1
|
Tang YH, Leng JX, Yang G, Gao XD, Liu YS, Fujita M. Production of CA125 with Tn antigens using a glycosylphosphatidylinositol anchoring system. J Biochem 2024; 176:23-34. [PMID: 38382634 DOI: 10.1093/jb/mvae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/23/2024] Open
Abstract
Cancer antigen 125 (CA125) is a serum marker associated with ovarian cancer. Despite its widespread use, CA125 levels can also be elevated in benign conditions. Recent reports suggest that detecting serum CA125 that carries the Tn antigen, a truncated O-glycan containing only N-acetylgalactosamine on serine or threonine residues, can improve the specificity of ovarian cancer diagnosis. In this study, we engineered cells to express CA125 with a Tn antigen. To achieve this, we knocked out C1GALT1 and SLC35A1, genes encoding Core1 synthase and a transporter for cytidine-5'-monophospho-sialic acid respectively, in human embryonic kidney 293 (HEK293) cells. In ClGALT1-SLC35A1-knockout (KO) cells, the expression of the Tn antigen showed a significant increase, whereas the expression of the T antigen (galactose-β1,3-N-acetylgalactosamine on serine or threonine residues) was decreased. Due to the inefficient secretion of soluble CA125, we employed a glycosylphosphatidylinositol (GPI) anchoring system. This allowed for the expression of GPI-anchored CA125 on the cell surface of ClGALT1-SLC35A1-KO cells. Cells expressing high levels of GPI-anchored CA125 were then enriched through cell sorting. By knocking out the PGAP2 gene, the GPI-anchored form of CA125 was converted to a secretory form. Through the engineering of O-glycans and the use of a GPI-anchoring system, we successfully produced CA125 with Tn antigen modification.
Collapse
Affiliation(s)
- Yu-He Tang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Ji-Xiong Leng
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Ganglong Yang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Xiao-Dong Gao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Yi-Shi Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Morihisa Fujita
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
- Institute for Glyco-core Research (iGCORE), Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| |
Collapse
|
2
|
Stindt J, Dröge C, Lainka E, Kathemann S, Pfister ED, Baumann U, Stalke A, Grabhorn E, Shagrani MA, Mozer-Glassberg Y, Hartley J, Wammers M, Klindt C, Philippski P, Liebe R, Herebian D, Mayatepek E, Berg T, Schmidt-Choudhury A, Wiek C, Hanenberg H, Luedde T, Keitel V. Cell-based BSEP trans-inhibition: A novel, non-invasive test for diagnosis of antibody-induced BSEP deficiency. JHEP Rep 2023. [DOI: 10.1016/j.jhepr.2023.100690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
3
|
Li Y, Mensah EO, Fordjour E, Bai J, Yang Y, Bai Z. Recent advances in high-throughput metabolic engineering: Generation of oligonucleotide-mediated genetic libraries. Biotechnol Adv 2022; 59:107970. [PMID: 35550915 DOI: 10.1016/j.biotechadv.2022.107970] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 04/05/2022] [Accepted: 05/04/2022] [Indexed: 02/07/2023]
Abstract
The preparation of genetic libraries is an essential step to evolve microorganisms and study genotype-phenotype relationships by high-throughput screening/selection. As the large-scale synthesis of oligonucleotides becomes easy, cheap, and high-throughput, numerous novel strategies have been developed in recent years to construct high-quality oligo-mediated libraries, leveraging state-of-art molecular biology tools for genome editing and gene regulation. This review presents an overview of recent advances in creating and characterizing in vitro and in vivo genetic libraries, based on CRISPR/Cas, regulatory RNAs, and recombineering, primarily for Escherichia coli and Saccharomyces cerevisiae. These libraries' applications in high-throughput metabolic engineering, strain evolution and protein engineering are also discussed.
Collapse
Affiliation(s)
- Ye Li
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| | - Emmanuel Osei Mensah
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Eric Fordjour
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jing Bai
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yankun Yang
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Zhonghu Bai
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
4
|
Wei M, Mi CL, Jing CQ, Wang TY. Progress of Transposon Vector System for Production of Recombinant Therapeutic Proteins in Mammalian Cells. Front Bioeng Biotechnol 2022; 10:879222. [PMID: 35600890 PMCID: PMC9114503 DOI: 10.3389/fbioe.2022.879222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
In recent years, mammalian cells have become the primary host cells for the production of recombinant therapeutic proteins (RTPs). Despite that the expression of RTPs in mammalian cells can be improved by directly optimizing or engineering the expression vectors, it is still influenced by the low stability and efficiency of gene integration. Transposons are mobile genetic elements that can be inserted and cleaved within the genome and can change their inserting position. The transposon vector system can be applied to establish a stable pool of cells with high efficiency in RTPs production through facilitating the integration of gene of interest into transcriptionally active sites under screening pressure. Here, the structure and optimization of transposon vector system and its application in expressing RTPs at high level in mammalian cells are reviewed.
Collapse
Affiliation(s)
- Mian Wei
- School of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang, China
| | - Chun-Liu Mi
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang, China
| | - Chang-Qin Jing
- School of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
- *Correspondence: Chang-Qin Jing, ; Tian-Yun Wang,
| | - Tian-Yun Wang
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang, China
- *Correspondence: Chang-Qin Jing, ; Tian-Yun Wang,
| |
Collapse
|
5
|
Engineering T-Cell Resistance to HIV-1 Infection via Knock-In of Peptides from the Heptad Repeat 2 Domain of gp41. mBio 2022; 13:e0358921. [PMID: 35073736 PMCID: PMC8787484 DOI: 10.1128/mbio.03589-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Previous studies suggest that short peptides from the heptad repeat 2 (HR2) domain of gp41 expressed on the cell surface are more potent inhibitors of HIV-1 entry than soluble analogs. However, their therapeutic potential has only been examined using lentiviral vectors. Here, we aimed to develop CRISPR/Cas9-based fusion inhibitory peptide knock-in (KI) technology for the generation and selection of HIV-1-resistant T cells. First, we embedded a series of HIV-1 fusion inhibitory peptides in CD52, the shortest glycosylphosphatidylinositol (GPI)-anchored protein, which efficiently delivers epitope tags to the cell surface and maintains a sufficient level of KI. Among the seven peptides tested, MT-C34, HP-23L, and 2P23 exhibited significant activity against both cell-free and cell-to-cell HIV-1 infection. The shed variant of MT-C34 provided insufficient protection against HIV-1 due to its low concentration in the culture medium. Using Cas9 plasmids or ribonucleoprotein electroporation and peptide-specific antibodies, we sorted CEM/R5 cells with biallelic KI of MT-C34 and 2P23 peptides at the CXCR4 locus. In combination, these peptides provided a higher level of protection than individual KI. By extending homology arms and cloning donor DNA into a plasmid containing signals for nuclear localization, we achieved KI of MT-C34 into the CXCR4 locus and HIV-1 proviral DNA at levels of up to 35% in the T-cell line and up to 4 to 5% in primary CD4 lymphocytes. Compared to lentiviral delivery, KI resulted in the higher MT-C34 surface expression and stronger protection of lymphocytes from HIV-1. Thus, we demonstrate that KI is a viable strategy for peptide-based therapy of HIV infection. IMPORTANCE HIV is a human lentivirus that infects CD4-positive immune cells and, when left untreated, manifests in the fatal disease known as AIDS. Antiretroviral therapy (ART) does not lead to viral clearance, and HIV persists in the organism as a latent provirus. One way to control infection is to increase the population of HIV-resistant CD4 lymphocytes via entry molecule knockout or expression of different antiviral genes. Peptides from the heptad repeat (HR) domain of gp41 are potent inhibitors of HIV-1 fusion, especially when designed to express on the cell surface. Individual gp41 peptides encoded by therapeutic lentiviral vectors have been evaluated and some have entered clinical trials. However, a CRISPR/Cas9-based gp41 peptide delivery platform that operates through concomitant target gene modification has not yet been developed due to low knock-in (KI) rates in primary cells. Here, we systematically evaluated the antiviral activity of different HR2 peptides cloned into the shortest carrier molecule, CD52. The resulting small-size transgene constructs encoding selected peptides, in combination with improvements to enhance donor vector nuclear import, helped to overcome precise editing restrictions in CD4 lymphocytes. Using KI into CXCR4, we demonstrated different options for target gene modification, effectively protecting edited cells against HIV-1.
Collapse
|
6
|
A knockout cell library of GPI biosynthetic genes for functional studies of GPI-anchored proteins. Commun Biol 2021; 4:777. [PMID: 34162996 PMCID: PMC8222316 DOI: 10.1038/s42003-021-02337-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 05/19/2021] [Indexed: 11/08/2022] Open
Abstract
Over 100 kinds of proteins are expressed as glycosylphosphatidylinositol (GPI)-anchored proteins (GPI-APs) on the cell surface in mammalian cells. GPI-APs possess unique properties in terms of their intracellular trafficking and association with lipid rafts. Although it is clear that GPI-APs play critical roles in various biological phenomena, it is poorly understood how the GPI moiety contributes to these mechanisms. More than 30 genes are involved in the correct biosynthesis of GPI-APs. We here constructed a cell library in which 32 genes involved in GPI biosynthesis were knocked out in human embryonic kidney 293 cells. Using the cell library, the surface expression and sensitivity to phosphatidylinositol-specific phospholipase C of GPI-APs were analyzed. Furthermore, we identified structural motifs of GPIs that are recognized by a GPI-binding toxin, aerolysin. The cell-based GPI-knockout library could be applied not only to basic researches, but also to applications and methodologies related to GPI-APs.
Collapse
|
7
|
Liu YS, Matabaro E, Gao XD, Fujita M. Selecting cells expressing high levels of recombinant proteins using the GPI-anchored protein with selenocysteine system. J Biosci Bioeng 2020; 131:225-233. [PMID: 33158753 DOI: 10.1016/j.jbiosc.2020.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 09/29/2020] [Accepted: 10/11/2020] [Indexed: 11/28/2022]
Abstract
Most biopharmaceutical proteins are produced in mammalian cells because they have the advantageous capacity for protein folding, assembly, and posttranslational modifications. To satisfy the increasing demand for these proteins for clinical purposes and studies, traditional methods to improve protein productivity have included gene amplification, host cell engineering, medium optimization, and screening methods. However, screening and selection of high-producing cell lines remain complex and time consuming. In this study, we established a glycosylphosphatidylinositol (GPI)-anchored protein with a selenocysteine (GPS) system to select cells producing high levels of target secretory proteins. Recombinant lysosomal acid lipase (LIPA) and α-galactosidase A (GALA) were fused with a GPI attachment signal sequence and a selenocysteine insertion sequence after an in-frame UGA codon. Under these conditions, most of the recombinant proteins were secreted into the culture medium, but some were found to be GPI-anchored proteins on the cell surface. When sodium selenite was supplied into the culture medium, the amount of GPI-anchored LIPA and GALA was increased. High-expressing cells were selected by detecting surface GPI-anchored LIPA. The GPI-anchored protein was then eliminated by knocking out the GPI biosynthesis gene PIGK, in these cells, all LIPA was in secreted form. Our system provides a promising method of isolating cells that highly express recombinant proteins from large cell populations.
Collapse
Affiliation(s)
- Yi-Shi Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Emmanuel Matabaro
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xiao-Dong Gao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Morihisa Fujita
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
8
|
Zotova A, Pichugin A, Atemasova A, Knyazhanskaya E, Lopatukhina E, Mitkin N, Holmuhamedov E, Gottikh M, Kuprash D, Filatov A, Mazurov D. Isolation of gene-edited cells via knock-in of short glycophosphatidylinositol-anchored epitope tags. Sci Rep 2019; 9:3132. [PMID: 30816313 PMCID: PMC6395743 DOI: 10.1038/s41598-019-40219-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 02/11/2019] [Indexed: 02/08/2023] Open
Abstract
We describe Surface Oligopeptide knock-in for Rapid Target Selection (SORTS), a novel method to select mammalian cells with precise genome modifications that does not rely on cell cloning. SORTS is designed to disrupt the target gene with an expression cassette encoding an epitope tag embedded into human glycophosphatidylinositol (GPI)-anchored protein CD52. The cassette is very short, usually less than 250 nucleotides, which simplifies donor DNA construction and facilitates transgene integration into the target locus. The chimeric protein is then expressed from the target promoter, processed and exposed on the plasma membrane where it serves as a marker for FACS sorting with tag-specific antibodies. Simultaneous use of two different epitope tags enables rapid isolation of cells with biallelic knock-ins. SORTS can be easily and reliably applied to a number of genome-editing problems such as knocking out genes encoding intracellular or secreted proteins, protein tagging and inactivation of HIV-1 provirus.
Collapse
Affiliation(s)
- Anastasia Zotova
- Cell and Gene Technology Group, Institute of Gene Biology RAS, Moscow, Russia.,Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | | | - Anastasia Atemasova
- Cell and Gene Technology Group, Institute of Gene Biology RAS, Moscow, Russia.,Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | | | - Elena Lopatukhina
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Nikita Mitkin
- Laboratory of Intracellular Signaling in Health and Disease, Engelhardt Institute of Molecular Biology RAS, Moscow, Russia
| | | | - Marina Gottikh
- Chemistry Department, Lomonosov Moscow State University, Moscow, Russia.,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Dmitry Kuprash
- Laboratory of Intracellular Signaling in Health and Disease, Engelhardt Institute of Molecular Biology RAS, Moscow, Russia
| | | | - Dmitriy Mazurov
- Cell and Gene Technology Group, Institute of Gene Biology RAS, Moscow, Russia. .,NRC Institute of Immunology FMBA of Russia, Moscow, Russia.
| |
Collapse
|
9
|
Mutumwinka D, Zhao SB, Liu YS, Mensah EO, Gao XD, Fujita M. PiggyBac-based screening identified BEM4 as a suppressor to rescue growth defects in och1-disrupted yeast cells. Biosci Biotechnol Biochem 2018; 82:1497-1507. [PMID: 29882469 DOI: 10.1080/09168451.2018.1482193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Glycoengineered yeast cells, which express human-compatible glycan structures, are particularly attractive host cells to produce therapeutic glycoproteins. Disruption of OCH1 gene, which encodes an α-1,6-mannosyltransferase required for mannan-type N-glycan formation, is essential for the elimination of yeast-specific N-glycan structures. However, the gene disruption causes cell wall defects leading to growth defects. Here, we tried to identify factors to rescue the growth defects of och1Δ cells by in vivo mutagenesis using piggyBac (PB)-based transposon. We isolated a mutant strain, named 121, which could grow faster than parental och1Δ cells. The PB element was introduced into the promoter region of BEM4 gene and upregulated the BEM4 expression. Overexpression of BEM4 suppressed growth defects in och1Δ cells. The slow grow phenotypes were partially rescued by expression of Rho1p, whose function is regulated by Bem4p. Our results indicate that BEM4 would be useful to produce therapeutic proteins in glycoengineered yeast without the growth defects.
Collapse
Affiliation(s)
- Diane Mutumwinka
- a Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology , Jiangnan University , Wuxi , Jiangsu , China
| | - Shen-Bao Zhao
- a Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology , Jiangnan University , Wuxi , Jiangsu , China
| | - Yi-Shi Liu
- a Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology , Jiangnan University , Wuxi , Jiangsu , China
| | - Emmanuel Osei Mensah
- a Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology , Jiangnan University , Wuxi , Jiangsu , China
| | - Xiao-Dong Gao
- a Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology , Jiangnan University , Wuxi , Jiangsu , China
| | - Morihisa Fujita
- a Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology , Jiangnan University , Wuxi , Jiangsu , China
| |
Collapse
|