1
|
ALKAN F, DEMİRBİLEK M, AYDIN O, GÜMÜŞKAYA ÖCAL B, LAÇİN TÜRKOĞLU N, TÜRK M, ONUR MA. Nonadhesive membranes: preparation and characterization of modified PHBHX membranes. Turk J Chem 2024; 49:54-67. [PMID: 40104102 PMCID: PMC11913361 DOI: 10.55730/1300-0527.3710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 02/17/2025] [Accepted: 11/20/2024] [Indexed: 03/20/2025] Open
Abstract
After abdominal surgery, there is a possibility of adhesions between the abdominal organs and the abdominal wall. The adhesions can lead to problems such as chronic pain, intestinal blockage, and infertility. To prevent adhesion, antiadhesion patches can be used. In this study, poly hydroxybutyrate-co-hexanoate membranes were fabricated as antiadhesion patches and modified with either fatty acids or polyethylene glycol. The homogeneity and protein absorption of the membranes were assessed. The effects on blood coagulation factors were determined and the adhesion-proliferation properties of human fibroblast cells on the membranes were determined. The results show that myristic acid slightly increases surface free energy (40.7 ± 4.2 mN/m), decreases polar interaction (6.7 ± 0.7%), and has no effect on cell adhesion or proliferation at low concentrations, but does at high concentrations. Oleic acid slightly increases surface free energy (45.91 ± 4.8 mN/m), does not affect polar interaction (11.4 ± 0.9%), and increases cell proliferation at low concentrations. Both polyethylene glycol 400 and polyethylene glycol 8000 decrease cell adhesion and proliferation and do not change the surface free energy of membranes (39.6 ± 2.6 mN/m and 37.8 ± 1.8 mN/m, respectively), but decrease polar interaction (6.6 ± 0.3% and 5.1 ± 0.2%, respectively). In conclusion, the modified membrane is a good candidate for an antiadhesion patch for abdominal surgery.
Collapse
Affiliation(s)
- Funda ALKAN
- Bioengineering Division, Institute of Science, Hacettepe University, Ankara,
Turkiye
| | - Murat DEMİRBİLEK
- Department of Biology, Faculty of Arts and Sciences, Hacı Bayram Veli University, Ankara,
Turkiye
| | - Oktay AYDIN
- Department of General Surgery, Faculty of Medicine, Kırıkkale University, Kırıkkale,
Turkiye
| | - Berrak GÜMÜŞKAYA ÖCAL
- Department of Medical Pathology, Surgical Medical Sciences, Faculty of Medicine, Yıldırım Beyazit University, Ankara,
Turkiye
| | - Nelisa LAÇİN TÜRKOĞLU
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Yıldız Teknik University, İstanbul,
Turkiye
| | - Mustafa TÜRK
- Bioengineering Division, Engineering Faculty, Kırıkkale University, Kırıkkale,
Turkiye
| | - Mehmet Ali ONUR
- Department of Biology, Faculty of Sciences, Hacettepe University, Ankara,
Turkiye
| |
Collapse
|
2
|
Baroni S, Argenziano M, La Cava F, Soster M, Garello F, Lembo D, Cavalli R, Terreno E. Hard-Shelled Glycol Chitosan Nanoparticles for Dual MRI/US Detection of Drug Delivery/Release: A Proof-of-Concept Study. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2227. [PMID: 37570545 PMCID: PMC10420971 DOI: 10.3390/nano13152227] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023]
Abstract
This paper describes a novel nanoformulation for dual MRI/US in vivo monitoring of drug delivery/release. The nanosystem was made of a perfluoropentane core coated with phospholipids stabilized by glycol chitosan crosslinked with triphosphate ions, and it was co-loaded with the prodrug prednisolone phosphate (PLP) and the structurally similar MRI agent Gd-DTPAMA-CHOL. Importantly, the in vitro release of PLP and Gd-DTPAMA-CHOL from the nanocarrier showed similar profiles, validating the potential impact of the MRI agent as an imaging reporter for the drug release. On the other hand, the nanobubbles were also detectable by US imaging both in vitro and in vivo. Therefore, the temporal evolution of both MRI and US contrast after the administration of the proposed nanosystem could report on the delivery and the release kinetics of the transported drug in a given lesion.
Collapse
Affiliation(s)
- Simona Baroni
- Molecular and Preclinical Imaging Centers, Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy; (S.B.); (F.L.C.); (F.G.)
| | - Monica Argenziano
- Department of Drug Science and Technology, University of Torino, Via P. Giuria 9, 10125 Torino, Italy; (M.A.); (M.S.)
| | - Francesca La Cava
- Molecular and Preclinical Imaging Centers, Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy; (S.B.); (F.L.C.); (F.G.)
| | - Marco Soster
- Department of Drug Science and Technology, University of Torino, Via P. Giuria 9, 10125 Torino, Italy; (M.A.); (M.S.)
| | - Francesca Garello
- Molecular and Preclinical Imaging Centers, Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy; (S.B.); (F.L.C.); (F.G.)
| | - David Lembo
- Department of Clinical and Biological Sciences, University of Torino, S. Luigi Gonzaga Hospital, Regione Gonzole, 10, 10043 Orbassano, Italy;
| | - Roberta Cavalli
- Department of Drug Science and Technology, University of Torino, Via P. Giuria 9, 10125 Torino, Italy; (M.A.); (M.S.)
| | - Enzo Terreno
- Molecular and Preclinical Imaging Centers, Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy; (S.B.); (F.L.C.); (F.G.)
| |
Collapse
|
3
|
Image-guided drug delivery in nanosystem-based cancer therapies. Adv Drug Deliv Rev 2023; 192:114621. [PMID: 36402247 DOI: 10.1016/j.addr.2022.114621] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/18/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022]
Abstract
The past decades have shown significant advancements in the development of solid tumor treatment. For instance, implementation of nanosystems for drug delivery has led to a reduction in side effects and improved delivery to the tumor region. However, clinical translation has faced challenges, as tumor drug levels are still considered to be inadequate. Interdisciplinary research has resulted in the development of more advanced drug delivery systems. These are coined "smart" due to the ability to be followed and actively manipulated in order to have better control over local drug release. Therefore, image-guided drug delivery can be a powerful strategy to improve drug activity at the target site. Being able to visualize the inflow of the administered smart nanosystem within the tumor gives the potential to determine the right moment to apply the facilitator to initiate drug release. Here we provide an overview of available nanosystems, imaging moieties, and imaging techniques. We discuss preclinical application of these smart drug delivery systems, the strength of image-guided drug delivery, and the future of personalized treatment.
Collapse
|
4
|
Niu YQ, Liu JH, Aymonier C, Fermani S, Kralj D, Falini G, Zhou CH. Calcium carbonate: controlled synthesis, surface functionalization, and nanostructured materials. Chem Soc Rev 2022; 51:7883-7943. [PMID: 35993776 DOI: 10.1039/d1cs00519g] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Calcium carbonate (CaCO3) is an important inorganic mineral in biological and geological systems. Traditionally, it is widely used in plastics, papermaking, ink, building materials, textiles, cosmetics, and food. Over the last decade, there has been rapid development in the controlled synthesis and surface modification of CaCO3, the stabilization of amorphous CaCO3 (ACC), and CaCO3-based nanostructured materials. In this review, the controlled synthesis of CaCO3 is first examined, including Ca2+-CO32- systems, solid-liquid-gas carbonation, water-in-oil reverse emulsions, and biomineralization. Advancing insights into the nucleation and crystallization of CaCO3 have led to the development of efficient routes towards the controlled synthesis of CaCO3 with specific sizes, morphologies, and polymorphs. Recently-developed surface modification methods of CaCO3 include organic and inorganic modifications, as well as intensified surface reactions. The resultant CaCO3 can then be further engineered via template-induced biomineralization and layer-by-layer assembly into porous, hollow, or core-shell organic-inorganic nanocomposites. The introduction of CaCO3 into nanostructured materials has led to a significant improvement in the mechanical, optical, magnetic, and catalytic properties of such materials, with the resultant CaCO3-based nanostructured materials showing great potential for use in biomaterials and biomedicine, environmental remediation, and energy production and storage. The influences that the preparation conditions and additives have on ACC preparation and stabilization are also discussed. Studies indicate that ACC can be used to construct environmentally-friendly hybrid films, supramolecular hydrogels, and drug vehicles. Finally, the existing challenges and future directions of the controlled synthesis and functionalization of CaCO3 and its expanding applications are highlighted.
Collapse
Affiliation(s)
- Yu-Qin Niu
- Research Group for Advanced Materials & Sustainable Catalysis (AMSC), State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China. .,Qing Yang Institute for Industrial Minerals, You Hua, Qing Yang, Chi Zhou 242804, China
| | - Jia-Hui Liu
- Research Group for Advanced Materials & Sustainable Catalysis (AMSC), State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China. .,Qing Yang Institute for Industrial Minerals, You Hua, Qing Yang, Chi Zhou 242804, China
| | - Cyril Aymonier
- Univ Bordeaux, ICMCB, Bordeaux INP, UMR 5026, CNRS, F-33600 Pessac, France
| | - Simona Fermani
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi 2, I-40126 Bologna, Italy. .,Interdepartmental Centre for Industrial Research Health Sciences & Technologies, University of Bologna, 40064 Bologna, Italy
| | - Damir Kralj
- Laboratory for Precipitation Processes, Ruđer Bošković Institute, P. O. Box 1016, HR-10001 Zagreb, Croatia
| | - Giuseppe Falini
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi 2, I-40126 Bologna, Italy.
| | - Chun-Hui Zhou
- Research Group for Advanced Materials & Sustainable Catalysis (AMSC), State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China. .,Qing Yang Institute for Industrial Minerals, You Hua, Qing Yang, Chi Zhou 242804, China
| |
Collapse
|
5
|
Lin C, Chen YZ, Wu B, Yang MT, Liu CQ, Zhao Y. Advances and prospects of ultrasound targeted drug delivery systems using biomaterial-modified micro/nanobubbles for tumor therapy. Curr Med Chem 2022; 29:5062-5075. [PMID: 35362371 DOI: 10.2174/0929867329666220331110315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/18/2022] [Accepted: 02/01/2022] [Indexed: 11/22/2022]
Abstract
The incidence of malignant tumors is rising rapidly and tends to be in the younger, which has been one of the most important factors endangering the safety of human life. Ultrasound micro/nanobubbles, as a noninvasive and highly specific antitumor strategy, can reach and destroy tumor tissue through their effects of cavitation and acoustic perforation under the guidance of ultrasound. Meanwhile, micro/nanobubbles are now used as a novel drug carrier, releasing drugs at a target region, especially on the prospects of biomaterial-modified micro/nanobubbles as a dual modality for drug delivery and therapeutic monitoring. and successful evaluation of the sonoporation mechanism(s), ultrasound parameters, drug type and dose will need to be addressed before translating this technology for clinical use. Therefore, this paper collects the literature on the experimental and clinical studies of ultrasound biomaterial-modified micro/nanobubbles therapy in vitro and in vivo in recent years.
Collapse
Affiliation(s)
- Chen Lin
- Medical College of China three Gorges University;Yichang; China
| | - Ye-Zi Chen
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy,China Three Gorges University; Yichang; China
| | - Bo Wu
- Medical College of China three Gorges University;Yichang; China
| | - Meng-Ting Yang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy,China Three Gorges University; Yichang; China
| | - Chao-Qi Liu
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy,China Three Gorges University; Yichang; China
| | - Yun Zhao
- Medical College of China three Gorges University;Yichang; China
| |
Collapse
|
6
|
Thangudu S, Yu CC, Lee CL, Liao MC, Su CH. Magnetic, biocompatible FeCO 3 nanoparticles for T2-weighted magnetic resonance imaging of in vivo lung tumors. J Nanobiotechnology 2022; 20:157. [PMID: 35337331 PMCID: PMC8952886 DOI: 10.1186/s12951-022-01355-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 03/06/2022] [Indexed: 12/26/2022] Open
Abstract
Background Late diagnosis of lung cancer is one of the leading causes of higher mortality in lung cancer patients worldwide. Significant research attention has focused on the use of magnetic resonance imaging (MRI) based nano contrast agents to efficiently locate cancer tumors for surgical removal or disease diagnostics. Although contrast agents offer significant advantages, further clinical applications require improvements in biocompatibility, biosafety and efficacy. Results To address these challenges, we fabricated ultra-fine Iron Carbonate Nanoparticles (FeCO3 NPs) for the first time via modified literature method. Synthesized NPs exhibit ultra-fine size (~ 17 nm), good dispersibility and excellent stability in both aqueous and biological media. We evaluated the MR contrast abilities of FeCO3 NPs and observed remarkable T2 weighted MRI contrast in a concentration dependent manner, with a transverse relaxivity (r2) value of 730.9 ± 4.8 mM−1 S−1at 9.4 T. Moreover, the r2 values of present FeCO3 NPs are respectively 1.95 and 2.3 times higher than the clinically approved contrast agents Resovist® and Friedx at same 9.4 T MR scanner. FeCO3 NPs demonstrate an enhanced T2 weighted contrast for in vivo lung tumors within 5 h of post intravenous administration with no apparent systemic toxicity or induction of inflammation observed in in vivo mice models. Conclusion The excellent biocompatibility and T2 weighted contrast abilities of FeCO3 NPs suggest potential for future clinical use in early diagnosis of lung tumors. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-022-01355-3.
Collapse
Affiliation(s)
- Suresh Thangudu
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 833, Taiwan
| | - Chun-Chieh Yu
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 833, Taiwan
| | - Chin-Lai Lee
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 833, Taiwan
| | - Min-Chiao Liao
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 833, Taiwan
| | - Chia-Hao Su
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 833, Taiwan. .,Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan. .,Center for General Education, Chang Gung University, Taoyuan, 333, Taiwan.
| |
Collapse
|
7
|
Jenjob R, Phakkeeree T, Crespy D. Core–shell particles for drug-delivery, bioimaging, sensing, and tissue engineering. Biomater Sci 2020; 8:2756-2770. [DOI: 10.1039/c9bm01872g] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Core–shell particles offer significant advantages in their use for bioimaging and biosensors.
Collapse
Affiliation(s)
- Ratchapol Jenjob
- Department of Materials Science and Engineering
- School of Molecular Science and Engineering
- Vidyasirimedhi Institute of Science and Technology (VISTEC)
- Rayong 21210
- Thailand
| | - Treethip Phakkeeree
- Department of Materials Science and Engineering
- School of Molecular Science and Engineering
- Vidyasirimedhi Institute of Science and Technology (VISTEC)
- Rayong 21210
- Thailand
| | - Daniel Crespy
- Department of Materials Science and Engineering
- School of Molecular Science and Engineering
- Vidyasirimedhi Institute of Science and Technology (VISTEC)
- Rayong 21210
- Thailand
| |
Collapse
|
8
|
Liu N, Marin R, Mazouzi Y, Cron GO, Shuhendler A, Hemmer E. Cubic versus hexagonal - effect of host crystallinity on the T 1 shortening behaviour of NaGdF 4 nanoparticles. NANOSCALE 2019; 11:6794-6801. [PMID: 30907912 DOI: 10.1039/c9nr00241c] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Sodium gadolinium fluoride (NaGdF4) nanoparticles are promising candidates as T1 shortening magnetic resonance imaging (MRI) contrast agents due to the paramagnetic properties of the Gd3+ ion. Effects of size and surface modification of these nanoparticles on proton relaxation times have been widely studied. However, to date, there has been no report on how T1 relaxivity (r1) is affected by the different polymorphs in which NaGdF4 crystallizes: cubic (α) and hexagonal (β). Here, a microwave-assisted thermal decomposition method was developed that grants selective access to NaGdF4 nanoparticles of either phase in the same size range, allowing the influence of host crystallinity on r1 to be investigated. It was found that at 3 T cubic NaGdF4 nanoparticles exhibit larger r1 values than their hexagonal analogues. This result was interpreted based on Solomon-Bloembergen-Morgan theory, suggesting that the inner sphere contribution to r1 is more pronounced for cubic NaGdF4 nanoparticles as compared to their hexagonal counterparts. This holds true irrespective of the chosen surface modification, i.e. small citrate groups or longer chain poly(acrylic acid). Key aspects were found to be a polymorph-induced larger hydrodynamic diameter and the higher magnetization possessed by cubic nanoparticles.
Collapse
Affiliation(s)
- Nan Liu
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie St. Ottawa (ON) K1N 6N5, Canada.
| | | | | | | | | | | |
Collapse
|
9
|
Calcium carbonate-methylene blue nanohybrids for photodynamic therapy and ultrasound imaging. SCIENCE CHINA-LIFE SCIENCES 2018; 61:483-491. [DOI: 10.1007/s11427-017-9260-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 12/08/2017] [Indexed: 10/17/2022]
|