1
|
Jiang Y, Jiang M, Cai R, Shi X, Hu Q, Kan B. Rapid and specific differentiation of Salmonella enterica serotypes typhi and Paratyphi by multicolor melting curve analysis. Gut Pathog 2024; 16:43. [PMID: 39160630 PMCID: PMC11331607 DOI: 10.1186/s13099-024-00636-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 07/29/2024] [Indexed: 08/21/2024] Open
Abstract
Rapid and accurate identification of Salmonella enterica serotypes Typhi and Paratyphi (A, B and C), the causal agents of enteric fever, is critical for timely treatment, case management and evaluation of health policies in low and middle-income countries where the disease still remains a serious public health problem. The present study describes the development of a multiplex assay (EFMAtyping) for simultaneous identification of pathogens causing typhoid and paratyphoid fever in a single reaction by the MeltArray approach, which could be finished within 2.5 h. Seven specific genes were chosen for differentiation of typhoidal and nontyphoidal Salmonella. All gene targets were able to be detected by the EFMAtyping assay, with expected Tm values and without cross-reactivity to other relevant Salmonella serovars. The limit of detection (LOD) for all gene targets was 50 copies per reaction. The LOD reached 102-103 CFU/ml for each pathogen in simulated clinical samples. The largest standard deviation value for mean Tm was below 0.5 °C. This newly developed EFMAtyping assay was further evaluated by testing 551 clinical Salmonella isolates, corroborated in parallel by the traditional Salmonella identification workflow, and serotype prediction was enabled by whole-genome sequencing. Compared to the traditional method, our results exhibited 100% of specificity and greater than 96% of sensitivity with a kappa correlation ranging from 0.96 to 1.00. Thus, the EFMAtyping assay provides a rapid, high throughput, and promising tool for public health laboratories to monitor typhoid and paratyphoid fever.
Collapse
Affiliation(s)
- Yixiang Jiang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Min Jiang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Rui Cai
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Xiaolu Shi
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Qinghua Hu
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China.
| | - Biao Kan
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China.
| |
Collapse
|
2
|
Highly multiplex PCR assays by coupling the 5'-flap endonuclease activity of Taq DNA polymerase and molecular beacon reporters. Proc Natl Acad Sci U S A 2022; 119:2110672119. [PMID: 35197282 PMCID: PMC8892341 DOI: 10.1073/pnas.2110672119] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2022] [Indexed: 01/23/2023] Open
Abstract
We describe a highly multiplex PCR approach that can identify 10-fold more targets in current real-time PCR assays without additional enzymes or separate reactions. This single-step, single-tube, homogeneous detection approach, termed MeltArray, is achieved by coupling the 5′-flap endonuclease activity of the Taq DNA polymerase and multiple annealing sites of the molecular beacon reporters. The 5′-flap endonuclease cleaves a probe specifically into a “mediator” primer, and one molecular beacon reporter allows for the extension of multiple “mediator” primers to produce a series of fluorescent hybrids with different melting temperatures unique to each target. The overall number of targets detectable per reaction is equal to the number of the reporters multiplied by the number of mediator primers per reporter. Real-time PCR is the most utilized nucleic acid testing tool in clinical settings. However, the number of targets detectable per reaction are restricted by current modes. Here, we describe a single-step, multiplex approach capable of detecting dozens of targets per reaction in a real-time PCR thermal cycler. The approach, termed MeltArray, utilizes the 5′-flap endonuclease activity of Taq DNA polymerase to cleave a mediator probe into a mediator primer that can bind to a molecular beacon reporter, which allows for the extension of multiple mediator primers to produce a series of fluorescent hybrids of different melting temperatures unique to each target. Using multiple molecular beacon reporters labeled with different fluorophores, the overall number of targets is equal to the number of the reporters multiplied by that of mediator primers per reporter. The use of MeltArray was explored in various scenarios, including in a 20-plex assay that detects human Y chromosome microdeletions, a 62-plex assay that determines Escherichia coli serovars, a 24-plex assay that simultaneously identifies and quantitates respiratory pathogens, and a minisequencing assay that identifies KRAS mutations, and all of these different assays were validated with clinical samples. MeltArray approach should find widespread use in clinical settings owing to its combined merits of multiplicity, versatility, simplicity, and accessibility.
Collapse
|
3
|
Lu L, Li M, Li Y, Jiang M, Jiang Y, Shi X, Zuo L, Wang L, Bian S, Qiu Y, Cai R, Liao Y, Li Q, Li L, Hu Q. A Novel Molecular Method for Simultaneous Identification of Vibrio parahaemolyticus 57 K-Serogroups Using Probe Melting Curve Analysis. Front Cell Infect Microbiol 2021; 11:594808. [PMID: 33718262 PMCID: PMC7953158 DOI: 10.3389/fcimb.2021.594808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 01/18/2021] [Indexed: 01/22/2023] Open
Abstract
The serotyping of Vibrio parahaemolyticus, which is crucial to the surveillance and detection of outbreaks of vibriosis infection, has been widely used in many countries. In this study, we developed a molecular assay, named multiplex ligation reaction based on probe melting curve analysis (MLMA), for simultaneous identification of V. parahaemolyticus 57 K-serogroups. Based on the previous genomes of 418 strains including 39 K-serogroups and the 18 K-serogroups sequences from public databases, we obtained 57 K-serogroups specific gene sequences for designing primers and probes. The developed MLMA assay for identifying the V. parahaemolyticus 57 K-serogroups showed high reproducibility, with the intra- and inter-assay standard deviations and coefficients of variation of no more than 1°C and 1%, respectively. The limit of detection for all gene targets ranged from 0.1 to 1.0 ng/µl. We validated the MLMA assay with a double-blind test identifying 595 V. parahaemolyticus isolates using conventional serotyping methods for comparison. The results showed the kappa value between the MLMA assay and the traditional serological method was 0.936 and that there was a 96.97% consistency rate with conventional serotyping methods for all detected isolates. Additionally, five rare K-serogroups were identified using the MLMA assay, as well as 18 strains that could not be identified using the traditional serotyping method. Thus, the MLMA assay provides a rapid, robust, and promising tool for the molecular serotyping of V. parahaemolyticus K-serogroups and has the potential application to the detection of outbreaks and surveillance of V. parahaemolyticus infection.
Collapse
Affiliation(s)
- Linying Lu
- School of Public Health, University of South China, Hengyang, China
| | - Minxu Li
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Yinghui Li
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Min Jiang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Yixiang Jiang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Xiaolu Shi
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Le Zuo
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Lei Wang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Shengzhe Bian
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China.,Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI-Shenzhen, Shenzhen, China
| | - Yaqun Qiu
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Rui Cai
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Yiqun Liao
- School of Life Sciences, Xiamen University, Xiamen, China
| | - Qingge Li
- School of Life Sciences, Xiamen University, Xiamen, China
| | - Liqiang Li
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI-Shenzhen, Shenzhen, China
| | - Qinghua Hu
- School of Public Health, University of South China, Hengyang, China.,Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| |
Collapse
|
4
|
Detection of Eight Respiratory Bacterial Pathogens Based on Multiplex Real-Time PCR with Fluorescence Melting Curve Analysis. CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY 2020; 2020:2697230. [PMID: 32184908 PMCID: PMC7061119 DOI: 10.1155/2020/2697230] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/22/2019] [Accepted: 12/13/2019] [Indexed: 01/23/2023]
Abstract
Background and Objective. Acinetobacter baumannii, Escherichia coli, Klebsiella pneumoniae, Streptococcus pneumoniae, Haemophilus influenzae, Staphylococcus aureus, Pseudomonas aeruginosa, and Mycobacterium tuberculosis are primary respiratory bacterial pathogens contributing to morbidity and mortality in developing countries. This study evaluated the diagnostic performance of multiplex real-time PCR with fluorescence melting curve analysis (MCA) assay, which was used to detect eight respiratory bacterial pathogens simultaneously. Methods A total of 157 sputum specimens were examined by multiplex real-time with fluorescence MCA, and the results were compared with the conventional culture method. Results Multiplex real-time PCR with fluorescence MCA specifically detected and differentiated eight respiratory bacterial pathogens by different melting curve peaks for each amplification product within 2 hours and exhibited high repeatability. The limit of detection ranged from 64 to 102 CFU/mL in the multiplex PCR system. Multiplex real-time PCR with fluorescence MCA showed a sensitivity greater than 80% and a 100% specificity for each pathogen. The kappa correlation of eight bacteria ranged from 0.89 to 1.00, and the coefficient of variation ranged from 0.05% to 0.80%. Conclusions Multiplex real-time PCR with fluorescence MCA assay is a sensitive, specific, high-throughput, and cost-effective method to detect multiple bacterial pathogens simultaneously.
Collapse
|
5
|
Zuo L, Jiang M, Jiang Y, Shi X, Li Y, Lin Y, Qiu Y, Deng Y, Li M, Lin Z, Liao Y, Xie J, Li Q, Hu Q. Multiplex ligation reaction based on probe melting curve analysis: a pragmatic approach for the identification of 30 common Salmonella serovars. Ann Clin Microbiol Antimicrob 2019; 18:39. [PMID: 31805936 PMCID: PMC6894471 DOI: 10.1186/s12941-019-0338-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 11/18/2019] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND While Salmonella serotyping is of paramount importance for the disease intervention of salmonellosis, a fast and easy-to-operate molecular serotyping solution remains elusive. We have developed a multiplex ligation reaction based on probe melting curve analysis (MLMA) for the identification of 30 common Salmonella serovars. METHODS Serovar-specific primers and probes were designed based on a comparison of gene targets (wzx and wzy encoding for somatic antigen biosynthesis; fliC and fljB for flagellar antigens) from 5868 Salmonella genomes. The ssaR gene, a type III secretion system component, was included for the confirmation of Salmonella. RESULTS All gene targets were detected and gave expected Tm values during assay evaluation. Cross reactions were not demonstrated between the 30 serovars (n = 211), or with an additional 120 serovars (n = 120) and other Enterobacteriaceae (n = 3). The limit of identification for all targets ranged from using 1.2 ng/μL to 1.56 ng/μL of DNA. The intra- and inter-assay standard deviations and the coefficients of variation were no more than 0.5 °C and less than 1% respectively, indicating high reproducibility. From consecutive outpatient stool samples (n = 3590) collected over a 10-month period at 11 sentinel hospitals in Shenzhen, China, we conducted a multicenter study using the traditional Salmonella identification workflow and the MLMA assay workflow in parallel. From Salmonella isolates (n = 496, 13.8%) derived by both workflows, total agreement (kappa = 1.0) between the MLMA assay and conventional serotyping was demonstrated. CONCLUSIONS With an assay time of 2.5 h, this simple assay has shown promising potential to provide rapid and high-throughput identification of Salmonella serovars for clinical and public health laboratories to facilitate timely surveillance of salmonellosis.
Collapse
Affiliation(s)
- Le Zuo
- Shenzhen Center for Disease Control and Prevention, 8 Longyuan Road, Nanshan District, Shenzhen, China
| | - Min Jiang
- Shenzhen Center for Disease Control and Prevention, 8 Longyuan Road, Nanshan District, Shenzhen, China
| | - Yixiang Jiang
- Shenzhen Center for Disease Control and Prevention, 8 Longyuan Road, Nanshan District, Shenzhen, China
| | - Xiaolu Shi
- Shenzhen Center for Disease Control and Prevention, 8 Longyuan Road, Nanshan District, Shenzhen, China
| | - Yinghui Li
- Shenzhen Center for Disease Control and Prevention, 8 Longyuan Road, Nanshan District, Shenzhen, China
| | - Yiman Lin
- Shenzhen Center for Disease Control and Prevention, 8 Longyuan Road, Nanshan District, Shenzhen, China
| | - Yaqun Qiu
- Shenzhen Center for Disease Control and Prevention, 8 Longyuan Road, Nanshan District, Shenzhen, China
| | - Yinhua Deng
- College of Life Science, Sichuan University, Chengdu, China
| | - Minxu Li
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Zeren Lin
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Yiqun Liao
- School of Life Sciences, Xiamen University, Xiamen, China
| | - Jianbin Xie
- Shenzhen Center for Disease Control and Prevention, 8 Longyuan Road, Nanshan District, Shenzhen, China
| | - Qingge Li
- School of Life Sciences, Xiamen University, Xiamen, China
| | - Qinghua Hu
- Shenzhen Center for Disease Control and Prevention, 8 Longyuan Road, Nanshan District, Shenzhen, China.
| |
Collapse
|
6
|
Li M, Jiang Y, Shi X, Li Y, Jiang M, Lin Y, Qiu Y, Zuo L, Deng Y, Lin Z, Liao Y, Li Q, Hu Q. Simultaneous Identification of Clinically Common Vibrio parahaemolyticus Serotypes Using Probe Melting Curve Analysis. Front Cell Infect Microbiol 2019; 9:385. [PMID: 31799212 PMCID: PMC6868019 DOI: 10.3389/fcimb.2019.00385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 10/28/2019] [Indexed: 02/06/2023] Open
Abstract
The dynamic nature of Vibrio parahaemolyticus epidemiology has presented a unique challenge for disease intervention strategies. Despite the continued rise of disease incidence and outbreaks of vibriosis, as well as the global emergence of pandemic clones and serovariants with enhanced virulence, there is a paucity of molecular methods for the serotyping of V. parahaemolyticus strains to improve disease surveillance and outbreak investigations. We describe the development of a multiplex ligation reaction based on probe melting curve analysis (MLMA) for the simultaneous identification of 11 clinically most common V. parahaemolyticus serotypes spanning a 10-year period. Through extensive sequence analyses using 418 genomes, specific primers and probes were designed for a total of 22 antigen gene targets for the O- and K- serogroups. Additionally, the toxR gene was incorporated into the assay for the confirmation of V. parahaemolyticus. All gene targets were detected by the assay and gave expected Tm values, without any cross reactions between the 11 clinically common serotypes or with 38 other serotypes. The limit of identification for all gene targets ranged from 0.1 to 1 ng/μL. The intra- and inter-assay standard deviations and the coefficients of variation were no more than 1°C and <1% respectively, indicating a highly reproducible assay. A multicenter double-blind clinical study was conducted using the traditional V. parahaemolyticus identification workflow and the MLMA assay workflow in parallel. From consecutive diarrheal stool specimens (n = 6118) collected over a year at 10 sentinel hospitals, a total of 153 V. parahaemolyticus isolates (2.5%) were identified by both workflows. A total agreement (kappa = 1.0) between the serotypes identified by the MLMA assay and conventional serological method was demonstrated. This is the first molecular assay to simultaneously identify multiple clinically important V. parahaemolyticus serotypes, which satisfies the acute need for a practical, rapid and robust identification of V. parahaemolyticus serotypes to facilitate the timely detection of vibriosis outbreaks and surveillance.
Collapse
Affiliation(s)
- Minxu Li
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Yixiang Jiang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Xiaolu Shi
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Yinghui Li
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Min Jiang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Yiman Lin
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Yaqun Qiu
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Le Zuo
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Yinhua Deng
- College of Life Sciences, Sichuan University, Chengdu, China
| | - Zeren Lin
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Yiqun Liao
- School of Life Sciences, Xiamen University, Xiamen, China
| | - Qingge Li
- School of Life Sciences, Xiamen University, Xiamen, China
| | - Qinghua Hu
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China.,Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| |
Collapse
|
7
|
Xiao Y, Shen X, Zhao QF, Yao YH, Yang TC, Niu JJ. Evaluation of Real-Time PCR Coupled With Multiplex Probe Melting Curve Analysis for Pathogen Detection in Patients With Suspected Bloodstream Infections. Front Cell Infect Microbiol 2019; 9:361. [PMID: 31696061 PMCID: PMC6817478 DOI: 10.3389/fcimb.2019.00361] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 10/07/2019] [Indexed: 01/09/2023] Open
Abstract
Background: This study aimed to evaluate real-time polymerase chain reaction coupled with multiplex probe melting curve analysis (PCR-MCA) for pathogen detection in patients with suspected bloodstream infections (BSIs). Methods: A PCR-MCA assay was developed for simultaneous identification of 28 kinds of the most common pathogens and two resistance genes within a few hours. The diagnostic performance of the PCR-MCA assay was determined and compared to the results of blood culture. Results: A total of 2,844 consecutive new episodes of suspected BSIs in 2,763 patients were included in this study. There were 269 episodes of pathogens identified by blood culture. For all the pathogens tested, the PCR-MCA assay exhibited a sensitivity of 88.8% (239/269), specificity of 100% (2,575/2,575), and agreement of 98.9% (2,814/2,844). For the pathogens on the PCR-MCA list, the PCR-MCA results had a sensitivity of 99.2% (239/241), specificity of 100% (2,575/2,575), and agreement of 99.9% (2,814/2,816) compared with the results of blood culture. For seven samples with multiple pathogens identified simultaneously during one blood culture investigation, the PCR-MCA assay verified the results of the blood culture, with an agreement rate of 100% for each. Conclusion: The PCR-MCA assay could discover 88.8% of the pathogens in clinical practice, showing excellent diagnostic performance vs. that of blood culture for pathogen detection in patients with suspected BSIs, and would contribute to rapid diagnosis and correct antibiotic administration.
Collapse
Affiliation(s)
- Yao Xiao
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China.,Xiamen Hospital of Traditional Chinese Medicine, Xiamen, China
| | - Xu Shen
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Qi-Feng Zhao
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China.,Shaoxing Center for Disease Control and Prevention, Shaoxing, China
| | - Yi-Hui Yao
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Tian-Ci Yang
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China.,Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - Jian-Jun Niu
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China.,Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
8
|
|
9
|
Abdullah AS, Turo C, Moffat CS, Lopez-Ruiz FJ, Gibberd MR, Hamblin J, Zerihun A. Real-Time PCR for Diagnosing and Quantifying Co-infection by Two Globally Distributed Fungal Pathogens of Wheat. FRONTIERS IN PLANT SCIENCE 2018; 9:1086. [PMID: 30140271 PMCID: PMC6095046 DOI: 10.3389/fpls.2018.01086] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 07/05/2018] [Indexed: 06/01/2023]
Abstract
Co-infections - invasions of a host-plant by multiple pathogen species or strains - are common, and are thought to have consequences for pathogen ecology and evolution. Despite their apparent significance, co-infections have received limited attention; in part due to lack of suitable quantitative tools for monitoring of co-infecting pathogens. Here, we report on a duplex real-time PCR assay that simultaneously distinguishes and quantifies co-infections by two globally important fungal pathogens of wheat: Pyrenophora tritici-repentis and Parastagonospora nodorum. These fungi share common characteristics and host species, creating a challenge for conventional disease diagnosis and subsequent management strategies. The assay uses uniquely assigned fluorogenic probes to quantify fungal biomass as nucleic acid equivalents. The probes provide highly specific target quantification with accurate discrimination against non-target closely related fungal species and host genes. Quantification of the fungal targets is linear over a wide range (5000-0.5 pg DNA μl-1) with high reproducibility (RSD ≤ 10%). In the presence of host DNA in the assay matrix, fungal biomass can be quantified up to a fungal to wheat DNA ratio of 1 to 200. The utility of the method was demonstrated using field samples of a cultivar sensitive to both pathogens. While visual and culture diagnosis suggested the presence of only one of the pathogen species, the assay revealed not only presence of both co-infecting pathogens (hence enabling asymptomatic detection) but also allowed quantification of relative abundances of the pathogens as a function of disease severity. Thus, the assay provides for accurate diagnosis; it is suitable for high-throughput screening of co-infections in epidemiological studies, and for exploring pathogen-pathogen interactions and dynamics, none of which would be possible with conventional approaches.
Collapse
Affiliation(s)
- Araz S. Abdullah
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, WA, Australia
| | - Chala Turo
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, WA, Australia
| | - Caroline S. Moffat
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, WA, Australia
| | - Francisco J. Lopez-Ruiz
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, WA, Australia
| | - Mark R. Gibberd
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, WA, Australia
| | - John Hamblin
- Institute of Agriculture, University of Western Australia, Crawley, WA, Australia
| | - Ayalsew Zerihun
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, WA, Australia
| |
Collapse
|
10
|
Identification of VPA1327 (vopT) as a Novel Genetic Marker for Detecting Pathogenic Vibrio parahaemolyticus. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2018. [DOI: 10.22207/jpam.12.2.01] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|