1
|
Jean-François F, Pratibha S, Baptiste R, Jean-Pierre F, Jérôme C, Deepa A, Claude E. Is Drosophila Larval Competition Involved in Incipient Speciation? J Chem Ecol 2025; 51:2. [PMID: 39841299 DOI: 10.1007/s10886-025-01560-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 01/23/2025]
Abstract
Geographical, ethological, temporal and ecological barriers can affect interbreeding between populations deriving from an ancestral population, this progressively leading to speciation. A rare case of incipient speciation currently occurs between Drosophila melanogaster populations sampled in Zimbabwe (Z) and all other populations (M). This phenomenon was initially characterized by Z females refusing to mate with M males. Despite the fact that Z and M flies produce different amounts of cuticular pheromones, their manipulation and that of other sensory signals exchanged during courtship behavior only marginally rescued the behavioral isolation. To further explore the putative mechanisms involved in this phenomenon, we first assessed the fecundity in matings between Z and M flies. Then, we measured the reproduction and survival in adults resulting of co-cultured Z and M larvae. In these two experiments, Z flies rarely emerged. Z and M larvae produced different amounts of food-derived metabolites which were altered in co-culture condition. This maybe related to the different bacteria composition in the gut and body of Z and M flies. However, the mating behavior of co-cultured flies did not change and their cuticular pheromone profile was slightly altered. Thus, the Z/M larval competition could reinforce the barriers induced by gametic and behavioral isolation processes on this incipient speciation phenomenon.
Collapse
Affiliation(s)
- Ferveur Jean-François
- Centre des Sciences du Goût et de l'Alimentation, UMR-CNRS 6265, INRAe, Université de Bourgogne, Dijon, France.
| | | | - Regnier Baptiste
- Centre des Sciences du Goût et de l'Alimentation, UMR-CNRS 6265, INRAe, Université de Bourgogne, Dijon, France
| | - Farine Jean-Pierre
- Centre des Sciences du Goût et de l'Alimentation, UMR-CNRS 6265, INRAe, Université de Bourgogne, Dijon, France
| | - Cortot Jérôme
- Centre des Sciences du Goût et de l'Alimentation, UMR-CNRS 6265, INRAe, Université de Bourgogne, Dijon, France
| | - Agashe Deepa
- National Centre for Biological Sciences (NCBS-TIFR), Bengaluru, India
| | - Everaerts Claude
- Centre des Sciences du Goût et de l'Alimentation, UMR-CNRS 6265, INRAe, Université de Bourgogne, Dijon, France
| |
Collapse
|
2
|
Kang K, Wang L, Gong J, Tang Y, Wei K. Diversity analyses of bacterial symbionts in four Sclerodermus (Hymenoptera: Bethylidae) parasitic wasps, the dominant biological control agents of wood-boring beetles in China. Front Cell Infect Microbiol 2024; 14:1439476. [PMID: 39119296 PMCID: PMC11306144 DOI: 10.3389/fcimb.2024.1439476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/01/2024] [Indexed: 08/10/2024] Open
Abstract
Objective Sclerodermus wasps are important biocontrol agents of a class of wood borers. Bacterial symbionts influence the ecology and biology of their hosts in a variety of ways, including the formation of life-long beneficial or detrimental parasitic infections. However, only a few studies have explored the species and content of the symbionts in the Sclerodermus species. Methods Here, a high-throughput sequencing study of the V3-V4 region of the 16S ribosomal RNA gene revealed a high level of microbial variety in four Sclerodermus waps, and their diversities and functions were also predicted. Results The three most prevalent phyla of microorganisms in the sample were Firmicutes, Bacteroides, and Proteus. The KEEG pathways prediction results indicated that the three pathways with the highest relative abundances in the S. sichuanensis species were translation, membrane transport, and nucleotide metabolism. These pathways differed from those observed in S. guani, S. pupariae, and S. alternatusi, which exhibited carbohydrate metabolism, membrane transport, and amino acid metabolism, respectively. Bacteroides were found to be abundant in several species, whereas Wolbachia was the most abundant among S. sichuanensis, with a significant negative correlation between temperature and carriage rate. Conclusions These results offer insights into the microbial communities associated with the bethylid wasps, which is crucial for understanding how to increase the reproductive capacity of wasps, enhance their parasitic effects, and lower cost in biocontrol.
Collapse
Affiliation(s)
- Kui Kang
- College of Biological and Agricultural Science and Technology, Zunyi Normal University, Zunyi, China
| | - Lina Wang
- College of Biological and Agricultural Science and Technology, Zunyi Normal University, Zunyi, China
| | - Jun Gong
- College of Biological and Agricultural Science and Technology, Zunyi Normal University, Zunyi, China
| | - Yanlong Tang
- College of Biological and Agricultural Science and Technology, Zunyi Normal University, Zunyi, China
| | - Ke Wei
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
| |
Collapse
|
3
|
Tolassy V, Cazalé-Debat L, Houot B, Reynaud R, Heydel JM, Ferveur JF, Everaerts C. Drosophila Free-Flight Odor Tracking is Altered in a Sex-Specific Manner By Preimaginal Sensory Exposure. J Chem Ecol 2023; 49:179-194. [PMID: 36881326 DOI: 10.1007/s10886-023-01416-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/20/2023] [Accepted: 02/24/2023] [Indexed: 03/08/2023]
Abstract
In insects such as Drosophila melanogaster, flight guidance is based on converging sensory information provided by several modalities, including chemoperception. Drosophila flies are particularly attracted by complex odors constituting volatile molecules from yeast, pheromones and microbe-metabolized food. Based on a recent study revealing that adult male courtship behavior can be affected by early preimaginal exposure to maternally transmitted egg factors, we wondered whether a similar exposure could affect free-flight odor tracking in flies of both sexes. Our main experiment consisted of testing flies differently conditioned during preimaginal development in a wind tunnel. Each fly was presented with a dual choice of food labeled by groups of each sex of D. melanogaster or D. simulans flies. The combined effect of food with the cis-vaccenyl acetate pheromone (cVA), which is involved in aggregation behavior, was also measured. Moreover, we used the headspace method to determine the "odorant" identity of the different labeled foods tested. We also measured the antennal electrophysiological response to cVA in females and males resulting from the different preimaginal conditioning procedures. Our data indicate that flies differentially modulated their flight response (take off, flight duration, food landing and preference) according to sex, conditioning and food choice. Our headspace analysis revealed that many food-derived volatile molecules diverged between sexes and species. Antennal responses to cVA showed clear sex-specific variation for conditioned flies but not for control flies. In summary, our study indicates that preimaginal conditioning can affect Drosophila free flight behavior in a sex-specific manner.
Collapse
Affiliation(s)
- Vincent Tolassy
- Centre des Sciences du Goût et de l'Alimentation, CNRS UMR6265, INRAE, UMR1324, Université de Bourgogne, 6, Bd Gabriel, 21000, Dijon, France
| | - Laurie Cazalé-Debat
- Centre des Sciences du Goût et de l'Alimentation, CNRS UMR6265, INRAE, UMR1324, Université de Bourgogne, 6, Bd Gabriel, 21000, Dijon, France.,School of Biosciences, University of Birmingham, Edgbaston Park Road, B15 2TT, Birmingham, UK
| | - Benjamin Houot
- Centre des Sciences du Goût et de l'Alimentation, CNRS UMR6265, INRAE, UMR1324, Université de Bourgogne, 6, Bd Gabriel, 21000, Dijon, France.,Institut Gustave Roussel, 114, rue Edouard Vaillant, 94805, Villejuif Cedex, France
| | - Rémy Reynaud
- Centre des Sciences du Goût et de l'Alimentation, CNRS UMR6265, INRAE, UMR1324, Université de Bourgogne, 6, Bd Gabriel, 21000, Dijon, France
| | - Jean-Marie Heydel
- Centre des Sciences du Goût et de l'Alimentation, CNRS UMR6265, INRAE, UMR1324, Université de Bourgogne, 6, Bd Gabriel, 21000, Dijon, France
| | - Jean-François Ferveur
- Centre des Sciences du Goût et de l'Alimentation, CNRS UMR6265, INRAE, UMR1324, Université de Bourgogne, 6, Bd Gabriel, 21000, Dijon, France
| | - Claude Everaerts
- Centre des Sciences du Goût et de l'Alimentation, CNRS UMR6265, INRAE, UMR1324, Université de Bourgogne, 6, Bd Gabriel, 21000, Dijon, France.
| |
Collapse
|
4
|
Geerinck MWJ, Van Hee S, Gloder G, Crauwels S, Colazza S, Jacquemyn H, Cusumano A, Lievens B. Diversity and composition of the microbiome associated with eggs of the Southern green stinkbug, Nezara viridula (Hemiptera: Pentatomidae). Microbiologyopen 2022; 11:e1337. [PMID: 36479626 PMCID: PMC9728049 DOI: 10.1002/mbo3.1337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 01/21/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
Although microbial communities of insects from larval to adult stage have been increasingly investigated in recent years, little is still known about the diversity and composition of egg-associated microbiomes. In this study, we used high-throughput amplicon sequencing and quantitative PCR to get a better understanding of the microbiome of insect eggs and how they are established using the Southern green stinkbug Nezara viridula (L.) (Hemiptera: Pentatomidae) as a study object. First, to determine the bacterial community composition, egg masses from two natural populations in Belgium and Italy were examined. Subsequently, microbial community establishment was assessed by studying stinkbug eggs of different ages obtained from laboratory strains (unlaid eggs collected from the ovaries, eggs less than 24 h old, and eggs collected 4 days after oviposition). Both the external and internal egg-associated microbiomes were analyzed by investigating egg washes and surface-sterilized washed eggs, respectively. Eggs from the ovaries were completely devoid of bacteria, indicating that egg-associated bacteria were deposited on the eggs during or after oviposition. The bacterial diversity of deposited eggs was very low, with on average 6.1 zero-radius operational taxonomic units (zOTUs) in the external microbiome and 1.2 zOTUs in internal samples of egg masses collected from the field. Bacterial community composition and density did not change significantly over time, suggesting limited bacterial growth. A Pantoea-like symbiont previously found in the midgut of N. viridula was found in every sample and generally occurred at high relative and absolute densities, especially in the internal egg samples. Additionally, some eggs harbored a Sodalis symbiont, which has previously been found in the abdomen of several insects, but so far not in N. viridula populations. We conclude that the egg-associated bacterial microbiome of N. viridula is species-poor and dominated by a few symbionts, particularly the species-specific obligate Pantoea-like symbiont.
Collapse
Affiliation(s)
- Margot W. J. Geerinck
- CMPG Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department M2S, KU LeuvenLeuvenBelgium
- Leuven Plant Institute (LPI), KU LeuvenLeuvenBelgium
| | - Sara Van Hee
- CMPG Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department M2S, KU LeuvenLeuvenBelgium
- Leuven Plant Institute (LPI), KU LeuvenLeuvenBelgium
| | - Gabriele Gloder
- CMPG Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department M2S, KU LeuvenLeuvenBelgium
- Leuven Plant Institute (LPI), KU LeuvenLeuvenBelgium
| | - Sam Crauwels
- CMPG Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department M2S, KU LeuvenLeuvenBelgium
| | - Stefano Colazza
- Department of Agricultural, Food and Forest SciencesUniversity of Palermo Viale delle ScienzePalermoItaly
- Interuniversity Center for Studies on Bioinspired Agro‐Environmental Technology (BATCenter)University of Napoli Federico IIPorticiItaly
| | - Hans Jacquemyn
- Leuven Plant Institute (LPI), KU LeuvenLeuvenBelgium
- Laboratory of Plant Conservation and Population Biology, Biology Department, KU LeuvenLeuvenBelgium
| | - Antonino Cusumano
- Department of Agricultural, Food and Forest SciencesUniversity of Palermo Viale delle ScienzePalermoItaly
- Interuniversity Center for Studies on Bioinspired Agro‐Environmental Technology (BATCenter)University of Napoli Federico IIPorticiItaly
| | - Bart Lievens
- CMPG Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department M2S, KU LeuvenLeuvenBelgium
- Leuven Plant Institute (LPI), KU LeuvenLeuvenBelgium
| |
Collapse
|
5
|
Cortot J, Farine JP, Cobb M, Everaerts C, Ferveur JF. Factors affecting the biosynthesis and emission of a Drosophila pheromone. J Exp Biol 2022; 225:275647. [PMID: 35678110 DOI: 10.1242/jeb.244422] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/01/2022] [Indexed: 11/20/2022]
Abstract
The most studied pheromone in Drosophila melanogaster, cis-vaccenyl acetate (cVA), is synthesized in the male ejaculatory bulb and transferred to the female during copulation. Combined with other chemicals, cVA can modulate fly aggregation, courtship, mating and fighting. We explored the mechanisms underlying both cVA biosynthesis and emission in males of two wild types and a pheromonal mutant line. The effects of ageing, adult social interaction, and maternally transmitted cVA and microbes - both associated with the egg chorion - on cVA biosynthesis and emission were measured. While ageing and genotype changed both biosynthesis and emission in similar ways, early developmental exposure to maternally transmitted cVA and microbes strongly decreased cVA emission but not the biosynthesis of this molecule. This indicates that the release - but not the biosynthesis - of this sex pheromone strongly depends on early developmental context. The mechanism by which the preimaginal effects occur is unknown, but reinforces the significance of development in determining adult physiology and behaviour.
Collapse
Affiliation(s)
- Jérôme Cortot
- Centre des Sciences du Goût et de l'Alimentation, UMR6265 CNRS, UMR1324 INRA, Université de Bourgogne Franche-Comté, 6, Bd Gabriel, 21000 Dijon, France
| | - Jean-Pierre Farine
- Centre des Sciences du Goût et de l'Alimentation, UMR6265 CNRS, UMR1324 INRA, Université de Bourgogne Franche-Comté, 6, Bd Gabriel, 21000 Dijon, France
| | - Matthew Cobb
- School of Biological Sciences, University of Manchester, Manchester M13 9PT, UK
| | - Claude Everaerts
- Centre des Sciences du Goût et de l'Alimentation, UMR6265 CNRS, UMR1324 INRA, Université de Bourgogne Franche-Comté, 6, Bd Gabriel, 21000 Dijon, France
| | - Jean-François Ferveur
- Centre des Sciences du Goût et de l'Alimentation, UMR6265 CNRS, UMR1324 INRA, Université de Bourgogne Franche-Comté, 6, Bd Gabriel, 21000 Dijon, France
| |
Collapse
|
6
|
Zhao M, Lin X, Guo X. The Role of Insect Symbiotic Bacteria in Metabolizing Phytochemicals and Agrochemicals. INSECTS 2022; 13:insects13070583. [PMID: 35886759 PMCID: PMC9319143 DOI: 10.3390/insects13070583] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/23/2022] [Accepted: 06/23/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary To counter plant chemical defenses and exposure to agrochemicals, herbivorous insects have developed several adaptive strategies to guard against the ingested detrimental substances, including enhancing detoxifying enzyme activities, avoidance behavior, amino acid mutation of target sites, and lower penetration through a thicker cuticle. Insect microbiota play important roles in many aspects of insect biology and physiology. To better understand the role of insect symbiotic bacteria in metabolizing these detrimental substances, we summarize the research progress on the function of insect bacteria in metabolizing phytochemicals and agrochemicals, and describe their future potential application in pest management and protection of beneficial insects. Abstract The diversity and high adaptability of insects are heavily associated with their symbiotic microbes, which include bacteria, fungi, viruses, protozoa, and archaea. These microbes play important roles in many aspects of the biology and physiology of insects, such as helping the host insects with food digestion, nutrition absorption, strengthening immunity and confronting plant defenses. To maintain normal development and population reproduction, herbivorous insects have developed strategies to detoxify the substances to which they may be exposed in the living habitat, such as the detoxifying enzymes carboxylesterase, glutathione-S-transferases (GSTs), and cytochrome P450 monooxygenases (CYP450s). Additionally, insect symbiotic bacteria can act as an important factor to modulate the adaptability of insects to the exposed detrimental substances. This review summarizes the current research progress on the role of insect symbiotic bacteria in metabolizing phytochemicals and agrochemicals (insecticides and herbicides). Given the importance of insect microbiota, more functional symbiotic bacteria that modulate the adaptability of insects to the detrimental substances to which they are exposed should be identified, and the underlying mechanisms should also be further studied, facilitating the development of microbial-resource-based pest control approaches or protective methods for beneficial insects.
Collapse
Affiliation(s)
| | | | - Xianru Guo
- Correspondence: ; Tel.: +86-0371-63558170
| |
Collapse
|
7
|
Sarma DK, Kumar M, Dhurve J, Pal N, Sharma P, James MM, Das D, Mishra S, Shubham S, Kumawat M, Verma V, Tiwari RR, Nagpal R, Marotta F. Influence of Host Blood Meal Source on Gut Microbiota of Wild Caught Aedes aegypti, a Dominant Arboviral Disease Vector. Microorganisms 2022; 10:microorganisms10020332. [PMID: 35208787 PMCID: PMC8880539 DOI: 10.3390/microorganisms10020332] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 02/07/2023] Open
Abstract
Blood feeding is an important behavior of Aedes aegypti, a dominant arboviral disease vector, as it can establish and transmit viruses to humans. Bacteria associated with the mosquito gut can modulate the biological characteristics and behavior of disease vectors. In this study, we characterized the gut microbiota composition of human-blood-fed (HF), non-human-blood-fed (NHF) and non-fed (NF) field-collected Ae. aegypti mosquitoes, using a 16S metagenomic approach, to assess any association of bacterial taxa with the blood-feeding behavior of Ae. aegypti. A significant difference in the microbiota composition between the HF and NF mosquito group was observed. A significant association was observed in the relative abundance of families Rhodobacteraceae, Neisseriaceae and Dermacoccaceae in the HF group in contrast to NF and NHF Ae. aegypti mosquitoes, respectively. At the class level, two classes (Rhodobacterales and Neisseriales) were found to be in higher abundance in the HF mosquitoes compared to a single class of bacteria (Caulobacterales) in the NF mosquitoes. These results show that human-blood feeding may change the gut microbiota in wild Ae. aegypti populations. More research is needed to determine how changes in the midgut bacterial communities in response to human-blood-feeding affect the vectorial capacity of Ae. aegypti.
Collapse
Affiliation(s)
- Devojit Kumar Sarma
- ICMR—National Institute for Research in Environmental Health, Bhopal Bypass Road, Bhouri, Bhopal 462030, Madhya Pradesh, India; (M.K.); (J.D.); (N.P.); (P.S.); (M.M.J.); (D.D.); (S.M.); (S.S.); (M.K.); (R.R.T.)
- Correspondence: (D.K.S.); (F.M.)
| | - Manoj Kumar
- ICMR—National Institute for Research in Environmental Health, Bhopal Bypass Road, Bhouri, Bhopal 462030, Madhya Pradesh, India; (M.K.); (J.D.); (N.P.); (P.S.); (M.M.J.); (D.D.); (S.M.); (S.S.); (M.K.); (R.R.T.)
| | - Jigyasa Dhurve
- ICMR—National Institute for Research in Environmental Health, Bhopal Bypass Road, Bhouri, Bhopal 462030, Madhya Pradesh, India; (M.K.); (J.D.); (N.P.); (P.S.); (M.M.J.); (D.D.); (S.M.); (S.S.); (M.K.); (R.R.T.)
| | - Namrata Pal
- ICMR—National Institute for Research in Environmental Health, Bhopal Bypass Road, Bhouri, Bhopal 462030, Madhya Pradesh, India; (M.K.); (J.D.); (N.P.); (P.S.); (M.M.J.); (D.D.); (S.M.); (S.S.); (M.K.); (R.R.T.)
| | - Poonam Sharma
- ICMR—National Institute for Research in Environmental Health, Bhopal Bypass Road, Bhouri, Bhopal 462030, Madhya Pradesh, India; (M.K.); (J.D.); (N.P.); (P.S.); (M.M.J.); (D.D.); (S.M.); (S.S.); (M.K.); (R.R.T.)
| | - Meenu Mariya James
- ICMR—National Institute for Research in Environmental Health, Bhopal Bypass Road, Bhouri, Bhopal 462030, Madhya Pradesh, India; (M.K.); (J.D.); (N.P.); (P.S.); (M.M.J.); (D.D.); (S.M.); (S.S.); (M.K.); (R.R.T.)
| | - Deepanker Das
- ICMR—National Institute for Research in Environmental Health, Bhopal Bypass Road, Bhouri, Bhopal 462030, Madhya Pradesh, India; (M.K.); (J.D.); (N.P.); (P.S.); (M.M.J.); (D.D.); (S.M.); (S.S.); (M.K.); (R.R.T.)
| | - Sweta Mishra
- ICMR—National Institute for Research in Environmental Health, Bhopal Bypass Road, Bhouri, Bhopal 462030, Madhya Pradesh, India; (M.K.); (J.D.); (N.P.); (P.S.); (M.M.J.); (D.D.); (S.M.); (S.S.); (M.K.); (R.R.T.)
| | - Swasti Shubham
- ICMR—National Institute for Research in Environmental Health, Bhopal Bypass Road, Bhouri, Bhopal 462030, Madhya Pradesh, India; (M.K.); (J.D.); (N.P.); (P.S.); (M.M.J.); (D.D.); (S.M.); (S.S.); (M.K.); (R.R.T.)
| | - Manoj Kumawat
- ICMR—National Institute for Research in Environmental Health, Bhopal Bypass Road, Bhouri, Bhopal 462030, Madhya Pradesh, India; (M.K.); (J.D.); (N.P.); (P.S.); (M.M.J.); (D.D.); (S.M.); (S.S.); (M.K.); (R.R.T.)
| | - Vinod Verma
- Stem Cell Research Centre, Department of Hematology, Sanjay Gandhi Post-Graduate Institute of Medical Sciences, Lucknow 226014, Uttar Pradesh, India;
| | - Rajnarayan R. Tiwari
- ICMR—National Institute for Research in Environmental Health, Bhopal Bypass Road, Bhouri, Bhopal 462030, Madhya Pradesh, India; (M.K.); (J.D.); (N.P.); (P.S.); (M.M.J.); (D.D.); (S.M.); (S.S.); (M.K.); (R.R.T.)
| | - Ravinder Nagpal
- Department of Nutrition & Integrative Physiology, College of Health & Human Sciences, Florida State University, Tallahassee, FL 32306, USA;
| | - Francesco Marotta
- ReGenera R&D International for Aging Intervention, 20144 Milano, Lombardia, Italy
- Correspondence: (D.K.S.); (F.M.)
| |
Collapse
|
8
|
Sivakala KK, Jose PA, Shamir M, C-N Wong A, Jurkevitch E, Yuval B. Foraging behaviour of medfly larvae is affected by maternally transmitted and environmental bacteria. Anim Behav 2022. [DOI: 10.1016/j.anbehav.2021.10.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
9
|
Nikolouli K, Sassù F, Ntougias S, Stauffer C, Cáceres C, Bourtzis K. Enterobacter sp. AA26 as a Protein Source in the Larval Diet of Drosophila suzukii. INSECTS 2021; 12:923. [PMID: 34680692 PMCID: PMC8539531 DOI: 10.3390/insects12100923] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/29/2021] [Accepted: 10/02/2021] [Indexed: 11/16/2022]
Abstract
The Spotted-Wing Drosophila fly, Drosophila suzukii, is an invasive pest species infesting major agricultural soft fruits. Drosophila suzukii management is currently based on insecticide applications that bear major concerns regarding their efficiency, safety and environmental sustainability. The sterile insect technique (SIT) is an efficient and friendly to the environment pest control method that has been suggested for the D. suzukii population control. Successful SIT applications require mass-rearing of the strain to produce competitive and of high biological quality males that will be sterilized and consequently released in the wild. Recent studies have suggested that insect gut symbionts can be used as a protein source for Ceratitis capitata larval diet and replace the expensive brewer's yeast. In this study, we exploited Enterobacter sp. AA26 as partial and full replacement of inactive brewer's yeast in the D. suzukii larval diet and assessed several fitness parameters. Enterobacter sp. AA26 dry biomass proved to be an inadequate nutritional source in the absence of brewer's yeast and resulted in significant decrease in pupal weight, survival under food and water starvation, fecundity, and adult recovery.
Collapse
Affiliation(s)
- Katerina Nikolouli
- Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Department of Nuclear Sciences and Applications, IAEA Laboratories, 2444 Seibersdorf, Austria; (F.S.); (C.C.); (K.B.)
- Department of Forest and Soil Sciences, Boku, University of Natural Resources and Life Sciences, 1190 Vienna, Austria;
| | - Fabiana Sassù
- Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Department of Nuclear Sciences and Applications, IAEA Laboratories, 2444 Seibersdorf, Austria; (F.S.); (C.C.); (K.B.)
- Department of Forest and Soil Sciences, Boku, University of Natural Resources and Life Sciences, 1190 Vienna, Austria;
- Roklinka 224, Dolní Jirčany, 252 44 Psáry, Czech Republic
| | - Spyridon Ntougias
- Laboratory of Wastewater Management and Treatment Technologies, Department of Environmental Engineering, Democritus University of Thrace, Vas. Sofias 12, 67100 Xanthi, Greece;
| | - Christian Stauffer
- Department of Forest and Soil Sciences, Boku, University of Natural Resources and Life Sciences, 1190 Vienna, Austria;
| | - Carlos Cáceres
- Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Department of Nuclear Sciences and Applications, IAEA Laboratories, 2444 Seibersdorf, Austria; (F.S.); (C.C.); (K.B.)
| | - Kostas Bourtzis
- Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Department of Nuclear Sciences and Applications, IAEA Laboratories, 2444 Seibersdorf, Austria; (F.S.); (C.C.); (K.B.)
| |
Collapse
|
10
|
Cellini A, Spinelli F, Donati I, Ryu CM, Kloepper JW. Bacterial volatile compound-based tools for crop management and quality. TRENDS IN PLANT SCIENCE 2021; 26:968-983. [PMID: 34147324 DOI: 10.1016/j.tplants.2021.05.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 05/13/2021] [Accepted: 05/19/2021] [Indexed: 05/20/2023]
Abstract
Bacteria produce a huge diversity of metabolites, many of which mediate ecological relations. Among these, volatile compounds cause broad-range effects at low doses and, therefore, may be exploited for plant defence strategies and agricultural production, but such applications are still in their early development. Here, we review the latest technologies involving the use of bacterial volatile compounds for phytosanitary inspection, biological control, plant growth promotion, and crop quality. We highlight a variety of effects with a potential applicative interest, based on either live biocontrol and/or biostimulant agents, or the isolated metabolites responsible for the interaction with hosts or competitors. Future agricultural technologies may benefit from the development of new analytical tools to understand bacterial interactions with the environment.
Collapse
Affiliation(s)
- Antonio Cellini
- Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Francesco Spinelli
- Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy.
| | - Irene Donati
- Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Choong-Min Ryu
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
| | - Joseph W Kloepper
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, USA
| |
Collapse
|
11
|
Cansado-Utrilla C, Zhao SY, McCall PJ, Coon KL, Hughes GL. The microbiome and mosquito vectorial capacity: rich potential for discovery and translation. MICROBIOME 2021; 9:111. [PMID: 34006334 PMCID: PMC8132434 DOI: 10.1186/s40168-021-01073-2] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 04/07/2021] [Indexed: 05/09/2023]
Abstract
Microbiome research has gained considerable interest due to the emerging evidence of its impact on human and animal health. As in other animals, the gut-associated microbiota of mosquitoes affect host fitness and other phenotypes. It is now well established that microbes can alter pathogen transmission in mosquitoes, either positively or negatively, and avenues are being explored to exploit microbes for vector control. However, less attention has been paid to how microbiota affect phenotypes that impact vectorial capacity. Several mosquito and pathogen components, such as vector density, biting rate, survival, vector competence, and the pathogen extrinsic incubation period all influence pathogen transmission. Recent studies also indicate that mosquito gut-associated microbes can impact each of these components, and therefore ultimately modulate vectorial capacity. Promisingly, this expands the options available to exploit microbes for vector control by also targeting parameters that affect vectorial capacity. However, there are still many knowledge gaps regarding mosquito-microbe interactions that need to be addressed in order to exploit them efficiently. Here, we review current evidence of impacts of the microbiome on aspects of vectorial capacity, and we highlight likely opportunities for novel vector control strategies and areas where further studies are required. Video abstract.
Collapse
Affiliation(s)
- Cintia Cansado-Utrilla
- Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Tropical Disease, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Serena Y Zhao
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Philip J McCall
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Kerri L Coon
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA.
| | - Grant L Hughes
- Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Tropical Disease, Liverpool School of Tropical Medicine, Liverpool, UK.
| |
Collapse
|
12
|
McMullen JG, Peters-Schulze G, Cai J, Patterson AD, Douglas AE. How gut microbiome interactions affect nutritional traits of Drosophila melanogaster. ACTA ACUST UNITED AC 2020; 223:223/19/jeb227843. [PMID: 33051361 DOI: 10.1242/jeb.227843] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 08/12/2020] [Indexed: 12/15/2022]
Abstract
Most research on the impact of the gut microbiome on animal nutrition is designed to identify the effects of single microbial taxa and single metabolites of microbial origin, without considering the potentially complex network of interactions among co-occurring microorganisms. Here, we investigated how different microbial associations and their fermentation products affect host nutrition, using Drosophila melanogaster colonized with three gut microorganisms (the bacteria Acetobacter fabarum and Lactobacillus brevis, and the yeast Hanseniaspora uvarum) in all seven possible combinations. Some microbial effects on host traits could be attributed to single taxa (e.g. yeast-mediated reduction of insect development time), while other effects were sex specific and driven by among-microbe interactions (e.g. male lipid content determined by interactions between the yeast and both bacteria). Parallel analysis of nutritional indices of microbe-free flies administered different microbial fermentation products (acetic acid, acetoin, ethanol and lactic acid) revealed a single consistent effect: that the lipid content of both male and female flies is reduced by acetic acid. This effect was recapitulated in male flies colonized with both yeast and A. fabarum, but not for any microbial treatment in females or males with other microbial complements. These data suggest that the effect of microbial fermentation products on host nutritional status is strongly context dependent, with respect to both the combination of associated microorganisms and host sex. Taken together, our findings demonstrate that among-microbe interactions can play a critically important role in determining the physiological outcome of host-microbiome interactions in Drosophila and, likely, in other animal hosts.
Collapse
Affiliation(s)
- John G McMullen
- Department of Entomology, Cornell University, Ithaca, NY 14853, USA
| | | | - Jingwei Cai
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Andrew D Patterson
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Angela E Douglas
- Department of Entomology, Cornell University, Ithaca, NY 14853, USA .,Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
13
|
Qadri M, Short S, Gast K, Hernandez J, Wong ACN. Microbiome Innovation in Agriculture: Development of Microbial Based Tools for Insect Pest Management. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2020. [DOI: 10.3389/fsufs.2020.547751] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
14
|
Nyholm SV. In the beginning: egg-microbe interactions and consequences for animal hosts. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190593. [PMID: 32772674 PMCID: PMC7435154 DOI: 10.1098/rstb.2019.0593] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2020] [Indexed: 12/19/2022] Open
Abstract
Microorganisms are associated with the eggs of many animals. For some hosts, the egg serves as the ideal environment for the vertical transmission of beneficial symbionts between generations, while some bacteria use the egg to parasitize their hosts. In a number of animal groups, egg microbiomes often perform other essential functions. The eggs of aquatic and some terrestrial animals are especially susceptible to fouling and disease since they are exposed to high densities of microorganisms. To overcome this challenge, some hosts form beneficial associations with microorganisms, directly incorporating microbes and/or microbial products on or in their eggs to inhibit pathogens and biofouling. Other functional roles for egg-associated microbiomes are hypothesized to involve oxygen and nutrient acquisition. Although some egg-associated microbiomes are correlated with increased host fitness and are essential for successful development, the mechanisms that lead to such outcomes are often not well understood. This review article will discuss different functions of egg microbiomes and how these associations have influenced the biology and evolution of animal hosts. This article is part of the theme issue 'The role of the microbiome in host evolution'.
Collapse
Affiliation(s)
- Spencer V. Nyholm
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269USA
| |
Collapse
|
15
|
Nguyen B, Than A, Dinh H, Morimoto J, Ponton F. Parental Microbiota Modulates Offspring Development, Body Mass and Fecundity in a Polyphagous Fruit Fly. Microorganisms 2020; 8:E1289. [PMID: 32846933 PMCID: PMC7563405 DOI: 10.3390/microorganisms8091289] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/03/2020] [Accepted: 08/21/2020] [Indexed: 02/07/2023] Open
Abstract
The commensal microbiota is a key modulator of animal fitness, but little is known about the extent to which the parental microbiota influences fitness-related traits of future generations. We addressed this gap by manipulating the parental microbiota of a polyphagous fruit fly (Bactrocera tryoni) and measuring offspring developmental traits, body composition, and fecundity. We generated three parental microbiota treatments where parents had a microbiota that was non-manipulated (control), removed (axenic), or removed-and-reintroduced (reinoculation). We found that the percentage of egg hatching, of pupal production, and body weight of larvae and adult females were lower in offspring of axenic parents compared to that of non-axenic parents. The percentage of partially emerged adults was higher, and fecundity of adult females was lower in offspring of axenic parents relative to offspring of control and reinoculated parents. There was no significant effect of parental microbiota manipulation on offspring developmental time or lipid reserve. Our results reveal transgenerational effects of the parental commensal microbiota on different aspects of offspring life-history traits, thereby providing a better understanding of the long-lasting effects of host-microbe interactions.
Collapse
Affiliation(s)
- Binh Nguyen
- Department of Biological Sciences, Macquarie University, Sydney, NSW 2113, Australia; (B.N.); (A.T.); (H.D.); (J.M.)
| | - Anh Than
- Department of Biological Sciences, Macquarie University, Sydney, NSW 2113, Australia; (B.N.); (A.T.); (H.D.); (J.M.)
- Department of Entomology, Vietnam National University of Agriculture, Trau Quy, Gia Lam, Hanoi 100000, Vietnam
| | - Hue Dinh
- Department of Biological Sciences, Macquarie University, Sydney, NSW 2113, Australia; (B.N.); (A.T.); (H.D.); (J.M.)
| | - Juliano Morimoto
- Department of Biological Sciences, Macquarie University, Sydney, NSW 2113, Australia; (B.N.); (A.T.); (H.D.); (J.M.)
- School of Biological Sciences, Zoology Building, Tillydrone Ave, Aberdeen AB24 2TZ, UK
| | - Fleur Ponton
- Department of Biological Sciences, Macquarie University, Sydney, NSW 2113, Australia; (B.N.); (A.T.); (H.D.); (J.M.)
| |
Collapse
|
16
|
Naudon L, François A, Mariadassou M, Monnoye M, Philippe C, Bruneau A, Dussauze M, Rué O, Rabot S, Meunier N. First step of odorant detection in the olfactory epithelium and olfactory preferences differ according to the microbiota profile in mice. Behav Brain Res 2020; 384:112549. [PMID: 32050097 DOI: 10.1016/j.bbr.2020.112549] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 01/16/2020] [Accepted: 02/08/2020] [Indexed: 02/09/2023]
Abstract
We have previously provided the first evidence that the microbiota modulates the physiology of the olfactory epithelium using germfree mice. The extent to which changes to the olfactory system depend on the microbiota is still unknown. In the present work, we explored if different microbiota would differentially impact olfaction. We therefore studied the olfactory function of three groups of mice of the same genetic background, whose parents had been conventionalized before mating with microbiota from three different mouse strains. Caecal short chain fatty acids profiles and 16S rRNA gene sequencing ascertained that gut microbiota differed between the three groups. We then used a behavioural test to measure the attractiveness of various odorants and observed that the three groups of mice differed in their attraction towards odorants. Their olfactory epithelium properties, including electrophysiological responses recorded by electro-olfactograms and expression of genes related to the olfactory transduction pathway, also showed several differences. Overall, our data demonstrate that differences in gut microbiota profiles are associated with differences in olfactory preferences and in olfactory epithelium functioning.
Collapse
Affiliation(s)
- Laurent Naudon
- Université Paris-Saclay, INRAE, AgroParisTech, CNRS, Micalis Institute, 78350, Jouy-en-Josas, France.
| | - Adrien François
- Université Paris-Saclay, UVSQ, INRAE, NBO, 78350, Jouy-en-Josas, F-78350, France
| | | | - Magali Monnoye
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | - Catherine Philippe
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | - Aurélia Bruneau
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | - Marie Dussauze
- Université Paris-Saclay, UVSQ, INRAE, NBO, 78350, Jouy-en-Josas, F-78350, France
| | - Olivier Rué
- Université Paris-Saclay, INRAE, MaIAGE, 78350, Jouy-en-Josas, France
| | - Sylvie Rabot
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | - Nicolas Meunier
- Université Paris-Saclay, UVSQ, INRAE, NBO, 78350, Jouy-en-Josas, F-78350, France
| |
Collapse
|
17
|
Walters AW, Hughes RC, Call TB, Walker CJ, Wilcox H, Petersen SC, Rudman SM, Newell PD, Douglas AE, Schmidt PS, Chaston JM. The microbiota influences the Drosophila melanogaster life history strategy. Mol Ecol 2020; 29:639-653. [PMID: 31863671 DOI: 10.1111/mec.15344] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 12/03/2019] [Accepted: 12/16/2019] [Indexed: 12/17/2022]
Abstract
Organisms are locally adapted when members of a population have a fitness advantage in one location relative to conspecifics in other geographies. For example, across latitudinal gradients, some organisms may trade off between traits that maximize fitness components in one, but not both, of somatic maintenance or reproductive output. Latitudinal gradients in life history strategies are traditionally attributed to environmental selection on an animal's genotype, without any consideration of the possible impact of associated microorganisms ("microbiota") on life history traits. Here, we show in Drosophila melanogaster, a key model for studying local adaptation and life history strategy, that excluding the microbiota from definitions of local adaptation is a major shortfall. First, we reveal that an isogenic fly line reared with different bacteria varies the investment in early reproduction versus somatic maintenance. Next, we show that in wild fruit flies, the abundance of these same bacteria was correlated with the latitude and life history strategy of the flies, suggesting geographic specificity of the microbiota composition. Variation in microbiota composition of locally adapted D. melanogaster could be attributed to both the wild environment and host genetic selection. Finally, by eliminating or manipulating the microbiota of fly lines collected across a latitudinal gradient, we reveal that host genotype contributes to latitude-specific life history traits independent of the microbiota and that variation in the microbiota can suppress or reverse the differences between locally adapted fly lines. Together, these findings establish the microbiota composition of a model animal as an essential consideration in local adaptation.
Collapse
Affiliation(s)
- Amber W Walters
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, UT, USA
| | - Rachel C Hughes
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, UT, USA
| | - Tanner B Call
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, UT, USA
| | - Carson J Walker
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, UT, USA
| | - Hailey Wilcox
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, UT, USA
| | - Samara C Petersen
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, UT, USA
| | - Seth M Rudman
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Peter D Newell
- Department of Biological Sciences, SUNY Oswego, Oswego, NY, USA
| | - Angela E Douglas
- Department of Entomology and Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Paul S Schmidt
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - John M Chaston
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, UT, USA
| |
Collapse
|
18
|
Flying Drosophila show sex-specific attraction to fly-labelled food. Sci Rep 2019; 9:14947. [PMID: 31628403 PMCID: PMC6802089 DOI: 10.1038/s41598-019-51351-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 09/26/2019] [Indexed: 11/08/2022] Open
Abstract
Animals searching for food and sexual partners often use odourant mixtures combining food-derived molecules and pheromones. For orientation, the vinegar fly Drosophila melanogaster uses three types of chemical cues: (i) the male volatile pheromone 11-cis-vaccenyl acetate (cVA), (ii) sex-specific cuticular hydrocarbons (CHs; and CH-derived compounds), and (iii) food-derived molecules resulting from microbiota activity. To evaluate the effects of these chemicals on odour-tracking behaviour, we tested Drosophila individuals in a wind tunnel. Upwind flight and food preference were measured in individual control males and females presented with a choice of two food sources labelled by fly lines producing varying amounts of CHs and/or cVA. The flies originated from different species or strains, or their microbiota was manipulated. We found that (i) fly-labelled food could attract—but never repel—flies; (ii) the landing frequency on fly-labelled food was positively correlated with an increased flight duration; (iii) male—but not female or non-sex-specific—CHs tended to increase the landing frequency on fly-labelled food; (iv) cVA increased female—but not male—preference for cVA-rich food; and (v) microbiota-derived compounds only affected male upwind flight latency. Therefore, sex pheromones interact with food volatile chemicals to induce sex-specific flight responses in Drosophila.
Collapse
|
19
|
|
20
|
Murgier J, Everaerts C, Farine JP, Ferveur JF. Live yeast in juvenile diet induces species-specific effects on Drosophila adult behaviour and fitness. Sci Rep 2019; 9:8873. [PMID: 31222019 PMCID: PMC6586853 DOI: 10.1038/s41598-019-45140-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 05/24/2019] [Indexed: 02/07/2023] Open
Abstract
The presence and the amount of specific yeasts in the diet of saprophagous insects such as Drosophila can affect their development and fitness. However, the impact of different yeast species in the juvenile diet has rarely been investigated. Here, we measured the behavioural and fitness effects of three live yeasts (Saccharomyces cerevisiae = SC; Hanseniaspora uvarum = HU; Metschnikowia pulcherrima = MP) added to the diet of Drosophila melanogaster larvae. Beside these live yeast species naturally found in natural Drosophila populations or in their food sources, we tested the inactivated "drySC" yeast widely used in Drosophila research laboratories. All flies were transferred to drySC medium immediately after adult emergence, and several life traits and behaviours were measured. These four yeast diets had different effects on pre-imaginal development: HU-rich diet tended to shorten the "egg-to-pupa" period of development while MP-rich diet induced higher larval lethality compared to other diets. Pre- and postzygotic reproduction-related characters (copulatory ability, fecundity, cuticular pheromones) varied according to juvenile diet and sex. Juvenile diet also changed adult food choice preference and longevity. These results indicate that specific yeast species present in natural food sources and ingested by larvae can affect their adult characters crucial for fitness.
Collapse
Affiliation(s)
- Juliette Murgier
- Université de Bourgogne Franche-Comté, Centre des Sciences du Goût et de l'Alimentation, AgroSup-UMR 6265 CNRS, UMR 1324 INRA, 6, Bd Gabriel, F-21000, Dijon, France
| | - Claude Everaerts
- Université de Bourgogne Franche-Comté, Centre des Sciences du Goût et de l'Alimentation, AgroSup-UMR 6265 CNRS, UMR 1324 INRA, 6, Bd Gabriel, F-21000, Dijon, France
| | - Jean-Pierre Farine
- Université de Bourgogne Franche-Comté, Centre des Sciences du Goût et de l'Alimentation, AgroSup-UMR 6265 CNRS, UMR 1324 INRA, 6, Bd Gabriel, F-21000, Dijon, France
| | - Jean-François Ferveur
- Université de Bourgogne Franche-Comté, Centre des Sciences du Goût et de l'Alimentation, AgroSup-UMR 6265 CNRS, UMR 1324 INRA, 6, Bd Gabriel, F-21000, Dijon, France.
| |
Collapse
|
21
|
Metabolic Basis for Mutualism between Gut Bacteria and Its Impact on the Drosophila melanogaster Host. Appl Environ Microbiol 2019; 85:AEM.01882-18. [PMID: 30389767 DOI: 10.1128/aem.01882-18] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 10/27/2018] [Indexed: 01/05/2023] Open
Abstract
Interactions between species shape the formation and function of microbial communities. In the gut microbiota of animals, cross-feeding of metabolites between microbes can enhance colonization and influence host physiology. We examined a mutually beneficial interaction between two bacteria isolated from the gut microbiota of Drosophila, i.e., Acetobacter fabarum and Lactobacillus brevis After developing an in vitro coculture assay, we utilized a genetic screen to identify A. fabarum genes required for enhanced growth with L. brevis The screen, and subsequent genetic analyses, showed that the gene encoding pyruvate phosphate dikinase (ppdK) is required for A. fabarum to benefit fully from coculture. By testing strains with mutations in a range of metabolic genes, we provide evidence that A. fabarum can utilize multiple fermentation products of L. brevis Mutualism between the bacteria in vivo affects gnotobiotic Drosophila melanogaster; flies associated with A. fabarum and L. brevis showed >1,000-fold increases in bacterial cell density and significantly lower triglyceride storage than monocolonized flies. Mutation of ppdK decreased A. fabarum density in flies cocolonized with L. brevis, consistent with the model in which Acetobacter employs gluconeogenesis to assimilate Lactobacillus fermentation products as a source of carbon in vivo We propose that cross-feeding between these groups is a common feature of microbiota in Drosophila IMPORTANCE The digestive tracts of animals are home to a community of microorganisms, the gut microbiota, which affects the growth, development, and health of the host. Interactions among microbes in this inner ecosystem can influence which species colonize the gut and can lead to changes in host physiology. We investigated a mutually beneficial interaction between two bacterial species from the gut microbiota of fruit flies. By coculturing the bacteria in vitro, we were able to identify a metabolic gene required for the bacteria to grow better together than they do separately. Our data suggest that one species consumes the waste products of the other, leading to greater productivity of the microbial community and modifying the nutrients available to the host. This study provides a starting point for investigating how these and other bacteria mutually benefit by sharing metabolites and for determining the impact of mutualism on host health.
Collapse
|
22
|
Everaerts C, Cazalé-Debat L, Louis A, Pereira E, Farine JP, Cobb M, Ferveur JF. Pre-imaginal conditioning alters adult sex pheromone response in Drosophila. PeerJ 2018; 6:e5585. [PMID: 30280017 PMCID: PMC6164551 DOI: 10.7717/peerj.5585] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 08/15/2018] [Indexed: 11/20/2022] Open
Abstract
Pheromones are chemical signals that induce innate responses in individuals of the same species that may vary with physiological and developmental state. In Drosophila melanogaster, the most intensively studied pheromone is 11-cis-vaccenyl acetate (cVA), which is synthezised in the male ejaculatory bulb and is transferred to the female during copulation. Among other effects, cVA inhibits male courtship of mated females. We found that male courtship inhibition depends on the amount of cVA and this effect is reduced in male flies derived from eggs covered with low to zero levels of cVA. This effect is not observed if the eggs are washed, or if the eggs are laid several days after copulation. This suggests that courtship suppression involves a form of pre-imaginal conditioning, which we show occurs during the early larval stage. The conditioning effect could not be rescued by synthetic cVA, indicating that it largely depends on conditioning by cVA and other maternally-transmitted factor(s). These experiments suggest that one of the primary behavioral effects of cVA is more plastic and less stereotypical than had hitherto been realised.
Collapse
Affiliation(s)
- Claude Everaerts
- Centre des Sciences du Goût et de l'Alimentation, Agrosup-UMR 6265 CNRS, UMR 1324 INRA, Université de Bourgogne, Dijon, France
| | - Laurie Cazalé-Debat
- Centre des Sciences du Goût et de l'Alimentation, Agrosup-UMR 6265 CNRS, UMR 1324 INRA, Université de Bourgogne, Dijon, France
| | - Alexis Louis
- Centre des Sciences du Goût et de l'Alimentation, Agrosup-UMR 6265 CNRS, UMR 1324 INRA, Université de Bourgogne, Dijon, France
| | - Emilie Pereira
- Centre des Sciences du Goût et de l'Alimentation, Agrosup-UMR 6265 CNRS, UMR 1324 INRA, Université de Bourgogne, Dijon, France
| | - Jean-Pierre Farine
- Centre des Sciences du Goût et de l'Alimentation, Agrosup-UMR 6265 CNRS, UMR 1324 INRA, Université de Bourgogne, Dijon, France
| | - Matthew Cobb
- School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | - Jean-François Ferveur
- Centre des Sciences du Goût et de l'Alimentation, Agrosup-UMR 6265 CNRS, UMR 1324 INRA, Université de Bourgogne, Dijon, France
| |
Collapse
|
23
|
Grangeteau C, Yahou F, Everaerts C, Dupont S, Farine JP, Beney L, Ferveur JF. Yeast quality in juvenile diet affects Drosophila melanogaster adult life traits. Sci Rep 2018; 8:13070. [PMID: 30166573 PMCID: PMC6117321 DOI: 10.1038/s41598-018-31561-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 08/02/2018] [Indexed: 01/12/2023] Open
Abstract
Diet quality is critical for animal development and survival. Fungi can provide nutrients that are essential to organisms that are unable to synthetize them, such as ergosterol in Drosophila melanogaster. Drosophila studies examining the influence of yeast quality in the diet have generally either provided the diet over the whole life span (larva to adult) or during the adult stage and have rarely focussed on the juvenile diet. Here, we tested the effect of yeast quality in the larval diet on pre-adult development and adult weight, survival, reproduction and food preference. The yeast Saccharomyces cerevisiae was added in three forms in three treatments-live, heated or dried-to food used as the juvenile diet or was not added (empty treatment). Adults resulting from the larvae raised on these four juvenile diets were all maintained on a similar standard laboratory food diet. Our data indicate that yeast quality in the juvenile diet affects larva-to-pupa-but not pupa-to-adult-development. Importantly, adult survival, food preference, mating behaviour and cuticular pheromones strongly varied with the juvenile diet. Therefore, the variation of yeast quality in the pre-adult Drosophila diet affects key adult life traits involved in food search, reproduction and survival.
Collapse
Affiliation(s)
- Cédric Grangeteau
- University Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, F-21000, Dijon, France
| | - Fairouz Yahou
- University Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, F-21000, Dijon, France.,Université de Bourgogne Franche-Comté, Centre des Sciences du Goût et de l'Alimentation, AgroSup-UMR 6265 CNRS, UMR 1324 INRA, 6, Bd Gabriel, F-21000, Dijon, France
| | - Claude Everaerts
- Université de Bourgogne Franche-Comté, Centre des Sciences du Goût et de l'Alimentation, AgroSup-UMR 6265 CNRS, UMR 1324 INRA, 6, Bd Gabriel, F-21000, Dijon, France
| | - Sébastien Dupont
- University Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, F-21000, Dijon, France
| | - Jean-Pierre Farine
- Université de Bourgogne Franche-Comté, Centre des Sciences du Goût et de l'Alimentation, AgroSup-UMR 6265 CNRS, UMR 1324 INRA, 6, Bd Gabriel, F-21000, Dijon, France
| | - Laurent Beney
- University Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, F-21000, Dijon, France.
| | - Jean-François Ferveur
- Université de Bourgogne Franche-Comté, Centre des Sciences du Goût et de l'Alimentation, AgroSup-UMR 6265 CNRS, UMR 1324 INRA, 6, Bd Gabriel, F-21000, Dijon, France.
| |
Collapse
|
24
|
Ankrah NYD, Douglas AE. Nutrient factories: metabolic function of beneficial microorganisms associated with insects. Environ Microbiol 2018. [DOI: 10.1111/1462-2920.14097] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
| | - Angela E. Douglas
- Department of MicrobiologyCornell UniversityIthaca NY14853 USA
- Department of Molecular Biology and GeneticsCornell UniversityIthaca NY14853 USA
| |
Collapse
|