1
|
Abo S, Soubusta J, Jiráková K, Bartkiewicz K, Černoch A, Lemr K, Miranowicz A. Experimental hierarchy of two-qubit quantum correlations without state tomography. Sci Rep 2023; 13:8564. [PMID: 37237018 DOI: 10.1038/s41598-023-35015-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
A Werner state, which is the singlet Bell state affected by white noise, is a prototype example of states, which can reveal a hierarchy of quantum entanglement, steering, and Bell nonlocality by controlling the amount of noise. However, experimental demonstrations of this hierarchy in a sufficient and necessary way (i.e., by applying measures or universal witnesses of these quantum correlations) have been mainly based on full quantum state tomography, corresponding to measuring at least 15 real parameters of two-qubit states. Here we report an experimental demonstration of this hierarchy by measuring only six elements of a correlation matrix depending on linear combinations of two-qubit Stokes parameters. We show that our experimental setup can also reveal the hierarchy of these quantum correlations of generalized Werner states, which are any two-qubit pure states affected by white noise.
Collapse
Affiliation(s)
- Shilan Abo
- Institute of Spintronics and Quantum Information, Faculty of Physics, Adam Mickiewicz University, 61-614, Poznań, Poland
| | - Jan Soubusta
- Palacký University Olomouc, Faculty of Science, Joint Laboratory of Optics of PU and IP CAS, 17. listopadu 1192/12, 779 00, Olomouc, Czech Republic.
| | - Kateřina Jiráková
- Palacký University Olomouc, Faculty of Science, Joint Laboratory of Optics of PU and IP CAS, 17. listopadu 1192/12, 779 00, Olomouc, Czech Republic
| | - Karol Bartkiewicz
- Institute of Spintronics and Quantum Information, Faculty of Physics, Adam Mickiewicz University, 61-614, Poznań, Poland
- Palacký University Olomouc, Faculty of Science, Joint Laboratory of Optics of PU and IP CAS, 17. listopadu 1192/12, 779 00, Olomouc, Czech Republic
| | - Antonín Černoch
- Institute of Physics of the Czech Academy of Sciences, Joint Laboratory of Optics of PU and IP CAS, 17. listopadu 1154/50a, 779 00, Olomouc, Czech Republic
| | - Karel Lemr
- Palacký University Olomouc, Faculty of Science, Joint Laboratory of Optics of PU and IP CAS, 17. listopadu 1192/12, 779 00, Olomouc, Czech Republic
| | - Adam Miranowicz
- Institute of Spintronics and Quantum Information, Faculty of Physics, Adam Mickiewicz University, 61-614, Poznań, Poland.
| |
Collapse
|
2
|
Chen Z, Fei SM. Detecting Tripartite Steering via Quantum Entanglement. ENTROPY (BASEL, SWITZERLAND) 2022; 24:1297. [PMID: 36141183 PMCID: PMC9497636 DOI: 10.3390/e24091297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/09/2022] [Accepted: 09/09/2022] [Indexed: 06/16/2023]
Abstract
Einstein-Podolsky-Rosen steering is a kind of powerful nonlocal quantum resource in quantum information processing such as quantum cryptography and quantum communication. Many criteria have been proposed in the past few years to detect steerability, both analytically and numerically, for bipartite quantum systems. We propose effective criteria for tripartite steerability and genuine tripartite steerability of three-qubit quantum states by establishing connections between the tripartite steerability (resp. genuine tripartite steerability) and the tripartite entanglement (resp. genuine tripartite entanglement) of certain corresponding quantum states. From these connections, tripartite steerability and genuine tripartite steerability can be detected without using any steering inequalities. The "complex cost" of determining tripartite steering and genuine tripartite steering can be reduced by detecting the entanglement of the newly constructed states in the experiment. Detailed examples are given to illustrate the power of our criteria in detecting the (genuine) tripartite steerability of tripartite states.
Collapse
Affiliation(s)
- Zhihua Chen
- School of Science, Jimei University, Xiamen 361021, China
| | - Shao-Ming Fei
- School of Mathematical Sciences, Capital Normal University, Beijing 100048, China
- Max Planck Institute for Mathematics in the Sciences, 04103 Leipzig, Germany
| |
Collapse
|
3
|
Enhancing the Generated Stable Correlation in a Dissipative System of Two Coupled Qubits inside a Coherent Cavity via Their Dipole-Dipole Interplay. ENTROPY 2019; 21:e21070672. [PMID: 33267386 PMCID: PMC7515168 DOI: 10.3390/e21070672] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/20/2019] [Accepted: 06/26/2019] [Indexed: 11/16/2022]
Abstract
We explore the dissipative dynamics of two coupled qubits placed inside a coherent cavity-field under dipole-dipole interplay and 2-photon transitions. The generated non-classical correlations (NCCs) beyond entanglement are investigated via two measures based on the Hilbert-Schmidt norm. It is found that the robustness of the generated NCCs can be greatly enhanced by performing the intrinsic dissipation rate, dipole-dipole interplay rate, initial coherence intensity and the degree of the coherent state superpositions. The results show that the intrinsic decoherence stabilize the stationarity of the non-classical correlations while the dipole interplay rate boost them. The non-classical correlations can be frozen at their stationary correlations by increasing the intrinsic dissipation rate. Also NCCs, can be enhanced by increasing the initial coherent intensity.
Collapse
|
4
|
Yang Y, Cao H. Einstein-Podolsky-Rosen Steering Inequalities and Applications. ENTROPY 2018; 20:e20090683. [PMID: 33265772 PMCID: PMC7513208 DOI: 10.3390/e20090683] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 09/01/2018] [Accepted: 09/05/2018] [Indexed: 11/25/2022]
Abstract
Einstein-Podolsky-Rosen (EPR) steering is very important quantum correlation of a composite quantum system. It is an intermediate type of nonlocal correlation between entanglement and Bell nonlocality. In this paper, based on introducing definitions and characterizations of EPR steering, some EPR steering inequalities are derived. With these inequalities, the steerability of the maximally entangled state is checked and some conditions for the steerability of the X-states are obtained.
Collapse
Affiliation(s)
- Ying Yang
- School of Mathematics and Information Science, Shaanxi Normal University, Xi’an 710062, China
- School of Mathematics and Information Technology, Yuncheng University, Yuncheng 044000, China
| | - Huaixin Cao
- School of Mathematics and Information Science, Shaanxi Normal University, Xi’an 710062, China
- Correspondence:
| |
Collapse
|