOI: 10.1038/s41419-019-1566-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 03/28/2019] [Accepted: 04/01/2019] [Indexed: 12/20/2022]
Abstract
Increasing evidence suggest that lncRNAs (long noncoding RNAs) play important roles in human cancer. Breast cancer is a heterogeneous disease and the potential involvement of lncRNAs in breast cancer remains unexplored. In this study, we characterized a novel lncRNA, RP1-5O6.5 (termed as RP1). We found that RP1 was highly expressed in breast cancer and predicted poor prognosis of breast cancer patients. Gain-of-function and loss-of-function assays showed that RP1 promoted the proliferation and metastasis of breast cancer cells in vitro and in vivo. Mechanistically, RP1 maintained the EMT and stemness states of breast cancer cells via repressing p27kip1 protein expression. RP1 combined with the complex p-4E-BP1/eIF4E to prevent eIF4E from interacting with eIF4G, therefore attenuating the translational efficiency of p27kip1 mRNA. Furthermore, we found that p27kip1 evidently downregulated Snail1 but not ZEB1 to inhibit invasion of breast cancer cells. Kruppel-like factor 5 (KLF5) was positively correlated with RP1 in breast cancer tissues. Moreover, we demonstrated that KLF5 recruited p300 to the RP1 promoter to enhance RP1 expression. Taken together, our findings demonstrated that KLF5-regulated RP1 plays an oncogenic role in breast cancer by suppressing p27kip1, providing support for the clinical investigation of therapeutic approaches focusing on RP1.
Collapse
Affiliation(s)
- Xiaoting Jia
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Key Laboratory of Protein Modification and Degradation, The State Key Laboratory of Respiratory, Guangzhou Key Laboratory of "Translational Medicine on Malignant Tumor Treatment", Hengzhigang Road 78#, Guangzhou, 510095, Guangdong, China
| | - Lejuan Shi
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Key Laboratory of Protein Modification and Degradation, The State Key Laboratory of Respiratory, Guangzhou Key Laboratory of "Translational Medicine on Malignant Tumor Treatment", Hengzhigang Road 78#, Guangzhou, 510095, Guangdong, China
| | - Xiaorong Wang
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Key Laboratory of Protein Modification and Degradation, The State Key Laboratory of Respiratory, Guangzhou Key Laboratory of "Translational Medicine on Malignant Tumor Treatment", Hengzhigang Road 78#, Guangzhou, 510095, Guangdong, China
| | - Liyun Luo
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Key Laboratory of Protein Modification and Degradation, The State Key Laboratory of Respiratory, Guangzhou Key Laboratory of "Translational Medicine on Malignant Tumor Treatment", Hengzhigang Road 78#, Guangzhou, 510095, Guangdong, China
| | - Li Ling
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Key Laboratory of Protein Modification and Degradation, The State Key Laboratory of Respiratory, Guangzhou Key Laboratory of "Translational Medicine on Malignant Tumor Treatment", Hengzhigang Road 78#, Guangzhou, 510095, Guangdong, China
| | - Jiang Yin
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Key Laboratory of Protein Modification and Degradation, The State Key Laboratory of Respiratory, Guangzhou Key Laboratory of "Translational Medicine on Malignant Tumor Treatment", Hengzhigang Road 78#, Guangzhou, 510095, Guangdong, China
| | - Ying Song
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Key Laboratory of Protein Modification and Degradation, The State Key Laboratory of Respiratory, Guangzhou Key Laboratory of "Translational Medicine on Malignant Tumor Treatment", Hengzhigang Road 78#, Guangzhou, 510095, Guangdong, China
| | - Zhijie Zhang
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Key Laboratory of Protein Modification and Degradation, The State Key Laboratory of Respiratory, Guangzhou Key Laboratory of "Translational Medicine on Malignant Tumor Treatment", Hengzhigang Road 78#, Guangzhou, 510095, Guangdong, China
| | - Ni Qiu
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Key Laboratory of Protein Modification and Degradation, The State Key Laboratory of Respiratory, Guangzhou Key Laboratory of "Translational Medicine on Malignant Tumor Treatment", Hengzhigang Road 78#, Guangzhou, 510095, Guangdong, China
| | - Hao Liu
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Key Laboratory of Protein Modification and Degradation, The State Key Laboratory of Respiratory, Guangzhou Key Laboratory of "Translational Medicine on Malignant Tumor Treatment", Hengzhigang Road 78#, Guangzhou, 510095, Guangdong, China
| | - Min Deng
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Key Laboratory of Protein Modification and Degradation, The State Key Laboratory of Respiratory, Guangzhou Key Laboratory of "Translational Medicine on Malignant Tumor Treatment", Hengzhigang Road 78#, Guangzhou, 510095, Guangdong, China
| | - Zhimin He
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Key Laboratory of Protein Modification and Degradation, The State Key Laboratory of Respiratory, Guangzhou Key Laboratory of "Translational Medicine on Malignant Tumor Treatment", Hengzhigang Road 78#, Guangzhou, 510095, Guangdong, China.
| | - Hongsheng Li
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Key Laboratory of Protein Modification and Degradation, The State Key Laboratory of Respiratory, Guangzhou Key Laboratory of "Translational Medicine on Malignant Tumor Treatment", Hengzhigang Road 78#, Guangzhou, 510095, Guangdong, China.
| | - Guopei Zheng
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Key Laboratory of Protein Modification and Degradation, The State Key Laboratory of Respiratory, Guangzhou Key Laboratory of "Translational Medicine on Malignant Tumor Treatment", Hengzhigang Road 78#, Guangzhou, 510095, Guangdong, China.
| |
Collapse
|