1
|
Pagliaro MV, Wen C, Sa B, Liu B, Bellini M, Bartoli F, Sahoo S, Singh RK, Alpay SP, Miller HA, Dekel DR. Improving Alkaline Hydrogen Oxidation Activity of Palladium through Interactions with Transition-Metal Oxides. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Maria V. Pagliaro
- Institute of Chemistry of OrganoMetallic Compounds, CNR-ICCOM, Via Madonna del Piano, 10, 50019 Sesto Fiorentino, Florence, Italy
| | - Cuilian Wen
- Multiscale Computational Materials Facility, and Key Laboratory of Eco-materials Advanced Technology, College of Materials Science and Engineering, Fuzhou University, Fuzhou 350100, P. R. China
| | - Baisheng Sa
- Multiscale Computational Materials Facility, and Key Laboratory of Eco-materials Advanced Technology, College of Materials Science and Engineering, Fuzhou University, Fuzhou 350100, P. R. China
| | - Baoyu Liu
- Multiscale Computational Materials Facility, and Key Laboratory of Eco-materials Advanced Technology, College of Materials Science and Engineering, Fuzhou University, Fuzhou 350100, P. R. China
| | - Marco Bellini
- Institute of Chemistry of OrganoMetallic Compounds, CNR-ICCOM, Via Madonna del Piano, 10, 50019 Sesto Fiorentino, Florence, Italy
| | - Francesco Bartoli
- Institute of Chemistry of OrganoMetallic Compounds, CNR-ICCOM, Via Madonna del Piano, 10, 50019 Sesto Fiorentino, Florence, Italy
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, Siena 53100, Italy
| | - Sanjubala Sahoo
- Department of Materials Science and Engineering and Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Ramesh K. Singh
- The Wolfson Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel
- The Nancy & Stephen Grand Technion Energy Program, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - S. Pamir Alpay
- Department of Materials Science and Engineering and Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Hamish A. Miller
- Institute of Chemistry of OrganoMetallic Compounds, CNR-ICCOM, Via Madonna del Piano, 10, 50019 Sesto Fiorentino, Florence, Italy
| | - Dario R. Dekel
- The Wolfson Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel
- The Nancy & Stephen Grand Technion Energy Program, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
2
|
Liu B, Chen Z, Xiong R, Yang X, Zhang Y, Xie T, Wen C, Sa B. Enhancing hydrogen evolution reaction performance of transition metal doped two-dimensional electride Ca2N. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.06.066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
3
|
Liu B, Wu C, Wen C, Li H, Shimura Y, Tatsuoka H, Sa B. Promoting effect of (Co, Ni)O solid solution on Pd catalysts for ethylene glycol electrooxidation in alkaline solution. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.139965] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
4
|
Synthesis and Characterization of Supported Pd Catalysts for Potential Application in Glycerol Electro-Oxidation. Catalysts 2022. [DOI: 10.3390/catal12020192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Ceria-supported Pd catalysts encompassing oxides of Cu, Co, and Fe were synthesized and characterized using XRD, TEM, SEM-EDX, TPR, BET, and Raman. After the incorporation of the metal oxides, the surface area and pore volume of the ceria support decreased. XRD showed the presence of the metal oxide phases as well as the support, CeO2. TPR showed that the bimetallic catalyst had improved reducibility compared to the monometallic Pd/CeO2. TEM images showed irregular-shaped particles with an average size distribution of 2–10 nm. SEM-EDX showed that the metal oxides were evenly distributed over the surface of the support. The electro-oxidation of glycerol in an alkaline environment was evaluated using cyclic voltammetry, and the products formed were identified and quantified using GC-MS. Glyceric acid was the dominant product over Pd-CuO/CeO2, while glyceraldehyde and dihydroxyacetone were dominant over Pd-Co3O4/CeO2 and Pd-Fe2O3/CeO2, respectively.
Collapse
|
5
|
PdAg/C Electrocatalysts Synthesized by Thermal Decomposition of Polymeric Precursors Improve Catalytic Activity for Ethanol Oxidation Reaction. Catalysts 2022. [DOI: 10.3390/catal12010096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
An efficient ethanol oxidation reaction (EOR) is required to enhance energy production in alcohol-based fuel cells. The use of bimetallic catalysts promises decreasing reliance on platinum group metal (PGM) electrocatalysts by minimizing the use of these expensive materials in the overall electrocatalyst composition. In this article, an alternative method of bimetallic electrocatalyst synthesis based on the use of polymeric precursors is explored. PdAg/C electrocatalysts were synthesized by thermal decomposition of polymeric precursors and used as the anode electrocatalyst for EOR. Different compositions, including pristine Pd/C and Ag/C, as well as bimetallic Pd80Ag20/C, and Pd60Ag40/C electrocatalysts, were evaluated. Synthesized catalysts were characterized, and electrochemical activity evaluated. X-ray diffraction showed a notable change at diffraction peak values for Pd80Ag20/C and Pd60Ag40/C electrocatalysts, suggesting alloying (solid solution) and smaller crystallite sizes for Pd60Ag40/C. In a thermogravimetric analysis, the electrocatalyst Pd60Ag40/C presented changes in the profile of the curves compared to the other electrocatalysts. In the cyclic voltammetry results for EOR in alkaline medium, Pd60Ag40/C presented a more negative onset potential, a higher current density at the oxidation peak, and a larger electrically active area. Chronoamperometry tests indicated a lower poisoning rate for Pd60Ag40/C, a fact also observed in the CO-stripping voltammetry analysis due to its low onset potential. As the best performing electrocatalyst, Pd60Ag40/C has a lower mass of Pd (a noble and expensive metal) in its composition. It can be inferred that this bimetallic composition can contribute to decreasing the amount of Pd required while increasing the fuel cell performance and expected life. PdAg-type electrocatalysts can provide an economically feasible alternative to pure PGM-electrocatalysts for use as the anode in EOR in fuel cells.
Collapse
|
6
|
White J, Anil A, Martín-Yerga D, Salazar-Alvarez G, Henriksson G, Cornell A. Electrodeposited PdNi on a Ni rotating disk electrode highly active for glycerol electrooxidation in alkaline conditions. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2021.139714] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
7
|
Asal YM, Mohammad AM, Abd El Rehim SS, Al-Akraa IM. Preparation of Co-electrodeposited Pd-Au Nanocatalyst for Methanol Electro-oxidation. INT J ELECTROCHEM SC 2021; 16:211133. [DOI: 10.20964/2021.11.30] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
8
|
Ipadeola AK, Mwonga PV, Ray SC, Maphanga RR, Ozoemena KI. Palladium/Stannic Oxide Interfacial Chemistry Promotes Hydrogen Oxidation Reactions in Alkaline Medium. ChemElectroChem 2020. [DOI: 10.1002/celc.202000952] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Adewale K. Ipadeola
- Molecular Sciences Institute, School of Chemistry University of the Witwatersrand Private Bag 3, PO Wits Johannesburg 2050 South Africa
| | - Patrick V. Mwonga
- Molecular Sciences Institute, School of Chemistry University of the Witwatersrand Private Bag 3, PO Wits Johannesburg 2050 South Africa
| | - Sekar C. Ray
- Department of Physics University of South Africa, Florida Campus Johannesburg 1709 South Africa
| | - Rapela R. Maphanga
- Next Generation Enterprises and Institutions Council for Scientific and Industrial Research (CSIR) P.O. Box 395 Pretoria 0001 South Africa
| | - Kenneth I. Ozoemena
- Molecular Sciences Institute, School of Chemistry University of the Witwatersrand Private Bag 3, PO Wits Johannesburg 2050 South Africa
| |
Collapse
|
9
|
Preparation of Carbon-Supported Ternary Nanocatalysts Palladium-Vanadium-Cobalt for Alcohol Electrooxidation. J CHEM-NY 2020. [DOI: 10.1155/2020/6027613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Carbon-supported nanocatalysts palladium-vanadium-cobalt (PdVCo) were synthesized via ethylene glycol (EG) reduction reaction and NaBH4-assisted reduction. The electrocatalytic performance for alcohol oxidation in alkaline solutions was investigated. The XRD and EDX results confirmed the incorporation of V and Co with Pd lattice to form the ternary nanocatalysts PdVCo in a single phase. The NaBH4-assisted EG reduction process exhibited highly dispersed nanoparticles with a uniform size, and the electrochemical surface area (ECSA) determined by cyclic voltammetry in 1 M KOH was also superior. In electrocatalysis performance, the cyclic voltammetry (CV) and chronoamperometry (CA) results presented an excellent electrocatalytic activity and stability of the PdVCo-20EG-20NaBH4 sample in the alcohol electrooxidation as compared to other synthesized samples with the steady current of 52 mA/cm2 and 21.9 mA/cm2 in methanol and ethanol, respectively.
Collapse
|
10
|
Romero Hernández A, Arce Estrada E, Ezeta A, Manríquez M. Formic acid oxidation on AuPd core-shell electrocatalysts: Effect of surface electronic structure. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.134977] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Electrochemical deposition of self-supported bifunctional copper oxide electrocatalyst for methanol oxidation and oxygen evolution reaction. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2019.04.019] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
12
|
Bai J, Liu D, Yang J, Chen Y. Nanocatalysts for Electrocatalytic Oxidation of Ethanol. CHEMSUSCHEM 2019; 12:2117-2132. [PMID: 30834720 DOI: 10.1002/cssc.201803063] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 03/01/2019] [Indexed: 06/09/2023]
Abstract
The use of ethanol as a fuel in direct alcohol fuel cells depends not only on its ease of production from renewable sources, but also on overcoming the challenges of storage and transportation. In an ethanol-based fuel cell, highly active electrocatalysts are required to break the C-C bond in ethanol for its complete oxidation at lower overpotentials, with the aim of increasing the cell performance, ethanol conversion rates, and fuel efficiency. In recent decades, the development of wet-chemistry methods has stimulated research into catalyst design, reactivity tailoring, and mechanistic investigations, and thus, created great opportunities to achieve efficient oxidation of ethanol. In this Minireview, the nanomaterials tested as electrocatalysts for the ethanol oxidation reaction in acid or alkaline environments are summarized. The focus is mainly on nanomaterials synthesized by using wet-chemistry methods, with particular attention on the relationship between the chemical and physical characteristics of the catalysts, for example, catalyst composition, morphology, structure, degree of alloying, presence of oxides or supports, and their activity for ethanol electro-oxidation. As potential alternatives to noble metals, non-noble-metal catalysts for ethanol oxidation are also briefly reviewed. Insights into further enhancing the catalytic performance through the design of efficient electrocatalysts are also provided.
Collapse
Affiliation(s)
- Juan Bai
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of, Education), Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710062, PR China
| | - Danye Liu
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering Address, Chinese Academy of Sciences, Beijing, 100190, PR China
- University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Jun Yang
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering Address, Chinese Academy of Sciences, Beijing, 100190, PR China
- University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Yu Chen
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of, Education), Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710062, PR China
| |
Collapse
|
13
|
Jo YR, Koo B, Seo MJ, Kim JK, Lee S, Kim K, Han JW, Jung W, Kim BJ. Growth Kinetics of Individual Co Particles Ex-solved on SrTi 0.75Co 0.25O 3-δ Polycrystalline Perovskite Thin Films. J Am Chem Soc 2019; 141:6690-6697. [PMID: 30938992 DOI: 10.1021/jacs.9b01882] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A precise control of the size, density, and distribution of metal nanoparticles dispersed on functional oxide supports is critical for promoting catalytic activity and stability in renewable energy and catalysis devices. Here, we measure the growth kinetics of individual Co particles ex-solved on SrTi0.75Co0.25O3-δ polycrystalline thin films under a high vacuum, and at various temperatures and grain sizes using in situ transmission electron microscopy. The ex-solution preferentially occurs at grain boundaries and corners which appear essential for controlling particle density and distribution, and enabling low temperature ex-solution. The particle reaches a saturated size after a few minutes, and the size depends on temperature. Quantitative measurements with a kinetic model determine the rate limiting step, vacancy formation enthalpy, ex-solution enthalpy, and activation energy for particle growth. The ex-solved particles are tightly socketed, preventing interactions among them over 800 °C. Furthermore, we obtain the first direct clarification of the active reaction site for CO oxidation-the Co-oxide interface, agreeing well with density functional theory calculations.
Collapse
Affiliation(s)
- Yong-Ryun Jo
- School of Materials Science and Engineering , Gwangju Institute of Science and Technology (GIST) , 123 Cheomdangwagi-ro , Buk-gu, Gwangju , Korea
| | - Bonjae Koo
- Department of Materials Science and Engineering , Korea Advanced Institute of Science and Technology (KAIST) , 291 Daehak-ro , Yuseong-gu, Daejeon , Korea
| | - Min-Ji Seo
- School of Materials Science and Engineering , Gwangju Institute of Science and Technology (GIST) , 123 Cheomdangwagi-ro , Buk-gu, Gwangju , Korea
| | - Jun Kyu Kim
- Department of Materials Science and Engineering , Korea Advanced Institute of Science and Technology (KAIST) , 291 Daehak-ro , Yuseong-gu, Daejeon , Korea
| | - Siwon Lee
- Department of Materials Science and Engineering , Korea Advanced Institute of Science and Technology (KAIST) , 291 Daehak-ro , Yuseong-gu, Daejeon , Korea
| | - Kyeounghak Kim
- Department of Chemical Engineering , Pohang University of Science and Technology (POSTECH) , 77 Cheongam-ro , Nam-gu, Pohang , Korea
| | - Jeong Woo Han
- Department of Chemical Engineering , Pohang University of Science and Technology (POSTECH) , 77 Cheongam-ro , Nam-gu, Pohang , Korea
| | - WooChul Jung
- Department of Materials Science and Engineering , Korea Advanced Institute of Science and Technology (KAIST) , 291 Daehak-ro , Yuseong-gu, Daejeon , Korea
| | - Bong-Joong Kim
- School of Materials Science and Engineering , Gwangju Institute of Science and Technology (GIST) , 123 Cheomdangwagi-ro , Buk-gu, Gwangju , Korea
| |
Collapse
|
14
|
Mahajan A, Banik S, Majumdar D, Bhattacharya SK. Anodic Oxidation of Butan-1-ol on Reduced Graphene Oxide-Supported Pd-Ag Nanoalloy for Fuel Cell Application. ACS OMEGA 2019; 4:4658-4670. [PMID: 31459653 PMCID: PMC6649295 DOI: 10.1021/acsomega.8b03561] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 02/08/2019] [Indexed: 05/31/2023]
Abstract
Reduced graphene oxide (RGO)-supported bimetallic Pd x Ag y alloy nanoparticles of various compositions were synthesized by one-pot coreduction of respective precursors with hydrazine for use in the anode catalysis of oxidation of butan-1-ol in alkali. The as-synthesized catalyst materials were characterized by microscopic, spectroscopic, and diffraction techniques. Cyclic voltammetry (CV), chronoamperometry, and polarization studies infer that a few Pd x Ag y materials exhibit an enhanced and synergistic catalytic activity in reference to Pd and Ag nanomaterials. Among the various RGO composites of Pd x Ag y alloy on graphite support, the one containing the Pd70Ag30@RGO composite is the best in catalytic activity. The cycle life of the catalyst is found to be very high, and PdO and Ag2O are found to be generated in the catalyst material with little change in the catalytic capability during the 100th cycle of CV operation. The addition of Ag upto 30 atom % in the Pd x Ag y alloy causes greater formation of butyraldehyde and butyl butanoate among the various products. Larger atom % of Pd helps to form sodium butyrate and sodium carbonate, as evident from the ex situ Fourier transform infrared and high-performance liquid chromatography study of the product mixtures and the separate CV studies of the intermediate products. A suitable mechanism is also proposed to fit the findings.
Collapse
Affiliation(s)
- Ankita Mahajan
- Physical Chemistry
Section, Department of Chemistry, Jadavpur
University, Kolkata, 700 032 West Bengal, India
| | - Senjuti Banik
- Physical Chemistry
Section, Department of Chemistry, Jadavpur
University, Kolkata, 700 032 West Bengal, India
| | - Dipanwita Majumdar
- Department of Chemistry, Chandernagore College, Chandannagar, Hooghly, 712136 West Bengal, India
| | - Swapan Kumar Bhattacharya
- Physical Chemistry
Section, Department of Chemistry, Jadavpur
University, Kolkata, 700 032 West Bengal, India
| |
Collapse
|
15
|
Ipadeola AK, Barik R, Ray SC, Ozoemena KI. Bimetallic Pd/SnO2 Nanoparticles on Metal Organic Framework (MOF)-Derived Carbon as Electrocatalysts for Ethanol Oxidation. Electrocatalysis (N Y) 2019. [DOI: 10.1007/s12678-019-00518-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Preparation and electrocatalytic performance of nanoporous Pd/Sn and Pd/Sn-CuO composite catalysts. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2018.11.095] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
17
|
Sankar S, Watanabe N, Anilkumar GM, Nair BN, Sivakamiammal SG, Tamaki T, Yamaguchi T. Electro-oxidation competency of palladium nanocatalysts over ceria–carbon composite supports during alkaline ethylene glycol oxidation. Catal Sci Technol 2019. [DOI: 10.1039/c8cy02232a] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The effect of varying Pd–CeO2 ratios on the oxidation efficiency of ethylene glycol and low molecular weight alcohols in alkaline medium.
Collapse
Affiliation(s)
- Sasidharan Sankar
- Laboratory for Chemistry and Life Science
- Tokyo Institute of Technology
- Yokohama
- 226-850 Japan
- Core Research for Evolutionary Science and Technology
| | - Naoto Watanabe
- Laboratory for Chemistry and Life Science
- Tokyo Institute of Technology
- Yokohama
- 226-850 Japan
| | - Gopinathan M. Anilkumar
- Core Research for Evolutionary Science and Technology
- Japan Science and Technology Agency (JST-CREST)
- 102-0076 Japan
- R&D Centre
- Noritake Co., Ltd
| | | | | | - Takanori Tamaki
- Laboratory for Chemistry and Life Science
- Tokyo Institute of Technology
- Yokohama
- 226-850 Japan
- Core Research for Evolutionary Science and Technology
| | - Takeo Yamaguchi
- Laboratory for Chemistry and Life Science
- Tokyo Institute of Technology
- Yokohama
- 226-850 Japan
- Core Research for Evolutionary Science and Technology
| |
Collapse
|
18
|
McClure JP, Grew KN, Baker DR, Gobrogge E, Das N, Chu D. Harvesting resonantly-trapped light for small molecule oxidation reactions at the Au/α-Fe 2O 3 interface. NANOSCALE 2018; 10:7833-7850. [PMID: 29664495 DOI: 10.1039/c8nr01330f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Plasmonic metal nanoparticles (NPs) extend the overall light absorption of semiconductor materials. However, it is not well understood how coupling metal NPs to semiconductors alters the photo-electrochemical activity of small molecule oxidation (SMO) reactions. Different photo-anode electrodes comprised of Au NPs and α-Fe2O3 are designed to elucidate how the coupling plays not only a role in the water oxidation reaction (WO) but also performs for different SMO reactions. In this regard, Au NPs are inserted at specific regions within and/or on α-Fe2O3 layers created with a sequential electron beam evaporation method and multiple annealing treatments. The SMO and WO reactions are probed with broad-spectrum irradiation experiments with an emphasis on light-driven enhancements above and below the α-Fe2O3 band gap. Thin films of α-Fe2O3 supported on a gold back reflective layer resonantly-traps incident light leading to enhanced SMO/WO conversion efficiencies at high overpotential (η) for above band-gap excitations with no SMO activity observed at low η. In contrast, a substantial increase in the light-driven SMO activity is observed at low η, as well as for below band-gap excitations when sufficiently thin α-Fe2O3 films are decorated with Au NPs at the solution-electrode interface. The enhanced photo-catalytic activity is correlated with increased surface oxygen content (hydroxyl groups) at the Au/α-Fe2O3 interface, as well as simulated volume-integrated near-field enhancements over select regions of the Au/α-Fe2O3 interface providing an important platform for future SMO/WO photo-electrocatalyst development.
Collapse
Affiliation(s)
- Joshua P McClure
- U.S. Army Research Laboratory, Adelphi, MD, 2800 Powder Mill Road, Adelphi, MD 20783, USA.
| | | | | | | | | | | |
Collapse
|
19
|
Hu J, Wu X, Zhang Q, Gao M, Qiu H, Huang K, Feng S, Wang T, Yang Y, Liu Z, Zhao B. Highly Active PdNi/RGO/Polyoxometalate Nanocomposite Electrocatalyst for Alcohol Oxidation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:2685-2691. [PMID: 29400977 DOI: 10.1021/acs.langmuir.7b04031] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A PdNi/RGO/polyoxometalate nanocomposite has been successfully synthesized by a simple wet-chemical method. Characterizations such as transmission electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction analysis, and X-ray photoelectron spectroscopy are employed to verify the morphology, structure, and elemental composition of the as-prepared nanocomposite. Inspired by the fast-developing fuel cells, the electrochemical catalytic performance of the nanocomposite toward methanol and ethanol oxidation in alkaline media is further tested. Notably, the nanocomposite exhibits excellent catalytic activity and long-term stability toward alcohol electrooxidation compared with the PdNi/RGO and commercial Pd/C catalyst. Furthermore, the electrochemical results reveal that the prepared nanocomposite is attractive as a promising electrocatalyst for direct alcohol fuel cells, in which the phosphotungstic acid plays a crucial role in enhancing the electrocatalytic activities of the catalyst.
Collapse
Affiliation(s)
- Jing Hu
- Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province, Department of Chemistry & Environmental Engineering, Changchun University of Science and Technology , Changchun, Jilin 130022, P. R. China
| | - Xiaofeng Wu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University , Changchun 130012, P. R. China
| | - Qingfan Zhang
- Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province, Department of Chemistry & Environmental Engineering, Changchun University of Science and Technology , Changchun, Jilin 130022, P. R. China
| | - Mingyan Gao
- Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province, Department of Chemistry & Environmental Engineering, Changchun University of Science and Technology , Changchun, Jilin 130022, P. R. China
| | - Haifang Qiu
- Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province, Department of Chemistry & Environmental Engineering, Changchun University of Science and Technology , Changchun, Jilin 130022, P. R. China
| | - Keke Huang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University , Changchun 130012, P. R. China
| | - Shouhua Feng
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University , Changchun 130012, P. R. China
| | - Tingting Wang
- Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province, Department of Chemistry & Environmental Engineering, Changchun University of Science and Technology , Changchun, Jilin 130022, P. R. China
| | - Ying Yang
- Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province, Department of Chemistry & Environmental Engineering, Changchun University of Science and Technology , Changchun, Jilin 130022, P. R. China
| | - Zhelin Liu
- Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province, Department of Chemistry & Environmental Engineering, Changchun University of Science and Technology , Changchun, Jilin 130022, P. R. China
| | - Bo Zhao
- Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province, Department of Chemistry & Environmental Engineering, Changchun University of Science and Technology , Changchun, Jilin 130022, P. R. China
| |
Collapse
|