1
|
Partial visual loss disrupts the relationship between judged room size and sound source distance. Exp Brain Res 2021; 240:81-96. [PMID: 34623459 PMCID: PMC8803715 DOI: 10.1007/s00221-021-06235-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 09/25/2021] [Indexed: 11/18/2022]
Abstract
Visual spatial information plays an important role in calibrating auditory space. Blindness results in deficits in a number of auditory abilities, which have been explained in terms of the hypothesis that visual information is needed to calibrate audition. When judging the size of a novel room when only auditory cues are available, normally sighted participants may use the location of the farthest sound source to infer the nearest possible distance of the far wall. However, for people with partial visual loss (distinct from blindness in that some vision is present), such a strategy may not be reliable if vision is needed to calibrate auditory cues for distance. In the current study, participants were presented with sounds at different distances (ranging from 1.2 to 13.8 m) in a simulated reverberant (T60 = 700 ms) or anechoic room. Farthest distance judgments and room size judgments (volume and area) were obtained from blindfolded participants (18 normally sighted, 38 partially sighted) for speech, music, and noise stimuli. With sighted participants, the judged room volume and farthest sound source distance estimates were positively correlated (p < 0.05) for all conditions. Participants with visual losses showed no significant correlations for any of the conditions tested. A similar pattern of results was observed for the correlations between farthest distance and room floor area estimates. Results demonstrate that partial visual loss disrupts the relationship between judged room size and sound source distance that is shown by sighted participants.
Collapse
|
2
|
Kolarik AJ, Moore BCJ, Cirstea S, Aggius-Vella E, Gori M, Campus C, Pardhan S. Factors Affecting Auditory Estimates of Virtual Room Size: Effects of Stimulus, Level, and Reverberation. Perception 2021; 50:646-663. [PMID: 34053354 DOI: 10.1177/03010066211020598] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
When vision is unavailable, auditory level and reverberation cues provide important spatial information regarding the environment, such as the size of a room. We investigated how room-size estimates were affected by stimulus type, level, and reverberation. In Experiment 1, 15 blindfolded participants estimated room size after performing a distance bisection task in virtual rooms that were either anechoic (with level cues only) or reverberant (with level and reverberation cues) with a relatively short reverberation time of T60 = 400 milliseconds. Speech, noise, or clicks were presented at distances between 1.9 and 7.1 m. The reverberant room was judged to be significantly larger than the anechoic room (p < .05) for all stimuli. In Experiment 2, only the reverberant room was used and the overall level of all sounds was equalized, so only reverberation cues were available. Ten blindfolded participants took part. Room-size estimates were significantly larger for speech than for clicks or noise. The results show that when level and reverberation cues are present, reverberation increases judged room size. Even relatively weak reverberation cues provide room-size information, which could potentially be used by blind or visually impaired individuals encountering novel rooms.
Collapse
Affiliation(s)
- Andrew J Kolarik
- Anglia Ruskin University, Cambridge, UK.,Anglia Ruskin University, Cambridge, UK
| | - Brian C J Moore
- Anglia Ruskin University, Cambridge, UK; University of Cambridge, Cambridge, UK.,Anglia Ruskin University, Cambridge, UK
| | - Silvia Cirstea
- Anglia Ruskin University, Cambridge, UK.,Anglia Ruskin University, Cambridge, UK
| | - Elena Aggius-Vella
- Fondazione Istituto Italiano di Tecnologia, Genoa, Italy; Institute for Mind, Brain and Technology, Herzeliya, Israel.,Anglia Ruskin University, Cambridge, UK
| | | | - Claudio Campus
- Fondazione Istituto Italiano di Tecnologia, Genoa, Italy.,Anglia Ruskin University, Cambridge, UK
| | | |
Collapse
|
3
|
The impact of a visual spatial frame on real sound-source localization in virtual reality. CURRENT RESEARCH IN BEHAVIORAL SCIENCES 2020. [DOI: 10.1016/j.crbeha.2020.100003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
4
|
Kolarik AJ, Raman R, Moore BCJ, Cirstea S, Gopalakrishnan S, Pardhan S. The accuracy of auditory spatial judgments in the visually impaired is dependent on sound source distance. Sci Rep 2020; 10:7169. [PMID: 32346036 PMCID: PMC7189236 DOI: 10.1038/s41598-020-64306-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 04/13/2020] [Indexed: 11/09/2022] Open
Abstract
Blindness leads to substantial enhancements in many auditory abilities, and deficits in others. It is unknown how severe visual losses need to be before changes in auditory abilities occur, or whether the relationship between severity of visual loss and changes in auditory abilities is proportional and systematic. Here we show that greater severity of visual loss is associated with increased auditory judgments of distance and room size. On average participants with severe visual losses perceived sounds to be twice as far away, and rooms to be three times larger, than sighted controls. Distance estimates for sighted controls were most accurate for closer sounds and least accurate for farther sounds. As the severity of visual impairment increased, accuracy decreased for closer sounds and increased for farther sounds. However, it is for closer sounds that accurate judgments are needed to guide rapid motor responses to auditory events, e.g. planning a safe path through a busy street to avoid collisions with other people, and falls. Interestingly, greater visual impairment severity was associated with more accurate room size estimates. The results support a new hypothesis that crossmodal calibration of audition by vision depends on the severity of visual loss.
Collapse
Affiliation(s)
- Andrew J Kolarik
- Vision and Eye Research Institute, School of Medicine, Anglia Ruskin University, Cambridge, United Kingdom. .,Department of Psychology, University of Cambridge, Cambridge, United Kingdom.
| | - Rajiv Raman
- Vision and Eye Research Institute, School of Medicine, Anglia Ruskin University, Cambridge, United Kingdom.,Shri Bhagwan Mahavir Vitreoretinal Services, Sankara Nethralaya Eye Hospital, Chennai, India
| | - Brian C J Moore
- Vision and Eye Research Institute, School of Medicine, Anglia Ruskin University, Cambridge, United Kingdom.,Department of Psychology, University of Cambridge, Cambridge, United Kingdom
| | - Silvia Cirstea
- Vision and Eye Research Institute, School of Medicine, Anglia Ruskin University, Cambridge, United Kingdom.,School of Computing and Information Science, Anglia Ruskin University, Cambridge, United Kingdom
| | - Sarika Gopalakrishnan
- Faculty of Low Vision Care, Elite School of Optometry, Chennai, India.,Low Vision Care Department, Sankara Nethralaya Eye Hospital, Chennai, India
| | - Shahina Pardhan
- Vision and Eye Research Institute, School of Medicine, Anglia Ruskin University, Cambridge, United Kingdom
| |
Collapse
|
5
|
Etchemendy PE, Spiousas I, Vergara R. Relationship Between Auditory Context and Visual Distance Perception: Effect of Musical Expertise in the Ability to Translate Reverberation Cues Into Room-Size Perception. Perception 2018; 47:873-880. [PMID: 29759044 DOI: 10.1177/0301006618776225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In a recently published work by our group [ Scientific Reports, 7, 7189 (2017)], we performed experiments of visual distance perception in two dark rooms with extremely different reverberation times: one anechoic ( T ∼ 0.12 s) and the other reverberant ( T ∼ 4 s). The perceived distance of the targets was systematically greater in the reverberant room when contrasted to the anechoic chamber. Participants also provided auditorily perceived room-size ratings which were greater for the reverberant room. Our hypothesis was that distance estimates are affected by room size, resulting in farther responses for the room perceived larger. Of much importance to the task was the subjects' ability to infer room size from reverberation. In this article, we report a postanalysis showing that participants having musical expertise were better able to extract and translate reverberation cues into room-size information than nonmusicians. However, the degree to which musical expertise affects visual distance estimates remains unclear.
Collapse
Affiliation(s)
- Pablo E Etchemendy
- Laboratorio de Acústica y Percepción Sonora, Escuela Universitaria de Artes, CONICET, Universidad Nacional de Quilmes, Bernal, Argentina
| | - Ignacio Spiousas
- Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Montreal, Canada; BRAMS Laboratory, Centre for Research on Brain, Language and Music (CRBLM), Montreal, Canada
| | - Ramiro Vergara
- Laboratorio de Acústica y Percepción Sonora, Escuela Universitaria de Artes, CONICET, Universidad Nacional de Quilmes, Bernal, Argentina
| |
Collapse
|