1
|
Jiang L, Zhang L, Xia J, Cheng L, Chen G, Wang J, Raghavan V. Probiotics supplementation during pregnancy or infancy on multiple food allergies and gut microbiota: a systematic review and meta-analysis. Nutr Rev 2024:nuae024. [PMID: 38502006 DOI: 10.1093/nutrit/nuae024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024] Open
Abstract
CONTEXT Probiotics show promise in preventing and managing food allergies, but the impact of supplementation during pregnancy or infancy on children's allergies and gut microbiota remains unclear. OBJECTIVE This study aimed to assess the effects of maternal or infant probiotic supplementation on food allergy risk and explore the role of gut microbiota. DATA SOURCES A systematic search of databases (PubMed, Cochrane Library, Embase, and Medline) identified 37 relevant studies until May 20, 2023. DATA EXTRACTION Two independent reviewers extracted data, including probiotics intervention details, gut microbiota analysis, and food allergy information. DATA ANALYSIS Probiotics supplementation during pregnancy and infancy reduced the risk of total food allergy (relative risk [RR], 0.79; 95% CI, 0.63-0.99), cow-milk allergy (RR, 0.51; 95% CI, 0.29-0.88), and egg allergy (RR, 0.57; 95% CI, 0.39-0.84). Infancy-only supplementation lowered cow-milk allergy risk (RR, 0.69; 95% CI, 0.49-0.96), while pregnancy-only had no discernible effect. Benefits were observed with over 2 probiotic species, and a daily increase of 1.8 × 109 colony-forming units during pregnancy and infancy correlated with a 4% reduction in food allergy risk. Children with food allergies had distinct gut microbiota profiles, evolving with age. CONCLUSIONS Probiotics supplementation during pregnancy and infancy reduces food allergy risk and correlates with age-related changes in gut microbial composition in children. SYSTEMATIC REVIEW REGISTRATION PROSPERO registration no. CRD42023425988.
Collapse
Affiliation(s)
- Lan Jiang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, China
| | - Lili Zhang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, China
| | - Jiayue Xia
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, China
| | - Lei Cheng
- Department of Otorhinolaryngology and Clinical Allergy Center, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Guoxun Chen
- Department of Nutrition, University of Tennessee at Knoxville, Knoxville, TN, USA
| | - Jin Wang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, China
| | - Vijaya Raghavan
- Department of Bioresource Engineering, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| |
Collapse
|
2
|
Hsu FC, Lin WT, Hsieh KC, Cheng KC, Wu JSB, Ting Y. Mitigating the allergenicity of peanut allergen Ara h 1 by cold atmospheric pressure argon plasma jet. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:3017-3027. [PMID: 36646652 DOI: 10.1002/jsfa.12454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 12/13/2022] [Accepted: 01/17/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Peanut allergy is recognized as a major food allergy that triggers severe and even fatal symptoms. Avoidance of peanuts in the diet is the main option for current safety management. Processing techniques reducing peanut allergenicity are required to develop other options. Cold plasma is currently considered as a novel non-thermal approach to alter protein structure and has the potential to alleviate immunoreactivity of protein allergen. RESULTS The application of a cold argon plasma jet to peanut protein extract could reduce the amount of a 64 kDa protein band corresponding to a major peanut allergen Ara h 1 using sodium dodecyl sulfate-polyacrylamide gel electrophoresis, but the overall protein size distribution did not change significantly. A decrease in peanut protein solubility was a possible cause that led to the loss of protein content in the soluble fraction. Immunoblotting and enzyme-linked immunosorbent assay elucidated that the immunoreactivity of Ara h 1 was significantly decreased with the time treated with plasma. Ara h 1 antigenicity reduced by 38% after five scans (approximately 3 min) of cold argon plasma jet treatment, and the reduction was up to 66% after approximately 15 min of treatment. CONCLUSION The results indicate that cold argon plasma jet treatment could be a suitable platform for alleviating the immunoreactivity of peanut protein. This work demonstrates an efficient, compact, and rapid platform for mitigating the allergenicity of peanuts, and shows great potential for the plasma platform as a non-thermal technique in the food industry. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Fu-Chiun Hsu
- Department of Horticulture and Landscape Architecture, National Taiwan University, Taipei, Taiwan
| | - Wan-Ting Lin
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Kuan-Chen Hsieh
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Kuan-Chen Cheng
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
- Institute of Biotechnology, College of Bioresources and Agriculture, National Taiwan University, Taipei, Taiwan
- Department of Optometry, Asia University, Taichung, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - James Swi-Bea Wu
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Yuwen Ting
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
3
|
Alakhras NS, Shin J, Smith SA, Sinn AL, Zhang W, Hwang G, Sjoerdsma J, Bromley EK, Pollok KE, Bilgicer B, Kaplan MH. Peanut allergen inhibition prevents anaphylaxis in a humanized mouse model. Sci Transl Med 2023; 15:eadd6373. [PMID: 36753563 PMCID: PMC10205092 DOI: 10.1126/scitranslmed.add6373] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 01/17/2023] [Indexed: 02/10/2023]
Abstract
Peanut-induced allergy is an immunoglobulin E (IgE)-mediated type I hypersensitivity reaction that manifests symptoms ranging from local edema to life-threatening anaphylaxis. Although there are treatments for symptoms in patients with allergies resulting from allergen exposure, there are few preventive therapies other than strict dietary avoidance or oral immunotherapy, neither of which are successful in all patients. We have previously designed a covalent heterobivalent inhibitor (cHBI) that binds in an allergen-specific manner as a preventive for allergic reactions. Building on previous in vitro testing, here, we developed a humanized mouse model to test cHBI efficacy in vivo. Nonobese diabetic-severe combined immunodeficient γc-deficient mice expressing transgenes for human stem cell factor, granulocyte-macrophage colony-stimulating factor, and interleukin-3 developed mature functional human mast cells in multiple tissues and displayed robust anaphylactic reactions when passively sensitized with patient-derived IgE monoclonal antibodies specific for peanut Arachis hypogaea 2 (Ara h 2). The allergic response in humanized mice was IgE dose dependent and was mediated by human mast cells. Using this humanized mouse model, we showed that cHBI prevented allergic reactions for more than 2 weeks when administered before allergen exposure. cHBI also prevented fatal anaphylaxis and attenuated allergic reactions when administered shortly after the onset of symptoms. cHBI impaired mast cell degranulation in vivo in an allergen-specific manner. cHBI rescued the mice from lethal anaphylactic responses during oral Ara h 2 allergen-induced anaphylaxis. Together, these findings suggest that cHBI has the potential to be an effective preventative for peanut-specific allergic responses in patients.
Collapse
Affiliation(s)
- Nada S. Alakhras
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Jaeho Shin
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556
| | - Scott A. Smith
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Anthony L. Sinn
- In Vivo Therapeutics Core, Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, Indiana 46202
| | - Wenwu Zhang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Gyoyeon Hwang
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556
| | - Jenna Sjoerdsma
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556
| | - Emily K. Bromley
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556
| | - Karen E. Pollok
- In Vivo Therapeutics Core, Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, Indiana 46202
- Department of Pediatrics, HB Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Basar Bilgicer
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556
| | - Mark H. Kaplan
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana 46202
- Department of Pediatrics, HB Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana 46202
| |
Collapse
|
4
|
Determination of immunogenic epitopes in major house dust mite allergen, Der p 2, via nanoallergens. Ann Allergy Asthma Immunol 2022; 129:231-240.e2. [PMID: 35405356 PMCID: PMC9808607 DOI: 10.1016/j.anai.2022.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 04/01/2022] [Accepted: 04/04/2022] [Indexed: 01/05/2023]
Abstract
BACKGROUND Despite the high prevalence of allergic asthma, currently, avoidance of the responsible allergens, which is nearly impossible for allergens such as house dust mite (HDM), remains among the most effective treatment. Consequently, determination of the immunogenic epitopes of allergens will aid in developing a better understanding of the condition for diagnostic and therapeutic purposes. Current methods of epitope identification, however, only evaluate immunoglobulin E-epitope binding interactions, which is not directly related to epitope immunogenicity. OBJECTIVE To determine and rank the immunogenicity of the epitopes of major HDM allergen, Der p 2. METHODS We performed degranulation assays with RBL-SX38 cells primed using patient plasma and challenged with nanoallergens which multivalently displayed epitopes to study the relative immunogenicity of various epitopes of Der p 2. Nanoallergens were used to evaluate epitopes individually or in combination. RESULTS When evaluated using 3 patient samples, 3 epitopes in 2 distal regions of Der p 2 were identified as highly immunogenic when presented in combination, whereas no individual epitope triggered relevant degranulation. One of the epitopes (69-DPNACHYMKCPLVKGQQY-86) was identified to be cooperatively immunogenic when combined with other epitopes. CONCLUSION Our study highlights the importance of conformational epitopes in HDM-related allergies. This study also provides further evidence of the versatility of nanoallergens and their value for functional characterization of allergy epitopes, by ranking the Der p 2 epitopes according to immunogenicity. We believe that nanoallergens, by aiding in identification and understanding of immunogenic epitopes, will provide a better understanding of the manifestation of the allergic condition and potentially aid in developing new treatments.
Collapse
|
5
|
Grayson MH. Nanoallergens and the allergist. Ann Allergy Asthma Immunol 2022; 129:133. [PMID: 35878956 DOI: 10.1016/j.anai.2022.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Mitchell H Grayson
- Division of Allergy and Immunology, Department of Pediatrics, Nationwide Children's Hospital - The Ohio State University College of Medicine, Columbus, Ohio.
| |
Collapse
|
6
|
Shin JH, Reddy YVM, Park TJ, Park JP. Recent advances in analytical strategies and microsystems for food allergen detection. Food Chem 2022; 371:131120. [PMID: 34634648 DOI: 10.1016/j.foodchem.2021.131120] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 12/18/2022]
Abstract
Food allergies are abnormal immune responses that typically occur within short period after exposure of certain allergenic proteins in food or food-related resources. Currently, the means to treat food allergies is not clearly understood, and the only known prevention method is avoiding the consumption of allergen-containing foods. From the viewpoint of analytical methods, the effective detection of food allergens is hindered by the effects of various treatment processes and food matrices on trace amounts of allergens. The aim of this effort is to provide the reader with a clear and concise view of new advances for the detection of food allergens. Therefore, the present review explored the development status of various biosensors for the real-time, on-site detection of food allergens with high selectivity and sensitivity. The review also described the analytical consideration for the quantification of food allergens, and global development trends and the future availability of these technologies.
Collapse
Affiliation(s)
- Jae Hwan Shin
- Department of Food Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Y Veera Manohara Reddy
- Department of Food Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Tae Jung Park
- Department of Chemistry, Institute of Interdisciplinary Convergence Research, Research Institute of Chem-Bio Diagnostic Technology, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea.
| | - Jong Pil Park
- Department of Food Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea.
| |
Collapse
|
7
|
Liu Q, Wang X, Liao YP, Chang CH, Li J, Xia T, Nel AE. Use of a Liver-targeting Nanoparticle Platform to Intervene in Peanut-induced anaphylaxis through delivery of an Ara h2 T-cell Epitope. NANO TODAY 2022; 42:101370. [PMID: 36969911 PMCID: PMC10038170 DOI: 10.1016/j.nantod.2021.101370] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
To address the urgent need for safe food allergen immunotherapy, we have developed a liver-targeting nanoparticle platform, capable of intervening in allergic inflammation, mast cell release and anaphylaxis through the generation of regulatory T-cells (Treg). In this communication, we demonstrate the use of a poly (lactide-co-glycolide acid) (PLGA) nanoparticle platform for intervening in peanut anaphylaxis through the encapsulation and delivery of a dominant protein allergen, Ara h 2 and representative T-cell epitopes, to liver sinusoidal endothelial cells (LSECs). These cells have the capacity to act as natural tolerogenic antigen-presenting cells (APC), capable of Treg generation by T-cell epitope presentation by histocompatibility (MHC) type II complexes on the LSEC surface. This allowed us to address the hypothesis that the tolerogenic nanoparticles platform could be used as an effective, safe, and scalable intervention for suppressing anaphylaxis to crude peanut allergen extract. Following the analysis of purified Ara h 2 and representative MHC-II epitopes Treg generation in vivo, a study was carried out to compare the best-performing Ara h 2 T-cell epitope with a purified Ara h 2 allergen, a crude peanut protein extract (CPPE) and a control peptide in an oral sensitization model. Prophylactic as well as post-sensitization administration of the dominant encapsulated Ara h 2 T-cell epitope was more effective than the purified Ara h2 in eliminating anaphylactic manifestations, hypothermia, and mast cell protease release in a frequently used peanut anaphylaxis model. This was accompanied by decreased peanut-specific IgE blood levels and increased TGF-β release in the abdominal cavity. The duration of the prophylactic effect was sustained for two months. These results demonstrate that targeted delivery of carefully selected T-cell epitopes to natural tolerogenic liver APC could serve as an effective platform for the treatment of peanut allergen anaphylaxis.
Collapse
Affiliation(s)
- Qi Liu
- Center of Environmental Implications of Nanotechnology (UC CEIN), University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Xiang Wang
- Center of Environmental Implications of Nanotechnology (UC CEIN), University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Yu-Pei Liao
- Center of Environmental Implications of Nanotechnology (UC CEIN), University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Chong Hyun Chang
- Center of Environmental Implications of Nanotechnology (UC CEIN), University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Jiulong Li
- Center of Environmental Implications of Nanotechnology (UC CEIN), University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Tian Xia
- Center of Environmental Implications of Nanotechnology (UC CEIN), University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
- Division of NanoMedicine, Department of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Andre E. Nel
- Center of Environmental Implications of Nanotechnology (UC CEIN), University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
- Division of NanoMedicine, Department of Medicine, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
8
|
Üzülmez Ö, Kalic T, Mayr V, Lengger N, Tscheppe A, Radauer C, Hafner C, Hemmer W, Breiteneder H. The Major Peanut Allergen Ara h 2 Produced in Nicotiana benthamiana Contains Hydroxyprolines and Is a Viable Alternative to the E. Coli Product in Allergy Diagnosis. FRONTIERS IN PLANT SCIENCE 2021; 12:723363. [PMID: 34671372 PMCID: PMC8522509 DOI: 10.3389/fpls.2021.723363] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/17/2021] [Indexed: 05/12/2023]
Abstract
Peanut allergy is a potentially life-threatening disease that is mediated by allergen-specific immunoglobulin E (IgE) antibodies. The major peanut allergen Ara h 2, a 2S albumin seed storage protein, is one of the most dangerous and potent plant allergens. Ara h 2 is posttranslationally modified to harbor four disulfide bridges and three hydroxyprolines. These hydroxyproline residues are required for optimal IgE-binding to the DPYSPOHS motifs representing an immunodominant IgE epitope. So far, recombinant Ara h 2 has been produced in Escherichia coli, Lactococcus lactis, Trichoplusia ni insect cell, and Chlamydomonas reinhardtii chloroplast expression systems, which were all incapable of proline hydroxylation. However, molecular diagnosis of peanut allergy is performed using either natural or E. coli-produced major peanut allergens. As IgE from the majority of patients is directed to Ara h 2, it is of great importance that the recombinant Ara h 2 harbors all of its eukaryotic posttranslational modifications. We produced hydroxyproline-containing and correctly folded Ara h 2 in the endoplasmic reticulum of leaf cells of Nicotiana benthamiana plants, using the plant virus-based magnICON® transient expression system with a yield of 200 mg/kg fresh biomass. To compare prokaryotic with eukaryotic expression methods, Ara h 2 was expressed in E. coli together with the disulfide-bond isomerase DsbC and thus harbored disulfide bridges but no hydroxyprolines. The recombinant allergens from N. benthamiana and E. coli were characterized and compared to the natural Ara h 2 isolated from roasted peanuts. Natural Ara h 2 outperformed both recombinant proteins in IgE-binding and activation of basophils via IgE cross-linking, the latter indicating the potency of the allergen. Interestingly, significantly more efficient IgE cross-linking by the N. benthamiana-produced allergen was observed in comparison to the one induced by the E. coli product. Ara h 2 from N. benthamiana plants displayed a higher similarity to the natural allergen in terms of basophil activation due to the presence of hydroxyproline residues, supporting so far published data on their contribution to the immunodominant IgE epitope. Our study advocates the use of N. benthamiana plants instead of prokaryotic expression hosts for the production of the major peanut allergen Ara h 2.
Collapse
Affiliation(s)
- Öykü Üzülmez
- Institute of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Tanja Kalic
- Institute of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
- Department of Dermatology, University Hospital St. Pölten, Karl Landsteiner University of Health Sciences, St. Pölten, Austria
| | - Vanessa Mayr
- Institute of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Nina Lengger
- Institute of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Angelika Tscheppe
- Institute of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Christian Radauer
- Institute of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Christine Hafner
- Department of Dermatology, University Hospital St. Pölten, Karl Landsteiner University of Health Sciences, St. Pölten, Austria
- Karl Landsteiner Institute for Dermatological Research, St. Pölten, Austria
| | | | - Heimo Breiteneder
- Institute of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
9
|
Üzülmez Ö, Kalic T, Breiteneder H. Advances and novel developments in molecular allergology. Allergy 2020; 75:3027-3038. [PMID: 32882057 PMCID: PMC7756543 DOI: 10.1111/all.14579] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/21/2020] [Accepted: 08/26/2020] [Indexed: 12/21/2022]
Abstract
The continuous search for new allergens and the design of allergen derivatives improves the understanding of their allergenicity and aids the design of novel diagnostic and immunotherapy approaches. This article discusses the recent developments in allergen and epitope discovery, allergy diagnostics and immunotherapy. Structural information is crucial for the elucidation of cross-reactivity of marker allergens such as the walnut Jug r 6 or that of nonhomologous allergens, as shown for the peanut allergens Ara h 1 and 2. High-throughput sequencing, liposomal nanoallergen display, bead-based assays, and protein chimeras have been used in epitope discovery. The binding of natural ligands by the birch pollen allergen Bet v 1 or the mold allergen Alt a 1 increased the stability of these allergens, which is directly linked to their allergenicity. We also report recent findings on the use of component-resolved approaches, basophil activation test, and novel technologies for improvement of diagnostics. New strategies in allergen-specific immunotherapy have also emerged, such as the use of virus-like particles, biologics or novel adjuvants. The identification of dectin-1 as a key player in allergy to tropomyosins and the formyl peptide receptor 3 in allergy to lipocalins are outstanding examples of research into the mechanism of allergic sensitization.
Collapse
Affiliation(s)
- Öykü Üzülmez
- Institute of Pathophysiology and Allergy Research Medical University of Vienna Vienna Austria
| | - Tanja Kalic
- Institute of Pathophysiology and Allergy Research Medical University of Vienna Vienna Austria
| | - Heimo Breiteneder
- Institute of Pathophysiology and Allergy Research Medical University of Vienna Vienna Austria
| |
Collapse
|
10
|
Thouvenot B, Roitel O, Tomasina J, Hilselberger B, Richard C, Jacquenet S, Codreanu-Morel F, Morisset M, Kanny G, Beaudouin E, Delebarre-Sauvage C, Olivry T, Favrot C, Bihain BE. Transcriptional frameshifts contribute to protein allergenicity. J Clin Invest 2020; 130:5477-5492. [PMID: 32634131 PMCID: PMC7524509 DOI: 10.1172/jci126275] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 07/01/2020] [Indexed: 01/07/2023] Open
Abstract
Transcription infidelity (TI) is a mechanism that increases RNA and protein diversity. We found that single-base omissions (i.e., gaps) occurred at significantly higher rates in the RNA of highly allergenic legumes. Transcripts from peanut, soybean, sesame, and mite allergens contained a higher density of gaps than those of nonallergens. Allergen transcripts translate into proteins with a cationic carboxy terminus depleted in hydrophobic residues. In mice, recombinant TI variants of the peanut allergen Ara h 2, but not the canonical allergen itself, induced, without adjuvant, the production of anaphylactogenic specific IgE (sIgE), binding to linear epitopes on both canonical and TI segments of the TI variants. The removal of cationic proteins from bovine lactoserum markedly reduced its capacity to induce sIgE. In peanut-allergic children, the sIgE reactivity was directed toward both canonical and TI segments of Ara h 2 variants. We discovered 2 peanut allergens, which we believe to be previously unreported, because of their RNA-DNA divergence gap patterns and TI peptide amino acid composition. Finally, we showed that the sIgE of children with IgE-negative milk allergy targeted cationic proteins in lactoserum. We propose that it is not the canonical allergens, but their TI variants, that initiate sIgE isotype switching, while both canonical and TI variants elicit clinical allergic reactions.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Françoise Codreanu-Morel
- Unité Nationale d’Immunologie et d’Allergologie, Centre Hospitalier de Luxembourg, Luxembourg, Luxembourg
| | - Martine Morisset
- Unité d’Allergologie, Département de Pneumologie, Centre Hospitalier Universitaire Angers, Angers, France
| | - Gisèle Kanny
- Service de Médecine Interne, Immunologie Clinique et Allergologie, Hôpitaux de Brabois, Centre Hospitalier Universitaire de Nancy, Vandœuvre-lès-Nancy, France
| | - Etienne Beaudouin
- Unité d’Allergologie, Centre Hospitalier Régional de Metz, Metz, France
| | - Christine Delebarre-Sauvage
- Allergology Center Saint-Vincent de Paul Hospital, Groupe Hospitalier de l’Institut Catholique de Lille, Lille, France
| | - Thierry Olivry
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Claude Favrot
- Clinic for Small Animal Internal Medicine, University of Zurich, Zurich, Switzerland
| | | |
Collapse
|
11
|
Kim B, Shin J, Bilgicer B. How could nanoallergen technology be used as a diagnostic tool for allergies? Nanomedicine (Lond) 2020; 15:1063-1066. [PMID: 32326821 DOI: 10.2217/nnm-2020-0055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Baksun Kim
- Department of Chemical & Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Jaeho Shin
- Department of Chemical & Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Basar Bilgicer
- Department of Chemical & Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA.,Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA.,Advanced Diagnostics & Therapeutics, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
12
|
Omstead DT, Sjoerdsma J, Bilgicer B. Polyvalent Nanoobjects for Precision Diagnostics. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2019; 12:69-88. [PMID: 30811215 DOI: 10.1146/annurev-anchem-061318-114938] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
As our ability to synthesize and modify nanoobjects has improved, efforts to explore nanotechnology for diagnostic purposes have gained momentum. The variety of nanoobjects, especially those with polyvalent properties, displays a wide range of practical and unique properties well suited for applications in various diagnostics. This review briefly covers the broad scope of multivalent nanoobjects and their use in diagnostics, ranging from ex vivo assays and biosensors to in vivo imaging. The nanoobjects discussed here include silica nanoparticles, gold nanoparticles, quantum dots, carbon dots, fullerenes, polymers, dendrimers, liposomes, nanowires, and nanotubes. In this review, we describe recent reports of novel applications of these various nanoobjects, particularly as polyvalent entities designed for diagnostics.
Collapse
Affiliation(s)
- David T Omstead
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA;
| | - Jenna Sjoerdsma
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA;
| | - Basar Bilgicer
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA;
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA
- Advanced Diagnostics and Therapeutics Initiative, University of Notre Dame, Notre Dame, Indiana 46556, USA
- Mike and Josie Harper Cancer Research Institute, University of Notre Dame, South Bend, Indiana 46617, USA
| |
Collapse
|
13
|
Hazebrouck S, Guillon B, Paty E, Dreskin SC, Adel-Patient K, Bernard H. Variable IgE cross-reactivity between peanut 2S-albumins: The case for measuring IgE to both Ara h 2 and Ara h 6. Clin Exp Allergy 2019; 49:1107-1115. [PMID: 31108010 DOI: 10.1111/cea.13432] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 04/15/2019] [Accepted: 04/25/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND 2S-albumins Ara h 2 and Ara h 6 are the most potent peanut allergens and levels of specific immunoglobulin E (IgE) towards these proteins are good predictors of clinical reactivity. Because of structural homologies, Ara h 6 is generally considered to cross-react extensively with Ara h 2. OBJECTIVE We aimed to quantify the IgE cross-reactivity between Ara h 2 and Ara h 6. METHODS Peanut 2S-albumins were purified from raw peanuts. The IgE cross-reactivity between Ara h 2 and Ara h 6 was evaluated with 32 sera from French and US peanut-allergic patients by measuring the residual IgE-binding to one 2S-albumin after depletion of IgE antibodies recognizing the other 2S-albumin. The IgE cross-reactivity between Ara h 2 and Ara h 6 was further investigated by competitive inhibition of IgE-binding and by a model of mast cell degranulation. RESULTS A highly variable level of IgE cross-reactivity was revealed among the patients. The mean fraction of cross-reactive IgE antibodies represented only 17.1% of 2S-albumins-specific IgE antibodies and was lower than the mean fraction of IgE specific to Ara h 2 (57.4%) or to Ara h 6 (25.5%). The higher level of Ara h 2-specific IgE was principally due to the IgE-binding capacity of an insertion containing the repeated immunodominant linear epitope DPYSPOH S. The impact of IgE cross-reactivity on diagnostic testing was illustrated with a serum displaying an Ara h 6-specific IgE response of 26 UI/mL that was not associated with the capacity of Ara h 6 to trigger mast cell degranulation. CONCLUSIONS & CLINICAL RELEVANCE Immunoglobulin E antibodies specific to peanut 2S-albumins are mainly non-cross-reactive, but low-affinity cross-reactivity can affect diagnostic accuracy. Testing IgE-binding to a mixture of 2S-albumins rather than to each separately may enhance diagnostic performance.
Collapse
Affiliation(s)
- Stéphane Hazebrouck
- Service de Pharmacologie et Immunoanalyse (SPI), Laboratoire d'Immuno-Allergie Alimentaire, CEA, INRA, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Blanche Guillon
- Service de Pharmacologie et Immunoanalyse (SPI), Laboratoire d'Immuno-Allergie Alimentaire, CEA, INRA, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Evelyne Paty
- Université Paris Descartes-Assistance Publique des Hôpitaux de Paris, Hôpital Necker Enfants Malades, Paris, France
| | - Stephen C Dreskin
- Division of Allergy and Clinical Immunology, Department of Medicine, Denver School of Medicine, University of Colorado, Aurora, Colorado
| | - Karine Adel-Patient
- Service de Pharmacologie et Immunoanalyse (SPI), Laboratoire d'Immuno-Allergie Alimentaire, CEA, INRA, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Hervé Bernard
- Service de Pharmacologie et Immunoanalyse (SPI), Laboratoire d'Immuno-Allergie Alimentaire, CEA, INRA, Université Paris-Saclay, Gif-sur-Yvette, France
| |
Collapse
|
14
|
Designer covalent heterobivalent inhibitors prevent IgE-dependent responses to peanut allergen. Proc Natl Acad Sci U S A 2019; 116:8966-8974. [PMID: 30962381 PMCID: PMC6500160 DOI: 10.1073/pnas.1820417116] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Allergies are a result of allergen proteins cross-linking allergen-specific IgE (sIgE) on the surface of mast cells and basophils. The diversity and complexity of allergen epitopes, and high-affinity of the sIgE-allergen interaction have impaired the development of allergen-specific inhibitors of allergic responses. This study presents a design of food allergen-specific sIgE inhibitors named covalent heterobivalent inhibitors (cHBIs) that selectively form covalent bonds to only sIgEs, thereby permanently inhibiting them. Using screening reagents termed nanoallergens, we identified two immunodominant epitopes in peanuts that were common in a population of 16 allergic patients. Two cHBIs designed to inhibit only these two epitopes completely abrogated the allergic response in 14 of the 16 patients in an in vitro assay and inhibited basophil activation in an allergic patient ex vivo analysis. The efficacy of the cHBI design has valuable clinical implications for many allergen-specific responses and more broadly for any antibody-based disease.
Collapse
|
15
|
Kern K, Havenith H, Delaroque N, Rautenberger P, Lehmann J, Fischer M, Spiegel H, Schillberg S, Ehrentreich-Foerster E, Aurich S, Treudler R, Szardenings M. The immunome of soy bean allergy: Comprehensive identification and characterization of epitopes. Clin Exp Allergy 2019; 49:239-251. [PMID: 30267550 DOI: 10.1111/cea.13285] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 09/21/2018] [Accepted: 09/22/2018] [Indexed: 11/27/2022]
Abstract
BACKGROUND The precise mapping of multiple antibody epitopes recognized by patients' sera allows a more detailed and differentiated understanding of immunological diseases. It may lead to the development of novel therapies and diagnostic tools. OBJECTIVE Mapping soy bean specific epitopes relevant for soy bean allergy patients and persons sensitized to soy bean, and analysis of their IgE/IgG binding spectrum. METHODS Identification of epitopes using sera, applying an optimized peptide phage display library followed by next-generation sequencing, specially designed in silico data analysis and subsequent peptide microarray analysis. RESULTS We were able to identify more than 400 potential epitope motifs in soy bean proteins. More than 60% of them have not yet been described as potential epitopes. Eighty-three peptides, representing the 42 most frequently found epitope candidates, were validated by microarray analysis using 50 sera from people who have been tested positive in skin prick test (SPT). Of these peptides, 56 were bound by antibodies, 55 by serum IgE, 43 by serum IgG and 30 by both. Person-specific epitope patterns were found for each individual and protein. CONCLUSIONS For individuals with clinical symptoms, epitope resolved analyses reveal a high prevalence of IgE binding to a few soy bean specific epitopes. Evaluation of individual immune profiles of patients with soy bean sensitization allows the identification of peptides that do facilitate studying individual IgE/IgG epitope binding patterns. This enables discrimination of sensitization from disease, such assay test has the potential to replace SPT assays.
Collapse
Affiliation(s)
- Karolin Kern
- Ligand Development Unit, Fraunhofer IZI, Leipzig, Germany
| | - Heide Havenith
- Molecular Biotechnology Division, Fraunhofer IME, Aachen, Germany
| | | | | | - Jörg Lehmann
- Department Therapy Validation, Fraunhofer IZI, Leipzig, Germany
| | | | - Holger Spiegel
- Molecular Biotechnology Division, Fraunhofer IME, Aachen, Germany
| | | | | | - Stefanie Aurich
- Department of Dermatology, Venereology and Allergology, Comprehensive Allergy Centre, Universitätsklinikum Leipzig, Leipzig, Germany
| | - Regina Treudler
- Department of Dermatology, Venereology and Allergology, Comprehensive Allergy Centre, Universitätsklinikum Leipzig, Leipzig, Germany
| | | |
Collapse
|
16
|
Deak PE, Kim B, Adnan A, Labella M, De Las Vecillas L, Castells M, Bilgicer B. Nanoallergen platform for detection of platin drug allergies. J Allergy Clin Immunol 2019; 143:1957-1960.e12. [PMID: 30682456 DOI: 10.1016/j.jaci.2019.01.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 12/01/2018] [Accepted: 01/08/2019] [Indexed: 01/05/2023]
Affiliation(s)
- Peter E Deak
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Ind
| | - Baksun Kim
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Ind
| | - Ather Adnan
- Division of Rheumatology, Immunology and Allergy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass
| | - Marina Labella
- Division of Rheumatology, Immunology and Allergy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass
| | - Leticia De Las Vecillas
- Division of Rheumatology, Immunology and Allergy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass; Department of Allergy, Marqués de Valdecilla University Hospital-IDIVAL, Santander, Spain
| | - Mariana Castells
- Division of Rheumatology, Immunology and Allergy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass
| | - Basar Bilgicer
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Ind; Advanced Diagnostics and Therapeutics, University of Notre Dame, Notre Dame, Ind; Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Ind.
| |
Collapse
|
17
|
Abstract
PURPOSE OF REVIEW This review aims to provide an update of recent advances in the epidemiology, clinical features and diagnosis, and management of food-induced anaphylaxis (FIA). RECENT FINDINGS Food allergy prevalence and FIA rates continue to rise, but FIA fatalities are stable. Basophil and mast cell activation tests promise more accurate identification of food triggers. Oral, sublingual, and epicutaneous immunotherapy can desensitize a significant portion of subjects. Epinephrine use for FIA remains sub-optimal. As the burden of food allergy continues to increase, it appears that the corresponding increase in research focused on this epidemic is beginning to bear fruit. The stable number of FIA fatalities in the face of an ongoing epidemic indicates lives have already been saved. The emergence of new diagnostic tests and interventional therapies may transform the management of FIA in the coming years.
Collapse
Affiliation(s)
- Christopher P Parrish
- Department of Pediatrics and Internal Medicine, Division of Allergy and Immunology, University of Texas Southwestern Medical School, 5323 Harry Hines Blvd, Dallas, TX, 75390-9063, USA.
| | - Heidi Kim
- Department of Pediatrics, University of Texas Southwestern Medical School, Dallas, TX, USA
| |
Collapse
|
18
|
Application of precision medicine to the treatment of anaphylaxis. Curr Opin Allergy Clin Immunol 2018; 18:190-197. [DOI: 10.1097/aci.0000000000000435] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|