1
|
Xian J, Gao L, Ren Z, Jiang Y, Pan J, Ying Z, Guo Z, Du Q, Zhao X, Jin H, Yi H, Guan J, Hu S. Inhibition of Autophagy by Berbamine Hydrochloride Mitigates Tumor Immune Escape by Elevating MHC-I in Melanoma Cells. Cells 2024; 13:1537. [PMID: 39329721 PMCID: PMC11430705 DOI: 10.3390/cells13181537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/04/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024] Open
Abstract
Impaired tumor cell antigen presentation contributes significantly to immune evasion. This study identifies Berbamine hydrochloride (Ber), a compound derived from traditional Chinese medicine, as an effective inhibitor of autophagy that enhances antigen presentation in tumor cells. Ber increases MHC-I-mediated antigen presentation in melanoma cells, improving recognition and elimination by CD8+ T cells. Mutation of Atg4b, which blocks autophagy, also raises MHC-I levels on the cell surface, and further treatment with Ber under these conditions does not increase MHC-I, indicating Ber's role in blocking autophagy to enhance MHC-I expression. Additionally, Ber treatment leads to the accumulation of autophagosomes, with elevated levels of LC3-II and p62, suggesting a disrupted autophagic flux. Fluorescence staining and co-localization analyses reveal that Ber likely inhibits lysosomal acidification without hindering autophagosome-lysosome fusion. Importantly, Ber treatment suppresses melanoma growth in mice and enhances CD8+ T cell infiltration, supporting its therapeutic potential. Our findings demonstrate that Ber disturbs late-stage autophagic flux through abnormal lysosomal acidification, enhancing MHC-I-mediated antigen presentation and curtailing tumor immune escape.
Collapse
Affiliation(s)
- Jinhuan Xian
- Research Center of Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; (J.X.); (L.G.); (Z.R.); (J.P.); (Z.Y.); (Z.G.); (Q.D.); (X.Z.); (H.J.); (H.Y.)
- Department of Pathology and Pathophysiology, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Leilei Gao
- Research Center of Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; (J.X.); (L.G.); (Z.R.); (J.P.); (Z.Y.); (Z.G.); (Q.D.); (X.Z.); (H.J.); (H.Y.)
- Department of Pathology and Pathophysiology, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Zhenyang Ren
- Research Center of Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; (J.X.); (L.G.); (Z.R.); (J.P.); (Z.Y.); (Z.G.); (Q.D.); (X.Z.); (H.J.); (H.Y.)
- Department of Biochemistry, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Yanjun Jiang
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong 999077, China;
| | - Junjun Pan
- Research Center of Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; (J.X.); (L.G.); (Z.R.); (J.P.); (Z.Y.); (Z.G.); (Q.D.); (X.Z.); (H.J.); (H.Y.)
| | - Zheng Ying
- Research Center of Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; (J.X.); (L.G.); (Z.R.); (J.P.); (Z.Y.); (Z.G.); (Q.D.); (X.Z.); (H.J.); (H.Y.)
| | - Zhenyuan Guo
- Research Center of Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; (J.X.); (L.G.); (Z.R.); (J.P.); (Z.Y.); (Z.G.); (Q.D.); (X.Z.); (H.J.); (H.Y.)
| | - Qingsong Du
- Research Center of Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; (J.X.); (L.G.); (Z.R.); (J.P.); (Z.Y.); (Z.G.); (Q.D.); (X.Z.); (H.J.); (H.Y.)
| | - Xu Zhao
- Research Center of Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; (J.X.); (L.G.); (Z.R.); (J.P.); (Z.Y.); (Z.G.); (Q.D.); (X.Z.); (H.J.); (H.Y.)
| | - He Jin
- Research Center of Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; (J.X.); (L.G.); (Z.R.); (J.P.); (Z.Y.); (Z.G.); (Q.D.); (X.Z.); (H.J.); (H.Y.)
- Department of Pathology and Pathophysiology, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Hua Yi
- Research Center of Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; (J.X.); (L.G.); (Z.R.); (J.P.); (Z.Y.); (Z.G.); (Q.D.); (X.Z.); (H.J.); (H.Y.)
- Department of Pathology and Pathophysiology, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Jieying Guan
- Research Center of Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; (J.X.); (L.G.); (Z.R.); (J.P.); (Z.Y.); (Z.G.); (Q.D.); (X.Z.); (H.J.); (H.Y.)
- Department of Pathology and Pathophysiology, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Shan Hu
- Research Center of Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; (J.X.); (L.G.); (Z.R.); (J.P.); (Z.Y.); (Z.G.); (Q.D.); (X.Z.); (H.J.); (H.Y.)
- Department of Pathology and Pathophysiology, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| |
Collapse
|
2
|
Zaib S, Saeed Shah H, Usman F, Shahzadi K, Mazhar Asjad H, Khan R, Dera AA, Adel Pashameah R, Alzahrani E, Farouk A, Khan I. Green Synthesis of Gelatin‐Lipid Nanocarriers Incorporating
Berberis aristata
Extract for Cancer Therapy; Physical Characterization, Pharmacological and Molecular Modeling Analysis. ChemistrySelect 2022. [DOI: 10.1002/slct.202203430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Affiliation(s)
- Sumera Zaib
- Department of Basic and Applied Chemistry Faculty of Science and Technology University of Central Punjab Lahore 54590 Pakistan
| | - Hamid Saeed Shah
- Institute of Pharmaceutical Sciences University of Veterinary and Animal Sciences Lahore 54000 Pakistan
| | - Faisal Usman
- Department of Pharmaceutics Faculty of Pharmacy Bahauddin Zakariya University Multan 66000 Pakistan
| | - Kiran Shahzadi
- Department of Basic and Applied Chemistry Faculty of Science and Technology University of Central Punjab Lahore 54590 Pakistan
| | - Hafiz Mazhar Asjad
- Department of Pharmacy Forman Christian College (A Chartered University) Lahore Pakistan
| | - Riffat Khan
- College of Pharmacy University of Sargodha Sargodha Pakistan
| | - Ayed A. Dera
- Department of Clinical Laboratory Sciences College of Applied Medical Sciences King Khalid University Abha Saudi Arabia
| | - Rami Adel Pashameah
- Department of Chemistry Faculty of Applied Science Umm Al-Qura University Makkah 24230 Saudi Arabia
| | - Eman Alzahrani
- Department of Chemistry College of Science Taif University P. O. Box 11099 Taif 21944 Saudi Arabia
| | - Abd‐ElAziem Farouk
- Department of Biotechnology College of Science Taif University P. O. Box 11099 Taif 21944 Saudi Arabia
| | - Imtiaz Khan
- Manchester Institute of Biotechnology The University of Manchester 131 Princess Street Manchester M1 7DN United Kingdom
| |
Collapse
|
3
|
Li K, Pi C, Wen J, He Y, Yuan J, Shen H, Zhao W, Zeng M, Song X, Lee RJ, Wei Y, Zhao L. Formulation of the novel structure curcumin derivative-loaded solid lipid nanoparticles: synthesis, optimization, characterization and anti-tumor activity screening in vitro. Drug Deliv 2022; 29:2044-2057. [PMID: 35775475 PMCID: PMC9255223 DOI: 10.1080/10717544.2022.2092235] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
This study investigated the effect of structural modification of Curcumin (CU) combined with the solid lipid nanoparticles (SLN) drug delivery system on anti-tumor activity in vitro. A new structure of Curcumin derivative (CU1) was successfully synthesized by modifying the phenolic hydroxyl group of CU. CU1 was two times more stable than CU at 45 °C or constant light. The SLN containing CU1 (CU1-SLN) was prepared, and the particle size, polydispersity index, entrapment efficiency, drug loading, and zeta potential of CU1-SLN were (104.1 ± 2.43) nm, 0.22 ± 0.008, (95.1 ± 0.38) %, (4.28 ± 0.02) %, and (28.3 ± 1.60) mV, respectively. X-ray diffraction (XRD) and Differential scanning calorimetry (DSC) showed that CU1 is amorphous in SLN. CU1-SLN released the drug slowly for 48 h, while CU and CU1 were released rapidly within 8 h. In terms of cytotoxicity, CU1 exhibited a 1.5-fold higher inhibition than CU against A549 and SMMC-7721 cells, while CU1-SLN showed 2-fold higher inhibition than CU1. Both CU1 and CU1-SLN reduced the toxicity in normal hepatocytes compared with CU (2.6-fold and 12.9-fold, respectively). CU1-SLN showed a significant apoptotic effect (p < 0.05). In summary, CU1 retained the inhibitory effect of CU against tumor cells, while improving stability and safety. Additionally, CU1-SLN presents a promising strategy for the treatment of liver and lung cancer.
Collapse
Affiliation(s)
- Ke Li
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, China.,Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, P.R. China.,Central Nervous System Drug Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, Sichuan, P.R. China
| | - Chao Pi
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, China.,Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, P.R. China.,Central Nervous System Drug Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, Sichuan, P.R. China
| | - Jie Wen
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, China.,Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, P.R. China.,Central Nervous System Drug Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, Sichuan, P.R. China
| | - Yingmeng He
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, P.R. China.,Central Nervous System Drug Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, Sichuan, P.R. China
| | - Jiyuan Yuan
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, P.R. China.,Clinical Trial Center, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, P.R China
| | - Hongping Shen
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, P.R. China.,Clinical Trial Center, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, P.R China
| | - Wenmei Zhao
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, China.,Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, P.R. China.,Central Nervous System Drug Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, Sichuan, P.R. China
| | - Mingtang Zeng
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, China.,Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, P.R. China.,Central Nervous System Drug Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, Sichuan, P.R. China
| | - Xinjie Song
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, Zhejiang, China.,Department of Food Science and Technology, Yeungnam University, Gyeongsan-si, Gyeongsangbuk-do, Republic of Korea
| | - Robert J Lee
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Yumeng Wei
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, China.,Central Nervous System Drug Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, Sichuan, P.R. China
| | - Ling Zhao
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, P.R. China.,Central Nervous System Drug Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, Sichuan, P.R. China
| |
Collapse
|
4
|
Iron oxide-alginate-berbamine nanocomposites trigger reactive oxygen species-induced apoptosis through down-regulation of PI3K/AKT signaling in human bladder cancer cells. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
5
|
Phytotherapeutic applications of alkaloids in treating breast cancer. Biomed Pharmacother 2022; 155:113760. [DOI: 10.1016/j.biopha.2022.113760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 09/12/2022] [Accepted: 09/26/2022] [Indexed: 11/23/2022] Open
|
6
|
Berberine: An Important Emphasis on Its Anticancer Effects through Modulation of Various Cell Signaling Pathways. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27185889. [PMID: 36144625 PMCID: PMC9505063 DOI: 10.3390/molecules27185889] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/31/2022] [Accepted: 09/06/2022] [Indexed: 11/27/2022]
Abstract
Cancer is the most commonly diagnosed type of disease and a major cause of death worldwide. Despite advancement in various treatment modules, there has been little improvement in survival rates and side effects associated with this disease. Medicinal plants or their bioactive compounds have been extensively studied for their anticancer potential. Novel drugs based on natural products are urgently needed to manage cancer through attenuation of different cell signaling pathways. In this regard, berberine is a bioactive alkaloid that is found in variety of plants, and an inverse association has been revealed between its consumption and cancer. Berberine exhibits an anticancer role through scavenging free radicals, induction of apoptosis, cell cycle arrest, inhibition of angiogenesis, inflammation, PI3K/AKT/mammalian target of rapamycin (mTOR), Wnt/β-catenin, and the MAPK/ERK signaling pathway. In addition, synergistic effects of berberine with anticancer drugs or natural compounds have been proven in several cancers. This review outlines the anticancer effects and mechanisms of action of berberine in different cancers through modulation of various cell signaling pathways. Moreover, the recent developments in the drug delivery systems and synergistic effect of berberine are explained.
Collapse
|
7
|
Sultana A, Zare M, Thomas V, Kumar TS, Ramakrishna S. Nano-based drug delivery systems: Conventional drug delivery routes, recent developments and future prospects. MEDICINE IN DRUG DISCOVERY 2022. [DOI: 10.1016/j.medidd.2022.100134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
8
|
Mohapatra P, Singh P, Singh D, Sahoo S, Sahoo SK. Phytochemical based nanomedicine: a panacea for cancer treatment, present status and future prospective. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
9
|
Wei Y, Li K, Zhao W, He Y, Shen H, Yuan J, Pi C, Zhang X, Zeng M, Fu S, Song X, Lee RJ, Zhao L. The Effects of a Novel Curcumin Derivative Loaded Long-Circulating Solid Lipid Nanoparticle on the MHCC-97H Liver Cancer Cells and Pharmacokinetic Behavior. Int J Nanomedicine 2022; 17:2225-2241. [PMID: 35607705 PMCID: PMC9123937 DOI: 10.2147/ijn.s363237] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 05/01/2022] [Indexed: 01/15/2023] Open
Abstract
Purpose Methods Results Conclusion
Collapse
Affiliation(s)
- Yumeng Wei
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, Sichuan, 646000, People’s Republic of China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, People’s Republic of China
- Central Nervous System Drug Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, Sichuan, 646000, People’s Republic of China
| | - Ke Li
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, Sichuan, 646000, People’s Republic of China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, People’s Republic of China
- Central Nervous System Drug Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, Sichuan, 646000, People’s Republic of China
| | - Wenmei Zhao
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, Sichuan, 646000, People’s Republic of China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, People’s Republic of China
- Central Nervous System Drug Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, Sichuan, 646000, People’s Republic of China
| | - Yingmeng He
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, People’s Republic of China
- Department of Pharmacy, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, People’s Republic of China
| | - Hongping Shen
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, People’s Republic of China
- Clinical Trial Center, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, People’s Republic of China
| | - Jiyuan Yuan
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, People’s Republic of China
- Clinical Trial Center, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, People’s Republic of China
| | - Chao Pi
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, Sichuan, 646000, People’s Republic of China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, People’s Republic of China
- Central Nervous System Drug Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, Sichuan, 646000, People’s Republic of China
| | - Xiaomei Zhang
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, Institute of Medicinal Chemistry of Chinese Medicine, Chongqing Academy of Chinese Materia Medica, Chongqing, 400065, People’s Republic of China
| | - Mingtang Zeng
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, Sichuan, 646000, People’s Republic of China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, People’s Republic of China
- Central Nervous System Drug Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, Sichuan, 646000, People’s Republic of China
| | - Shaozhi Fu
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, People’s Republic of China
| | - Xinjie Song
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, Zhejiang, 310023, People’s Republic of China
- Department of Food Science and Technology, Yeungnam University, Gyeongsan-si, Gyeongsangbuk-do, 38541, Republic of Korea
| | - Robert J Lee
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, the Ohio State University, Columbus, OH, 43210, USA
- Correspondence: Robert J Lee, The Ohio State University, 500 W 12th Ave, Columbus, OH, 43210, USA, Tel +1-614-292-4172, Fax +1-614-292-4172, Email
| | - Ling Zhao
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, People’s Republic of China
- Central Nervous System Drug Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, Sichuan, 646000, People’s Republic of China
- Ling Zhao, Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, No. 182, Chunhui Road, Longmatan District, Luzhou, Sichuan, 646000, People’s Republic of China, Tel +86 830 3160093, Fax +86 830 3160093, Email
| |
Collapse
|
10
|
Lithocholic Acid Conjugated mPEG-b-PCL Micelles for pH Responsive Delivery to Breast Cancer Cells. Int J Pharm 2022; 621:121779. [DOI: 10.1016/j.ijpharm.2022.121779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/07/2022] [Accepted: 04/25/2022] [Indexed: 11/23/2022]
|
11
|
A molecular docking and dynamics study to screen phytochemicals that target mutant thymidine phosphorylase for colon cancer therapy. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100476] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
12
|
Hallan SS, Amirian J, Brangule A, Bandere D. Lipid-Based Nano-Sized Cargos as a Promising Strategy in Bone Complications: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1146. [PMID: 35407263 PMCID: PMC9000285 DOI: 10.3390/nano12071146] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/28/2022] [Accepted: 03/28/2022] [Indexed: 02/06/2023]
Abstract
Bone metastasis has been considered the fatal phase of cancers, which remains incurable and to be a challenge due to the non-availability of the ideal treatment strategy. Unlike bone cancer, bone metastasis involves the spreading of the tumor cells to the bones from different origins. Bone metastasis generally originates from breast and prostate cancers. The possibility of bone metastasis is highly attributable to its physiological milieu susceptible to tumor growth. The treatment of bone-related diseases has multiple complications, including bone breakage, reduced quality of life, spinal cord or nerve compression, and pain. However, anticancer active agents have failed to maintain desired therapeutic concentrations at the target site; hence, uptake of the drug takes place at a non-target site responsible for the toxicity at the cellular level. Interestingly, lipid-based drug delivery systems have become the center of interest for researchers, thanks to their biocompatible and bio-mimetic nature. These systems possess a great potential to improve precise bone targeting without affecting healthy tissues. The lipid nano-sized systems are not only limited to delivering active agents but also genes/peptide sequences/siRNA, bisphosphonates, etc. Additionally, lipid coating of inorganic nanomaterials such as calcium phosphate is an effective approach against uncontrollable rapid precipitation resulting in reduced colloidal stability and dispersity. This review summarizes the numerous aspects, including development, design, possible applications, challenges, and future perspective of lipid nano-transporters, namely liposomes, exosomes, solid lipid nanoparticles (SLN), nanostructured lipid carriers (NLC), and lipid nanoparticulate gels to treat bone metastasis and induce bone regeneration. Additionally, the economic suitability of these systems has been discussed and different alternatives have been discussed. All in all, through this review we will try to understand how far nanomedicine is from clinical and industrial applications in bone metastasis.
Collapse
Affiliation(s)
- Supandeep Singh Hallan
- Department of Pharmaceutical Chemistry, Riga Stradins University, Dzirciema 16, LV-1007 Riga, Latvia; (S.S.H.); (J.A.)
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Kalku Street 1, LV-1658 Riga, Latvia
| | - Jhaleh Amirian
- Department of Pharmaceutical Chemistry, Riga Stradins University, Dzirciema 16, LV-1007 Riga, Latvia; (S.S.H.); (J.A.)
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Kalku Street 1, LV-1658 Riga, Latvia
| | - Agnese Brangule
- Department of Pharmaceutical Chemistry, Riga Stradins University, Dzirciema 16, LV-1007 Riga, Latvia; (S.S.H.); (J.A.)
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Kalku Street 1, LV-1658 Riga, Latvia
| | - Dace Bandere
- Department of Pharmaceutical Chemistry, Riga Stradins University, Dzirciema 16, LV-1007 Riga, Latvia; (S.S.H.); (J.A.)
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Kalku Street 1, LV-1658 Riga, Latvia
| |
Collapse
|
13
|
Farooqi AA, Wen R, Attar R, Taverna S, Butt G, Xu B. Regulation of Cell-Signaling Pathways by Berbamine in Different Cancers. Int J Mol Sci 2022; 23:ijms23052758. [PMID: 35269900 PMCID: PMC8911410 DOI: 10.3390/ijms23052758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/26/2022] [Accepted: 02/26/2022] [Indexed: 12/18/2022] Open
Abstract
Natural product research is a cornerstone of the architectural framework of clinical medicine. Berbamine is a natural, potent, pharmacologically active biomolecule isolated from Berberis amurensis. Berbamine has been shown to modulate different oncogenic cell-signaling pathways in different cancers. In this review, we comprehensively analyze how berbamine modulates deregulated pathways (JAK/STAT, CAMKII/c-Myc) in various cancers. We systematically analyze how berbamine induces activation of the TGF/SMAD pathway for the effective inhibition of cancer progression. We also summarize different nanotechnological strategies currently being used for proficient delivery of berbamine to the target sites. Berbamine has also been reported to demonstrate potent anti-cancer and anti-metastatic effects in tumor-bearing mice. The regulation of non-coding RNAs by berbamine is insufficiently studied, and future studies must converge on the identification of target non-coding RNAs. A better understanding of the regulatory role of berbamine in the modulation of non-coding RNAs and cell-signaling pathways will be advantageous in the effective translation of laboratory findings to clinically effective therapeutics.
Collapse
Affiliation(s)
- Ammad Ahmad Farooqi
- Department of Molecular Oncology, Institute of Biomedical and Genetic Engineering (IBGE), Islamabad 44000, Pakistan;
| | - Ru Wen
- Department of Chemistry, University of Georgia, Athens, GA 30602, USA;
| | - Rukset Attar
- Department of Obstetrics and Gynecology, Yeditepe University, Istanbul 34755, Turkey;
| | - Simona Taverna
- Institute for Biomedical Research and Innovation, National Research Council of Italy, 90146 Palermo, Italy;
- Institute of Translational Pharmacology (IFT-CNR), National Research Council of Italy, 90146 Palermo, Italy
| | - Ghazala Butt
- Institute of Botany, University of the Punjab, Lahore 54590, Pakistan;
| | - Baojun Xu
- Food Science and Technology Program, BNU-HKBU United International College, Zhuhai 519087, China
- Correspondence: ; Tel.: +86-756-2620636
| |
Collapse
|
14
|
Chibh S, Kaur K, Gautam UK, Panda JJ. Dimension switchable auto-fluorescent peptide-based 1D and 2D nano-assemblies and their self-influence on intracellular fate and drug delivery. NANOSCALE 2022; 14:715-735. [PMID: 34937079 DOI: 10.1039/d1nr06768k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The production of dynamic, environment-responsive shape-tunable biomaterials marks a significant step forward in the construction of synthetic materials that can easily rival their natural counterparts. Significant progress has been made in the self-assembly of bio-materials. However, the self-assembly of a peptide into morphologically distinct auto-fluorescent nanostructures, without the incorporation of any external moiety is still in its infancy. Hence, in this study, we have developed peptide-based self-assembled auto-fluorescent nanostructures that can shuttle between 1D and 2D morphologies. Different morphological nanostructures are well known to have varied cellular internalization efficiencies. Taking advantage of our morphologically different particles emanating from the same peptide monomer, we further explored the intracellular fate of our nanostructures. We observed that the nanostructures' cellular internalization is a complex process that gets influenced by particle morphology and this might further affect their intracellular drug delivery potential. Overall, this study provides initial cues for the preparation of environment-responsive shape-shifting peptide-nano assemblies. Efforts have also been made to understand their shape driven cellular uptake behaviour, along with establishing them as nanocarriers for the cellular delivery of therapeutic molecules.
Collapse
Affiliation(s)
- Sonika Chibh
- Institute of Nano Science and Technology, Sector 81, Mohali, Punjab, 140306, India.
| | - Komalpreet Kaur
- Indian Institute of Science Education and Research, Sector 81, Mohali, Punjab, 140306, India
| | - Ujjal K Gautam
- Indian Institute of Science Education and Research, Sector 81, Mohali, Punjab, 140306, India
| | - Jiban Jyoti Panda
- Institute of Nano Science and Technology, Sector 81, Mohali, Punjab, 140306, India.
| |
Collapse
|
15
|
Karimian A, Yousefi B, Sadeghi F, Feizi F, Najafzadehvarzi H, Parsian H. Synthesis of biocompatible nanocrystalline cellulose against folate receptors as a novel carrier for targeted delivery of doxorubicin. Chem Biol Interact 2022; 351:109731. [PMID: 34728188 DOI: 10.1016/j.cbi.2021.109731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/02/2021] [Accepted: 10/27/2021] [Indexed: 01/22/2023]
Abstract
We designed amine-functionalized nanocrystalline cellulose grafted folic acid/magnetic nanoparticles (AF-NCC/Fe3O4 NPs) against folate receptors for targeted delivery of doxorubicin (DOX). Toxicity is a major side effect of DOX, damaging vital organs such as the heart, kidney, and liver; for example, it causes dilated cardiomyopathy and hepatotoxicity. Accordingly, we aimed to reduce this adverse effect and increase the targeted delivery of DOX to the right point of cancer cells by using the unique features of cancer cells. The characterizations were approved in each step using Fourier transform infrared (FTIR), scanning electron microscope (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM), energy dispersive X-ray (EDX), zeta potential, and dynamic light scattering (DLS) analysis techniques. Encapsulation efficacy of AF-NCC/Fe3O4 NPs was 99.6%; drug release investigations showed excellent stability in physiological conditions (pH ∼ 7.4) and a high release rate in the low pH condition of cancer environments (pH ∼ 5.0). The hemolysis assay and Masson's trichrome and hematoxylin and eosin (H&E) staining results showed that the nanocarrier was entirely biocompatible. In vitro cell viability study approved that the designed nanocarrier increased the therapeutic effects of DOX on Saos-2 cells. The cellular internalization results displayed a high percentage of uptake within 2 h. Real-time reverse transcriptase-polymerase chain reaction (RT-PCR) was applied for the evaluation of tumor protein p53 (p53), p21, and Bcl-2-associated X protein (Bax). DOX exerted its effects through DNA damage and oxidative stress that led to p53 upregulation, and p53 inhibited cell cycle progression. This arrest initiated apoptosis and inhibited cell migration. In summary, encapsulating DOX in AF-NCC/Fe3O4 NPs dramatically decreases the toxic effects of this chemotherapeutic agent on vital organs, especially on the heart. This smart nanocarrier increases the delivery of DOX using acid folic on its surface and also enhances the DOX release in the acidic environment of cancer cells. DOX exerts its therapeutic effects by the initiation of apoptosis and inhibition of migration.
Collapse
Affiliation(s)
- Ansar Karimian
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Bahman Yousefi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Farzin Sadeghi
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Farideh Feizi
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Hossein Najafzadehvarzi
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Hadi Parsian
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
16
|
Tang Z, Niu Y, Xu Z, Shi Y, Liu Y, Fu W, Zheng M, He H, Wu T. Anti-Tumor and Anti-Metastasis Effects of Berbamine-Loaded Lipid Nanoparticles on Pancreatic Cancer. Anticancer Agents Med Chem 2022; 22:3097-3106. [PMID: 35490430 DOI: 10.2174/1871520622666220501161636] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/25/2022] [Accepted: 02/25/2022] [Indexed: 11/22/2022]
Abstract
OBJECTIVE The aim of the study was to investigate the therapeutic potential of Berbamine-loaded lipid nanoparticles (BBM-NPs) in pancreatic cancer. METHODS Dopamine polymerization-polylactide-TPGS nanoparticles were synthesized to prepare BBM-NPs, and the change in particle size of BBM-NPs was measured. Cell Counting Kit-8 (CCK8) assay, plate cloning experiment, and apoptosis analysis were performed to evaluate the cytotoxicity of BBM-NPs against the pancreatic cancer cells (PANC-1 and AsPC-1). Migration and invasion abilities of the tumor cells were determined by Transwell and wound healing assays. The intracellular level of ROS and expression of tumor progression-related proteins were measured using ROS-kit and western blot assay. Besides, an in vivo study was performed in the Balb/c nude mice to analyze the function of BBM-NPs in tumor growth. RESULTS The in vitro studies showed that BBM-NPs with stable particle size and sustained drug release effectively inhibited the viability, proliferation, migration, and invasion of pancreatic cancer cells, while promoting cell apoptosis. Moreover, the in vivo experiments revealed that compared to Free BBM, BBM-NPs exhibited a stronger inhibitory effect on the growth of xenograft tumors derived from PANC-1 cells in mice. In addition, increased expressions of ROS, Bax, Cleaved Caspase-3, and γ-H2AX, as well as decreased expressions of MMP2, MMP9 and Bcl-2 were identified in both Free BBM and BBM-NPs groups, while BBM-NPs exhibited a stronger effect on protein expression than Free BBM. CONCLUSION In summary, BBM-loaded lipid nanoparticles enhanced the therapeutic effects of BBM on pancreatic cancer, providing a promising strategy for targeted cancer therapy.
Collapse
Affiliation(s)
- Zhiyi Tang
- Department of Gastroenterology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, China
| | - Yichun Niu
- Department of Gastroenterology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, China
| | - Zhiyuan Xu
- Department of Gastroenterology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, China
| | - Yanmei Shi
- Department of Gastroenterology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, China
| | - Yaqiong Liu
- Department of Gastroenterology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, China
| | - Wen Fu
- Department of Gastroenterology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, China
| | - Mengyao Zheng
- Department of Gastroenterology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, China
| | - Haiyu He
- Department of Gastroenterology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, China
| | - Tao Wu
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, China
| |
Collapse
|
17
|
Yu BB, Liu LL, Yan JD, Cao JB, Cao Y. Effect of berbamine on invasion and metastasis of human liver cancer SMMC-7721 cells and its possible mechanism. Anticancer Drugs 2022; 33:e178-e185. [PMID: 34321418 PMCID: PMC8670361 DOI: 10.1097/cad.0000000000001179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 07/12/2021] [Indexed: 11/27/2022]
Abstract
Berbamine is a bisbenzylisoquinoline alkaloid extracted from Berberis poiretii of Berberis of Berberidaceae. It has been reported that it can significantly inhibit the proliferation of a variety of malignant tumor cells, including liver cancer. However, the effect of berbamine on the invasion and metastasis of liver cancer has not been reported. The present study demonstrated that berbamine inhibited the migration and invasion of SMMC-7721 cells in a concentration-dependent manner and obviously increased the gap junction function and the expression of Cx32 in SMMC-7721 cells compared with control group. However, after silencing Cx32, berbamine had no significant effect on cell invasion and metastasis. Before silencing Cx32, the expression of PI3K and P-AKT were decreased after berbamine treated on SMMC-7721 cells for 24 h. After silencing Cx32, the expression of PI3K and P-AKT were increased in SMMC-7721 cells. The expression of PI3K and P-AKT had no significant effect after berbamine treated on SMMC-7721 cells for 24 h with silencing Cx32. In conclusion, the results of the present study suggest that berbamine could inhibit the SMMC-7721 cell migration and invasion, and its mechanism may be related to the regulation of PI3K/AKT signaling pathway by enhancing the expression of Cx32.
Collapse
Affiliation(s)
- Bin-bin Yu
- Department of Pharmacy, The Affliated Zhangjiagang Hospital of Soochow University
| | - Li-li Liu
- Department of Pharmacy, The Affliated Zhangjiagang Hospital of Soochow University
| | - Jia-dong Yan
- Department of Pharmacy, The Affliated Zhangjiagang Hospital of Soochow University
| | - Jian-bo Cao
- Department of Pharmacy, The Affliated Zhangjiagang Hospital of Soochow University
| | - Ying Cao
- Department of Pharmacy, The Affliated Zhangjiagang Hospital of Soochow University
- Department of Pharmacy, The Fourth People’s Hospital of Zhangjiagang, Jiangsu Suzhou, China
| |
Collapse
|
18
|
Bukhari SZ, Zeth K, Iftikhar M, Rehman M, Usman Munir M, Khan WS, Ihsan A. Supramolecular lipid nanoparticles as delivery carriers for non-invasive cancer theranostics. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2021; 2:100067. [PMID: 34909685 PMCID: PMC8663983 DOI: 10.1016/j.crphar.2021.100067] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 12/12/2022] Open
Abstract
Nanotheranostics is an emerging frontier of personalized medicine research particularly for cancer, which is the second leading cause of death. Supramolecular aspects in theranostics are quite allured to achieve more regulation and controlled features. Supramolecular nanotheranostics architecture is focused on engineering of modular supramolecular assemblies benefitting from their mutable and stimuli-responsive properties which confer an ultimate potential for the fabrication of unified innovative nanomedicines with controlled features. Amalgamation of supramolecular approaches to nano-based features further equip the potential of designing novel approaches to overcome limitations seen by the conventional theranostic strategies, for curing even the lethal diseases and endowing personalized therapeutics with optimistic prognosis, endorsing their clinical translation. Among many potential nanocarriers for theranostics, lipid nanoparticles (LNPs) have shown various promising advances in theranostics and their formulation can be tailored for several applications. Despite the great advancement in cancer nanotheranostics, there are still many challenges that need to be highlighted to fill the literature gap. For this purpose, herein, we have presented a systematic overview on the subject and proposed LNPs as the potential material to manage cancer via non-invasive approaches by highlighting the use of supramolecular approaches to make them robust for cancer theranostics. We have concluded the review by entailing the future perspectives of lipid nanotheranostics towards clinical translation.
Collapse
Affiliation(s)
- Syeda Zunaira Bukhari
- National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Pakistan
| | - Kornelius Zeth
- Department of Science and Environment, Roskilde University Center, DK-4000 Roskilde, Denmark
| | - Maryam Iftikhar
- National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Pakistan
| | - Mubashar Rehman
- Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muhammad Usman Munir
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Aljouf, 72388, Saudi Arabia
| | - Waheed S. Khan
- National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Pakistan
| | - Ayesha Ihsan
- National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Pakistan
| |
Collapse
|
19
|
Wu SG, Zhang GL. Synthesis and antitumor activity in vitro of novel berbamine derivatives. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2021; 23:681-691. [PMID: 32406754 DOI: 10.1080/10286020.2020.1760850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 04/21/2020] [Accepted: 04/22/2020] [Indexed: 06/11/2023]
Abstract
A series of new berbamine derivatives were synthesized, and their cytotoxic activity was evaluated against Human T-cell lymphoma cell line H9 and multiple myeloma cell line RPMI8226 in vitro. Compared with berbamine, the cytotoxicity of the modified derivatives was enhanced, especially simultaneously substituted at OH and 5-position. Compounds 2a and 4b exhibited high antitumor activity. The IC50 value of compound 2a was 0.30 μM for RPMI8226 cells, and the IC50 value of compound 4b was 0.36 μM for H9 cells, whereas berbamine IC50 values were 4.0 μM for H9 cells and 6.19 μM for RPMI8226 cells, respectively.[Formula: see text].
Collapse
Affiliation(s)
- Shui-Gao Wu
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Guo-Lin Zhang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
20
|
Miyazawa T, Itaya M, Burdeos GC, Nakagawa K, Miyazawa T. A Critical Review of the Use of Surfactant-Coated Nanoparticles in Nanomedicine and Food Nanotechnology. Int J Nanomedicine 2021; 16:3937-3999. [PMID: 34140768 PMCID: PMC8203100 DOI: 10.2147/ijn.s298606] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 03/31/2021] [Indexed: 12/12/2022] Open
Abstract
Surfactants, whose existence has been recognized as early as 2800 BC, have had a long history with the development of human civilization. With the rapid development of nanotechnology in the latter half of the 20th century, breakthroughs in nanomedicine and food nanotechnology using nanoparticles have been remarkable, and new applications have been developed. The technology of surfactant-coated nanoparticles, which provides new functions to nanoparticles for use in the fields of nanomedicine and food nanotechnology, is attracting a lot of attention in the fields of basic research and industry. This review systematically describes these "surfactant-coated nanoparticles" through various sections in order: 1) surfactants, 2) surfactant-coated nanoparticles, application of surfactant-coated nanoparticles to 3) nanomedicine, and 4) food nanotechnology. Furthermore, current progress and problems of the technology using surfactant-coated nanoparticles through recent research reports have been discussed.
Collapse
Affiliation(s)
- Taiki Miyazawa
- New Industry Creation Hatchery Center (NICHe), Tohoku University, Sendai, Miyagi, Japan
| | - Mayuko Itaya
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Gregor C Burdeos
- Institute for Animal Nutrition and Physiology, Christian Albrechts University Kiel, Kiel, Germany
| | - Kiyotaka Nakagawa
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Teruo Miyazawa
- New Industry Creation Hatchery Center (NICHe), Tohoku University, Sendai, Miyagi, Japan
| |
Collapse
|
21
|
Terracciano R, Demarchi D, Ruo Roch M, Aiassa S, Pagana G. Nanomaterials to Fight Cancer: An Overview on Their Multifunctional Exploitability. JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY 2021; 21:2760-2777. [PMID: 33653442 DOI: 10.1166/jnn.2021.19061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In recent years the worldwide research community has highlighted innumerable benefits of nanomaterials in cancer detection and therapy. Nevertheless, the development of cancer nanomedicines and other bionanotechnology requires a huge amount of considerations about the interactions of nanomaterials and biological systems, since long-term effects are not yet fully known. Open issues remain the determination of the nanoparticles distributions patterns and the internalization rate into the tumor while avoiding their accumulation in internal organs or other healthy tissues. The purpose of this work is to provide a standard overview of the most recent advances in nanomaterials to fight cancer and to collect trends and future directions to follow according to some critical aspects still present in this field. Complementary to the very recent review of Wolfram and Ferrari which discusses and classifies successful clinically-approved cancer nanodrugs as well as promising candidates in the pipeline, this work embraces part of their proposed classification system based on the exploitation of multifunctionality and extends the review to peer-reviewed journal articles published in the last 3 years identified through international databases.
Collapse
Affiliation(s)
- Rossana Terracciano
- Department of Electronics and Telecommunications (DET), Politecnico di Torino, 10129, Italy
| | - Danilo Demarchi
- Department of Electronics and Telecommunications (DET), Politecnico di Torino, 10129, Italy
| | - Massimo Ruo Roch
- Department of Electronics and Telecommunications (DET), Politecnico di Torino, 10129, Italy
| | - Simone Aiassa
- Department of Electronics and Telecommunications (DET), Politecnico di Torino, 10129, Italy
| | - Guido Pagana
- Department of Electronics and Telecommunications (DET), Politecnico di Torino, 10129, Italy
| |
Collapse
|
22
|
Paramashivam S, Dhiraviam KN. Computational insights into the identification of a potent matrix metalloproteinase inhibitor from Indigofera aspalathoides to control cancer metastasis. 3 Biotech 2021; 11:206. [PMID: 33927994 PMCID: PMC8026800 DOI: 10.1007/s13205-021-02731-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 03/10/2021] [Indexed: 10/21/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are the major proteolytic enzymes which assist in regulating the metastatic process by degrading the extracellular matrix proteins. In this study, we have investigated the anti-metastatic potential of major bioactive compounds in the medicinal plant Indigofera aspalathoides targeting matrix metalloproteinases (MMP2 & MMP9) and it's in silico pharmacokinetic profiles using computational studies. Indigofera aspalathoides (Sivanar vembu in Tamil) is a renowned medicinal herb in traditional Indian medicine which contains indigocarpan, mucronulatol, indigocarpan diacetate, erythroxydiol X and erythroxydiol Y as the major constituents. The 3-dimensional structure of MMP2 and MMP9 was designed by using I-tasser and Modeller and it was validated by PROCHECK. The structures of mucronulatol and indigocarpan have been retrieved from PubChem and indigocarpan diacetate, erythroxydiol X & Y were drawn by using Chemdraw Ultra 6.0. Batimastat was used as a positive control. Molecular docking was performed by using AutoDock 4.2 tools and AutoDock vina, an open-source program which signifies an effective interaction between the phytoligands and MMP2 & MMP9. From the results, AutoDock 4.2 have showed that indigocarpan possesses strong binding energy (ΔG) of - 7.68 kcal/mol towards MMP2 and - 6.35 kcal/mol towards MMP9, whereas batimastat showed binding energy (ΔG) of - 6.34 kcal/mol for MMP2 and - 5.66 kcal/mol for MMP9, meanwhile the results from AutoDock vina indicates that indigocarpan possesses strong binding energy (ΔG) of - 8.0 kcal/mol towards MMP2 and - 8.2 kcal/mol towards MMP9, whereas batimastat showed binding energy (ΔG) of - 7.2 kcal/mol for MMP2 and - 7.6 kcal/mol for MMP9. Also, the ADME and toxicity results suggest that the indigocarpan compound possesses a druggable pharmacokinetic potentiality and does not have carcinogenicity and Ames mutagenesis compared with other phytoligands. Hence, it is evident from our results that both AutoDock platforms strongly revealed that the phytoligand, indigocarpan possesses strong inhibitory activity against MMP2 and MMP9 to control cancer metastasis. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-02731-w.
Collapse
Affiliation(s)
- SathishKumar Paramashivam
- Department of Plant Biotechnology, School of Biotechnology, Madurai Kamaraj University, Madurai, 625021 Tamilnadu India
| | - Kannan Narayanan Dhiraviam
- Department of Plant Biotechnology, School of Biotechnology, Madurai Kamaraj University, Madurai, 625021 Tamilnadu India
| |
Collapse
|
23
|
Singh D, Singh P, Pradhan A, Srivastava R, Sahoo SK. Reprogramming Cancer Stem-like Cells with Nanoforskolin Enhances the Efficacy of Paclitaxel in Targeting Breast Cancer. ACS APPLIED BIO MATERIALS 2021; 4:3670-3685. [PMID: 35014452 DOI: 10.1021/acsabm.1c00141] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cancer stem-like cells (CSCs) have emerged as an important target for breast cancer therapy owing to their self-renewability, proliferation, and elevated chemoresistance properties. Here, we present a strategy of eliminating CSCs by differentiation therapy where "forced differentiation" reprograms CSCs so that they lose their intrinsic properties and become susceptible for conventional chemotherapeutic drugs. In this study, we report that a conventional chemotherapeutic paclitaxel enhances the stemness of CSCs, while a phytochemical forskolin being essentially nontoxic to CSCs possesses the intrinsic ability to reprogram them. To achieve simultaneous targeting of CSCs and bulk tumor cells, we used a co-delivery system where liquid crystal nanoparticles (LCN) were co-encapsulated with both paclitaxel and forskolin. LCN showed higher uptake, retention, and penetration potential in CSCs overcoming their high drug efflux property. Moreover, LCN improved the pharmacokinetic parameters of forskolin, which otherwise had very low retention and bioavailability. Forskolin-loaded LCN forced CSCs to exit from their mesenchymal state, which reduced their stemness and chemosensitized them while inhibiting E-cadherin-mediated survival and tumor-initiating potential as well as reversing paclitaxel-induced stemness. We further showed that upon administration of paclitaxel and forskolin co-loaded LCN to an orthotropic xenograft mouse model, the nanomedicine showed enhanced passive tumor targeting capability with very potent antitumor activity that eradicated small solid tumor in a single dose and showed no sign of tumor relapse or systemic toxicity over a long period. Overall, these findings give a proof of concept that co-delivery of forskolin and paclitaxel in a single nanoformulation can achieve overall tumor targeting where forskolin can efficiently reprogram/differentiate CSCs and paclitaxel can induce cytotoxicity in both differentiated CSCs and bulk tumor cells simultaneously. Hence, this study can provide a nanoformulation that can offer an efficient strategy for cancer therapy.
Collapse
Affiliation(s)
- Deepika Singh
- Institute of Life Sciences, Nalco Square, Bhubaneswar 751023, Odisha, India
| | - Priya Singh
- Institute of Life Sciences, Nalco Square, Bhubaneswar 751023, Odisha, India
| | - Arpan Pradhan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Rohit Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | | |
Collapse
|
24
|
In vivo synergistic anti-tumor effect of lumefantrine combined with pH responsive behavior of nano calcium phosphate based lipid nanoparticles on lung cancer. Eur J Pharm Sci 2021; 158:105657. [DOI: 10.1016/j.ejps.2020.105657] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 11/25/2020] [Accepted: 11/25/2020] [Indexed: 12/26/2022]
|
25
|
Javed Iqbal M, Quispe C, Javed Z, Sadia H, Qadri QR, Raza S, Salehi B, Cruz-Martins N, Abdulwanis Mohamed Z, Sani Jaafaru M, Abdull Razis AF, Sharifi-Rad J. Nanotechnology-Based Strategies for Berberine Delivery System in Cancer Treatment: Pulling Strings to Keep Berberine in Power. Front Mol Biosci 2021; 7:624494. [PMID: 33521059 PMCID: PMC7843460 DOI: 10.3389/fmolb.2020.624494] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 12/11/2020] [Indexed: 02/03/2023] Open
Abstract
Cancer is a multifactorial disease characterized by complex molecular landscape and altered cell pathways that results in an abnormal cell growth. Natural compounds are target-specific and pose a limited cytotoxicity; therefore, can aid in the development of new therapeutic interventions for the treatment of this versatile disease. Berberine is a member of the protoberberine alkaloids family, mainly present in the root, stem, and bark of various trees, and has a reputed anticancer activity. Nonetheless, the limited bioavailability and low absorption rate are the two major hindrances following berberine administration as only 0.5% of ingested berberine absorbed in small intestine while this percentage is further decreased to 0.35%, when enter in systemic circulation. Nano-based formulation is believed to be an ideal candidate to increase absorption percentage as at nano scale level, compounds can absorb rapidly in gut. Nanotechnology-based therapeutic approaches have been implemented to overcome such problems, ultimately promoting a higher efficacy in the treatment of a plethora of diseases. This review present and critically discusses the anti-proliferative role of berberine and the nanotechnology-based therapeutic strategies used for the nano-scale delivery of berberine. Finally, the current approaches and promising perspectives of latest delivery of this alkaloid are also critically analyzed and discussed.
Collapse
Affiliation(s)
- Muhammad Javed Iqbal
- Department of Biotechnology, Faculty of Sciences, University of Sialkot, Sialkot, Pakistan
| | - Cristina Quispe
- Facultad de Ciencias de la Salud, Universidad Arturo Prat, Iquique, Chile
| | | | - Haleema Sadia
- Department of Biotechnology, BUITEMS, Quetta, Pakistan
| | - Qamar Raza Qadri
- Office of Research Innovation and Commercialization, Lahore Garrison University, Sector-C Phase VI, Defense Housing Authority (DHA), Lahore, Pakistan
| | - Shahid Raza
- Lahore Garrison University, Lahore, Pakistan
| | - Bahare Salehi
- Medical Ethics and Law Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Natália Cruz-Martins
- Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal.,Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal.,Laboratory of Neuropsychophysiology, Faculty of Psychology and Education Sciences, University of Porto, Porto, Portugal
| | - Zeinab Abdulwanis Mohamed
- Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
| | - Mohammed Sani Jaafaru
- Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia.,Department of Biochemistry, Kaduna State University, Kaduna, Nigeria
| | - Ahmad Faizal Abdull Razis
- Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia.,Laboratory of Food Safety and Food Integrity, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, Serdang, Malaysia.,Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Malaysia
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Facultad de Medicina, Universidad del Azuay, Cuenca, Ecuador
| |
Collapse
|
26
|
Koutova D, Kulhava M, Havelek R, Majorosova M, Královec K, Habartova K, Hošťálková A, Opletal L, Cahlikova L, Řezáčová M. Bersavine: A Novel Bisbenzylisoquinoline Alkaloidwith Cytotoxic, Antiproliferative and Apoptosis-Inducing Effects on Human Leukemic Cells. Molecules 2020; 25:molecules25040964. [PMID: 32093423 PMCID: PMC7071104 DOI: 10.3390/molecules25040964] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 11/18/2022] Open
Abstract
Bersavine is the new bisbenzylisoquinoline alkaloid isolated from the Berberis vulgaris L. (Berberidaceae) plant. The results of cytotoxicity screening 48 h post-treatment showed that bersavine considerably inhibits the proliferation and viability of leukemic (Jurkat, MOLT-4), colon (HT-29), cervix (HeLa) and breast (MCF-7) cancer cells with IC50 values ranging from 8.1 to 11 µM. The viability and proliferation of leukemic Jurkat and MOLT-4 cells were decreased after bersavine treatment in a time- and dose-dependent manner. Bersavine manifested concentration-dependent antiproliferative activity in human lung, breast, ovarian and hepatocellular carcinoma cell lines using a xCELLigence assay. Significantly higher percentages of MOLT-4 cells exposed to bersavine at 20 µM for 24 h were arrested in the G1 phase of the cell cycle using the flow cytometry method. The higher percentage of apoptotic cells was measured after 24 h of bersavine treatment. The upregulation of p53 phosphorylated on Ser392 was detected during the progression of MOLT-4 cell apoptosis. Mechanistically, bersavine-induced apoptosis is an effect of increased activity of caspases, while reduced proliferation seems dependent on increased Chk1 Ser345 phosphorylation and decreased Rb Ser807/811 phosphorylation in human leukemic cells.
Collapse
Affiliation(s)
- Darja Koutova
- Department of Medical Biochemistry, Faculty of Medicine in Hradec Kralove, Charles University, Simkova 870, 500 03 Hradec Kralove, Czech Republic; (D.K.); (M.K.); (M.M.); (K.H.); (M.Ř.)
| | - Monika Kulhava
- Department of Medical Biochemistry, Faculty of Medicine in Hradec Kralove, Charles University, Simkova 870, 500 03 Hradec Kralove, Czech Republic; (D.K.); (M.K.); (M.M.); (K.H.); (M.Ř.)
| | - Radim Havelek
- Department of Medical Biochemistry, Faculty of Medicine in Hradec Kralove, Charles University, Simkova 870, 500 03 Hradec Kralove, Czech Republic; (D.K.); (M.K.); (M.M.); (K.H.); (M.Ř.)
- Correspondence:
| | - Martina Majorosova
- Department of Medical Biochemistry, Faculty of Medicine in Hradec Kralove, Charles University, Simkova 870, 500 03 Hradec Kralove, Czech Republic; (D.K.); (M.K.); (M.M.); (K.H.); (M.Ř.)
| | - Karel Královec
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 532 10 Pardubice, Czech Republic;
| | - Klara Habartova
- Department of Medical Biochemistry, Faculty of Medicine in Hradec Kralove, Charles University, Simkova 870, 500 03 Hradec Kralove, Czech Republic; (D.K.); (M.K.); (M.M.); (K.H.); (M.Ř.)
| | - Anna Hošťálková
- ADINACO Research Group, Department of Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic; (A.H.); (L.O.); (L.C.)
| | - Lubomír Opletal
- ADINACO Research Group, Department of Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic; (A.H.); (L.O.); (L.C.)
| | - Lucie Cahlikova
- ADINACO Research Group, Department of Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic; (A.H.); (L.O.); (L.C.)
| | - Martina Řezáčová
- Department of Medical Biochemistry, Faculty of Medicine in Hradec Kralove, Charles University, Simkova 870, 500 03 Hradec Kralove, Czech Republic; (D.K.); (M.K.); (M.M.); (K.H.); (M.Ř.)
| |
Collapse
|
27
|
Hu B, Cai H, Yang S, Tu J, Huang X, Chen G. Berbamine Enhances the Efficacy of Gefitinib by Suppressing STAT3 Signaling in Pancreatic Cancer Cells. Onco Targets Ther 2019; 12:11437-11451. [PMID: 31920333 PMCID: PMC6935307 DOI: 10.2147/ott.s223242] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 11/26/2019] [Indexed: 12/12/2022] Open
Abstract
Background Small molecular inhibitors such as gefitinib (Gefi), which target EGF receptor (EGFR), are considered to be a viable pathway for the selective inhibition of pancreatic cancer (PC) development. However, the large difference in Gefi response between PC patient individuals and PC cell lines severely limits the clinical efficacy of Gefi. Berbamine (BBM) is a well-known natural-derived antitumor agent. However, no study yet exists on whether BBM can enhance the sensitivity of PC cells to Gefi or its underlying mechanisms. Methods MTS assay and clonogenic assay were used to determine whether BBM could enhance the anti-PC activity of Gefi by. Flow cytometric analysis was performed to study the cell cycle progression and rate of apoptosis after combined treatment with BBM and Gefi. Surface plasmon resonance (SPR) and Western blot experiments were carried out to detect the STAT3 binding affinity and the STAT3 inhibitory effect of BBM. Molecular docking and Molecular dynamic simulation were used to predicting the dominant interaction between BBM and STAT3. Results This study found that BBM synergizes with Gefi to inhibit cell growth and induce cell cycle arrest and PC cell apoptosis. Mechanistically, our results showed that BBM and Gefi have synergistic inhibitory effects on STAT3 phosphorylation, but have little effect on other EGFR downstream pathways, suggesting that BBM may exert sensitization through the inhibition of STAT3. Besides, BBM has a high affinity for STAT3 and a good inhibitory effect on STAT3 activation, further indicating that BBM was a potent direct STAT3 inhibitor. Molecular modeling between STAT3 and BBM suggested that BBM formed several key hydrophilic interactions with STAT3. Conclusion Our findings suggest that the combination of BBM and Gefi could be further developed as a potential PC therapy.
Collapse
Affiliation(s)
- Bingren Hu
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, People's Republic of China.,Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, Wenzhou, Zhejiang 325000, People's Republic of China
| | - Huajie Cai
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, People's Republic of China.,Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, Wenzhou, Zhejiang 325000, People's Republic of China
| | - Shouzhang Yang
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, People's Republic of China.,Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, Wenzhou, Zhejiang 325000, People's Republic of China
| | - Jinfu Tu
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, People's Republic of China.,Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, Wenzhou, Zhejiang 325000, People's Republic of China
| | - Xiaming Huang
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, People's Republic of China.,Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, Wenzhou, Zhejiang 325000, People's Republic of China
| | - Gang Chen
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, People's Republic of China.,Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, Wenzhou, Zhejiang 325000, People's Republic of China
| |
Collapse
|
28
|
Santos AC, Pereira I, Magalhães M, Pereira-Silva M, Caldas M, Ferreira L, Figueiras A, Ribeiro AJ, Veiga F. Targeting Cancer Via Resveratrol-Loaded Nanoparticles Administration: Focusing on In Vivo Evidence. AAPS JOURNAL 2019; 21:57. [PMID: 31016543 DOI: 10.1208/s12248-019-0325-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 03/22/2019] [Indexed: 02/07/2023]
Abstract
Resveratrol (RSV) is a polyphenol endowed with potential therapeutic effects in chronic diseases, particularly in cancer, the second leading cause of death worldwide in the twenty-first century. The advent of nanotechnology application in the field of drug delivery allows to overcome the constrains associated with the conventional anticancer treatments, in particular chemotherapy, reducing its adverse side effects, off target risks and surpassing cancer multidrug chemoresistance. Moreover, the use of nanotechnology-based carriers in the delivery of plant-derived anticancer agents, such as RSV, has already demonstrated to surpass the poor water solubility, instability and reduced bioavailability associated with phytochemicals, improving their therapeutic activity, thus prompting pharmaceutical developments. This review highlights the in vivo anticancer potential of RSV achieved by nanotherapeutic approaches. First, RSV physicochemical, stability and pharmacokinetic features are described. Thereupon, the chemotherapeutic and chemopreventive properties of RSV are underlined, emphasizing the RSV numerous cancer molecular targets. Lastly, a comprehensive analysis of the RSV-loaded nanoparticles (RSV-NPs) developed and administered in different in vivo cancer models to date is presented. Nanoparticles (NPs) have shown to improve RSV solubility, stability, pharmacokinetics and biodistribution in cancer tissues, enhancing markedly its in vivo anticancer activity. RSV-NPs are, thus, considered a potential nanomedicine-based strategy to fight cancer; however, further studies are still necessary to allow RSV-NP clinical translation.
Collapse
Affiliation(s)
- Ana Cláudia Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal. .,REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal.
| | - Irina Pereira
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal.,REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
| | - Mariana Magalhães
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal.,REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
| | - Miguel Pereira-Silva
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
| | - Mariana Caldas
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
| | - Laura Ferreira
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
| | - Ana Figueiras
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal.,REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
| | - António J Ribeiro
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal.,i3S, Group Genetics of Cognitive Dysfunction, Institute for Molecular and Cell Biology, Rua do Campo Alegre, 823, 4150-180, Porto, Portugal
| | - Francisco Veiga
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal.,REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
| |
Collapse
|
29
|
Simone L, Pisani F, Mola MG, De Bellis M, Merla G, Micale L, Frigeri A, Vescovi AL, Svelto M, Nicchia GP. AQP4 Aggregation State Is a Determinant for Glioma Cell Fate. Cancer Res 2019; 79:2182-2194. [PMID: 30877104 DOI: 10.1158/0008-5472.can-18-2015] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 01/02/2019] [Accepted: 03/11/2019] [Indexed: 11/16/2022]
Abstract
The glial water channel protein aquaporin-4 (AQP4) forms heterotetramers in the plasma membrane made of the M23-AQP4 and M1-AQP4 isoforms. The isoform ratio controls AQP4 aggregation into supramolecular structures called orthogonal arrays of particles (AQP4-OAP). The role of AQP4 aggregation into OAP in malignant gliomas is still unclear. In this study, we demonstrate that AQP4 aggregation/disaggregation into OAP influences the biology of glioma cells. Selective expression of the OAP-forming isoform M23-AQP4 (AQP4-OAP) triggered cell shape changes in glioma cells associated with alterations to the F-actin cytoskeleton that affected apoptosis. By contrast, expression of M1-AQP4 (AQP4-tetramers), which is unable to aggregate into OAP, ameliorated glioma cell invasiveness, improved cell migration, and increased methalloproteinase-9 activity. Two prolines (254 and 296) at the C-terminus tail were shown to be important in mediating the relationship between the actin cytoskeleton and AQP4-OAP and AQP4-tetramers. In conclusion, this study demonstrates that AQP4 aggregation state might be an important determinant in orienting glioma cells to persist or perish. AQP4 disaggregation may potentiate invasiveness potential, whereas AQP4 aggregation may activate the apoptotic path. This study shows a new perspective on the role of AQP4 in brain tumors not necessarily associated with edema formation but with AQP4 aggregation/disaggregation dynamics and their link with the actin cytoskeleton. SIGNIFICANCE: This study demonstrates how AQP4 aggregation influences plasma membrane dynamics to alter cell proliferation, invasiveness, migration, and apoptotic potential in glioma cells.
Collapse
Affiliation(s)
- Laura Simone
- Fondazione IRCCS Casa Sollievo della Sofferenza, Cancer Stem Cells Unit, San Giovanni Rotondo, Italy
| | - Francesco Pisani
- Department of Bioscience, Biotechnology and Biopharmaceutics and Centre of Excellence in Comparative Genomics, University of Bari Aldo Moro, Bari, Italy
| | - Maria G Mola
- Department of Bioscience, Biotechnology and Biopharmaceutics and Centre of Excellence in Comparative Genomics, University of Bari Aldo Moro, Bari, Italy
| | - Manuela De Bellis
- Department of Bioscience, Biotechnology and Biopharmaceutics and Centre of Excellence in Comparative Genomics, University of Bari Aldo Moro, Bari, Italy
| | - Giuseppe Merla
- Division of Medical Genetics, Fondazione IRCCS Casa Sollievo della Sofferenza Hospital, San Giovanni Rotondo, Italy
| | - Lucia Micale
- Division of Medical Genetics, Fondazione IRCCS Casa Sollievo della Sofferenza Hospital, San Giovanni Rotondo, Italy
| | - Antonio Frigeri
- School of Medicine, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy.,Department of Neuroscience, Albert Einstein College of Medicine, Yeshiva University, New York, Bronx, New York
| | - Angelo L Vescovi
- Fondazione IRCCS Casa Sollievo della Sofferenza, Cancer Stem Cells Unit, San Giovanni Rotondo, Italy
| | - Maria Svelto
- Department of Bioscience, Biotechnology and Biopharmaceutics and Centre of Excellence in Comparative Genomics, University of Bari Aldo Moro, Bari, Italy.,Institute of Biomembranes and Bioenergetics, National Research Council, Bari, Italy.,National Institute of Biostructures and Biosystems (INBB), Rome, Italy
| | - Grazia P Nicchia
- Department of Bioscience, Biotechnology and Biopharmaceutics and Centre of Excellence in Comparative Genomics, University of Bari Aldo Moro, Bari, Italy. .,Department of Neuroscience, Albert Einstein College of Medicine, Yeshiva University, New York, Bronx, New York
| |
Collapse
|
30
|
Brzozowski JS, Skelding KA. The Multi-Functional Calcium/Calmodulin Stimulated Protein Kinase (CaMK) Family: Emerging Targets for Anti-Cancer Therapeutic Intervention. Pharmaceuticals (Basel) 2019; 12:ph12010008. [PMID: 30621060 PMCID: PMC6469190 DOI: 10.3390/ph12010008] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/02/2019] [Accepted: 01/04/2019] [Indexed: 01/25/2023] Open
Abstract
The importance of Ca2+ signalling in key events of cancer cell function and tumour progression, such as proliferation, migration, invasion and survival, has recently begun to be appreciated. Many cellular Ca2+-stimulated signalling cascades utilise the intermediate, calmodulin (CaM). The Ca2+/CaM complex binds and activates a variety of enzymes, including members of the multifunctional Ca2+/calmodulin-stimulated protein kinase (CaMK) family. These enzymes control a broad range of cancer-related functions in a multitude of tumour types. Herein, we explore the cancer-related functions of these kinases and discuss their potential as targets for therapeutic intervention.
Collapse
Affiliation(s)
- Joshua S Brzozowski
- Priority Research Centre for Cancer Research, Innovation and Translation, School of Biomedical Sciences and Pharmacy, Hunter Medical Research Institute (HMRI) and University of Newcastle, Callaghan, NSW 2308, Australia.
| | - Kathryn A Skelding
- Priority Research Centre for Cancer Research, Innovation and Translation, School of Biomedical Sciences and Pharmacy, Hunter Medical Research Institute (HMRI) and University of Newcastle, Callaghan, NSW 2308, Australia.
| |
Collapse
|
31
|
Effective Therapy Using a Liposomal siRNA that Targets the Tumor Vasculature in a Model Murine Breast Cancer with Lung Metastasis. MOLECULAR THERAPY-ONCOLYTICS 2018; 11:102-108. [PMID: 30534584 PMCID: PMC6280606 DOI: 10.1016/j.omto.2018.10.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 10/23/2018] [Indexed: 11/27/2022]
Abstract
Although metastatic cancer is a major cause of death for cancer patients, no efficacious treatment for metastasis is available. We previously showed that the growth of a primary tumor could be inhibited by the administration of an anti-angiogenic small interfering RNA (siRNA) that is encapsulated in an RGD peptide-modified lipid nanoparticle (RGD-LNP). We herein report on the delivery of siRNA by an RGD-LNP to the vasculature is also effective for treating metastatic tumors. We compared the RGD-LNP with the polyethylene glycol (PEG)ylated LNP (PEG-LNP) in terms of accumulation in a lung-metastasized model. Despite malformed structure of vasculature in the metastasized lung, the accumulation of the PEG-LNP in the metastasized lung was lower than that for the RGD-LNP, which suggests that the delivery strategy based on vascular permeability is not completely effective for targeting metastasis tumors. The systemic injection of the RGD-LNP induced a significant silencing in the metastasized vasculature, but not in the normal lung. In addition, the continuous injection of the RGD-LNP encapsulating siRNA against a delta-like ligand 4 (DLL4) drastically prolonged the overall survival of metastasized model mice. Accordingly, our current findings suggest that vasculature targeting would be more effective than enhanced permeability and retention effect-based therapy for the treatment of metastatic cancer.
Collapse
|