1
|
Buzinari TC, Castania JA, Salvador SLS, Ribeiro AB, Junior RF, Salgado HC. Periodontitis accelerates the onset of hypertension in spontaneously hypertensive rats, while the electrical activation of the carotid sinus nerve delays the beginning of the increase in blood pressure. J Hypertens 2024:00004872-990000000-00563. [PMID: 39445606 DOI: 10.1097/hjh.0000000000003906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/02/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND We have previously demonstrated that electrical stimulation of the carotid sinus nerve (CSN) protects the development of periodontitis. In the current study, we evaluated whether periodontitis accelerates the onset of hypertension in spontaneously hypertensive rats (SHR); and whether electrical stimulation of the CSN would delay the onset of hypertension. METHODS Three-week old SHR were implanted with electrodes around the CSN for electrical stimulation for 13 days. Bilateral ligation of the first molar and oral administration of Porphyromonas gingivalis induced periodontitis. The femoral artery of the SHR was cannulated, and 24 h later, in a conscious state, the blood pressure was recorded. RESULTS Five-week old sham SHR (subjects without electrical stimulation of the CSN) did not demonstrate hypertension. However, when the SHR were submitted to periodontitis they exhibited hypertension at 5 weeks of age. Nevertheless, the stimulation of the CSN prevented the onset of hypertension. Periodontitis promoted alveolar bone loss in SHR; but, electrical stimulation of the CSN prevented this undesirable outcome following the exposure to periodontitis. CONCLUSION Periodontitis accelerated the onset of hypertension in SHR; while the electrical stimulation of the CSN delayed the onset of hypertension.
Collapse
Affiliation(s)
- Tereza C Buzinari
- Department of Physiology, Ribeirão Preto Medical School. University of São Paulo
| | - Jaci A Castania
- Department of Physiology, Ribeirão Preto Medical School. University of São Paulo
| | - Sergio L S Salvador
- Department of Clinical Analyses, Toxicology and Food Sciences, Pharmaceutical Sciences School, University of São Paulo
| | - Aline B Ribeiro
- Barão de Mauá University Center, Ribeirão Preto, São Paulo, Brazil
| | - Rubens Fazan Junior
- Department of Physiology, Ribeirão Preto Medical School. University of São Paulo
| | - Helio C Salgado
- Department of Physiology, Ribeirão Preto Medical School. University of São Paulo
| |
Collapse
|
2
|
Conde SV, Martins FO, Sacramento JF. Carotid body interoception in health and disease. Auton Neurosci 2024; 255:103207. [PMID: 39121687 DOI: 10.1016/j.autneu.2024.103207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/15/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024]
Abstract
Interoception entails perceiving or being aware of the internal state of the body, playing a pivotal role in regulating processes such as heartbeat, digestion, glucose metabolism, and respiration. The carotid body (CB) serves as an interoceptive organ, transmitting information to the brain via its sensitive nerve, the carotid sinus nerve, to maintain homeostasis. While traditionally known for sensing oxygen, carbon dioxide, and pH levels, the CB is now recognized to possess additional interoceptive properties, detecting various mediators involved in blood pressure regulation, inflammation, and glucose homeostasis, among other physiological functions. Furthermore, in the last decades CB dysfunction has been linked to diseases like sleep apnea, essential hypertension, and diabetes. In this review manuscript, we make a concise overview of the traditional interoceptive functions of the CB, acting as a sensor for oxygen levels, carbon dioxide levels, and pH, and introduce the novel interoceptive properties of the CB related to vascular, glucose and energy regulation. Additionally, we revise the contribution of the CB to the onset and progression of metabolic diseases, delving into the potential dysfunction of its interoceptive metabolic functions as a contributing factor to pathophysiology. Finally, we postulate the use of therapeutic interventions targeting the metabolic interoceptive properties of the CB as a potential avenue for addressing metabolic diseases.
Collapse
Affiliation(s)
- Silvia V Conde
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal.
| | - Fatima O Martins
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Joana F Sacramento
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
| |
Collapse
|
3
|
Chen G, Zhang C, Li H, Liu X. Sepsis-induced inflammatory demyelination in medullary visceral zone and cholinergic anti-inflammatory pathway: Insights from a Rat's model study. Heliyon 2024; 10:e33840. [PMID: 39027552 PMCID: PMC11255576 DOI: 10.1016/j.heliyon.2024.e33840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 06/01/2024] [Accepted: 06/27/2024] [Indexed: 07/20/2024] Open
Abstract
Background Our previous studies have demonstrated that the activated Cholinergic Anti-inflammatory Pathway (CAP) effectively suppresses systemic inflammation and immunity in early sepsis. Some parameters of Heart Rate Variability (HRV) could be used to reflect the regulatory activity of CAP. However, in the early stages of severe sepsis of some patients, the inflammatory storm can still result in multiple organs dysfunction and even death, suggesting they lose CAP's modulation ability. Since CAP is part of the vagus nerve and is directly innervated by the Medullary Visceral Zone (MVZ), we can reasonably concluded that pathological changes induced by MVZ's neuroinflammation should be responsible for CAP's dysfunction in modulating systemic inflammation in early sepsis. Methods We conducted two independent septic experiments, the sepsis model rats were prepared by cecum ligation and puncture (CLP) method. In the first experiment, A total of 64 adult male Sprague-Dawley rats were included. Under the condition of sepsis and CAP's pharmacological activation or blockade, we investigated the MVZ's pathological changes, the functional state of key neurons including catecholaminergic and cholinergic neurons, key genes' expression such as Oligodendrocyte Transcription Factor 2 (Olig-2) mRNA, glial fibrillary acidic protein (GFAP) mRNA, and matrix metalloprotein (MMP) -9 mRNA, and CAP's activities reflected by HRV. The second experiment involved in 56 rats, through central anti-inflammation by feeding with 10 mg/ml minocycline sucrose solution as the only water source, or right vagus transection excepting for central anti-inflammation as a mean of the CAP's functional cancel, we confirmed that the neuroinflammation in MVZ affected systemic inflammation through CAP in sepsis. Results In the first experiment, cholinergic and catecholaminergic neurons showed significant apoptosis with reduced expressions of TH, but the expression of CHAT remained relatively unaffected in MVZ in sepsis. HRV parameters representing the tone of the vagus nerve, such as SDNN, RMSSD, HF, SD1, and SD2, did not show significant differences among the three Septic Groups, although they all decreased significantly compared to the Control Group. The expressions of GFAP mRNA and MMP-9 mRNA were up-regulated, while the expression of Olig-2 mRNA was down-regulated in the Septic Groups. Intervention of CAP had a significant effect on cholinergic and catecholaminergic neurons' apoptosis, as well as the expressions of TH/CHAT and these key genes, but had little effect on HRV in sepsis. In the second experiment, the levels of TNF-α, IL-6, in serum and MVZ were significantly increased in sepsis. Central anti-inflammatory treatment reversed these changes. However, right vagotomy abolished the central anti-inflammatory effect. Conclusions Our study uncovered that MVZ's neuroinflammation may play a crucial role in the uncontrolled systemic inflammation through inflammatory demyelination in MVZ, which disrupts CAP's modulation on the systemic inflammation in early sepsis.
Collapse
Affiliation(s)
- Gao Chen
- The Intensive Care Unite of Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430079, China
| | - Cheng Zhang
- Emergency Department of the First People's Hospital of Guiyang of Guizhou Province, 550002, China
| | - Hongbing Li
- Emergency Department of the First People's Hospital of Guiyang of Guizhou Province, 550002, China
| | - Xian Liu
- Geriatrics Department of the First People's Hospital of Guiyang of Guizhou Province, 550002, China
| |
Collapse
|
4
|
Conde SV, Sacramento JF, Zinno C, Mazzoni A, Micera S, Guarino MP. Bioelectronic modulation of carotid sinus nerve to treat type 2 diabetes: current knowledge and future perspectives. Front Neurosci 2024; 18:1378473. [PMID: 38646610 PMCID: PMC11026613 DOI: 10.3389/fnins.2024.1378473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/26/2024] [Indexed: 04/23/2024] Open
Abstract
Bioelectronic medicine are an emerging class of treatments aiming to modulate body nervous activity to correct pathological conditions and restore health. Recently, it was shown that the high frequency electrical neuromodulation of the carotid sinus nerve (CSN), a small branch of the glossopharyngeal nerve that connects the carotid body (CB) to the brain, restores metabolic function in type 2 diabetes (T2D) animal models highlighting its potential as a new therapeutic modality to treat metabolic diseases in humans. In this manuscript, we review the current knowledge supporting the use of neuromodulation of the CSN to treat T2D and discuss the future perspectives for its clinical application. Firstly, we review in a concise manner the role of CB chemoreceptors and of CSN in the pathogenesis of metabolic diseases. Secondly, we describe the findings supporting the potential therapeutic use of the neuromodulation of CSN to treat T2D, as well as the feasibility and reversibility of this approach. A third section is devoted to point up the advances in the neural decoding of CSN activity, in particular in metabolic disease states, that will allow the development of closed-loop approaches to deliver personalized and adjustable treatments with minimal side effects. And finally, we discuss the findings supporting the assessment of CB activity in metabolic disease patients to screen the individuals that will benefit therapeutically from this bioelectronic approach in the future.
Collapse
Affiliation(s)
- Silvia V. Conde
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Joana F. Sacramento
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Ciro Zinno
- The BioRobotics Institute Scuola Superiore Sant’Anna, Pontedera, Italy
| | - Alberto Mazzoni
- The BioRobotics Institute Scuola Superiore Sant’Anna, Pontedera, Italy
| | - Silvestro Micera
- The BioRobotics Institute Scuola Superiore Sant’Anna, Pontedera, Italy
| | - Maria P. Guarino
- ciTechCare, School of Health Sciences Polytechnic of Leiria, Leiria, Portugal
| |
Collapse
|
5
|
González-González MA, Conde SV, Latorre R, Thébault SC, Pratelli M, Spitzer NC, Verkhratsky A, Tremblay MÈ, Akcora CG, Hernández-Reynoso AG, Ecker M, Coates J, Vincent KL, Ma B. Bioelectronic Medicine: a multidisciplinary roadmap from biophysics to precision therapies. Front Integr Neurosci 2024; 18:1321872. [PMID: 38440417 PMCID: PMC10911101 DOI: 10.3389/fnint.2024.1321872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/10/2024] [Indexed: 03/06/2024] Open
Abstract
Bioelectronic Medicine stands as an emerging field that rapidly evolves and offers distinctive clinical benefits, alongside unique challenges. It consists of the modulation of the nervous system by precise delivery of electrical current for the treatment of clinical conditions, such as post-stroke movement recovery or drug-resistant disorders. The unquestionable clinical impact of Bioelectronic Medicine is underscored by the successful translation to humans in the last decades, and the long list of preclinical studies. Given the emergency of accelerating the progress in new neuromodulation treatments (i.e., drug-resistant hypertension, autoimmune and degenerative diseases), collaboration between multiple fields is imperative. This work intends to foster multidisciplinary work and bring together different fields to provide the fundamental basis underlying Bioelectronic Medicine. In this review we will go from the biophysics of the cell membrane, which we consider the inner core of neuromodulation, to patient care. We will discuss the recently discovered mechanism of neurotransmission switching and how it will impact neuromodulation design, and we will provide an update on neuronal and glial basis in health and disease. The advances in biomedical technology have facilitated the collection of large amounts of data, thereby introducing new challenges in data analysis. We will discuss the current approaches and challenges in high throughput data analysis, encompassing big data, networks, artificial intelligence, and internet of things. Emphasis will be placed on understanding the electrochemical properties of neural interfaces, along with the integration of biocompatible and reliable materials and compliance with biomedical regulations for translational applications. Preclinical validation is foundational to the translational process, and we will discuss the critical aspects of such animal studies. Finally, we will focus on the patient point-of-care and challenges in neuromodulation as the ultimate goal of bioelectronic medicine. This review is a call to scientists from different fields to work together with a common endeavor: accelerate the decoding and modulation of the nervous system in a new era of therapeutic possibilities.
Collapse
Affiliation(s)
- María Alejandra González-González
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, United States
- Department of Pediatric Neurology, Baylor College of Medicine, Houston, TX, United States
| | - Silvia V. Conde
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NOVA University, Lisbon, Portugal
| | - Ramon Latorre
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Stéphanie C. Thébault
- Laboratorio de Investigación Traslacional en salud visual (D-13), Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro, Mexico
| | - Marta Pratelli
- Neurobiology Department, Kavli Institute for Brain and Mind, UC San Diego, La Jolla, CA, United States
| | - Nicholas C. Spitzer
- Neurobiology Department, Kavli Institute for Brain and Mind, UC San Diego, La Jolla, CA, United States
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
- Achucarro Centre for Neuroscience, IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
- International Collaborative Center on Big Science Plan for Purinergic Signaling, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Department of Molecular Medicine, Université Laval, Québec City, QC, Canada
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada
| | - Cuneyt G. Akcora
- Department of Computer Science, University of Central Florida, Orlando, FL, United States
| | | | - Melanie Ecker
- Department of Biomedical Engineering, University of North Texas, Denton, TX, United States
| | | | - Kathleen L. Vincent
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, TX, United States
| | - Brandy Ma
- Stanley H. Appel Department of Neurology, Houston Methodist Hospital, Houston, TX, United States
| |
Collapse
|
6
|
Lataro RM, Brognara F, Iturriaga R, Paton JFR. Inflammation of some visceral sensory systems and autonomic dysfunction in cardiovascular disease. Auton Neurosci 2024; 251:103137. [PMID: 38104365 DOI: 10.1016/j.autneu.2023.103137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/15/2023] [Accepted: 12/04/2023] [Indexed: 12/19/2023]
Abstract
The sensitization and hypertonicity of visceral afferents are highly relevant to the development and progression of cardiovascular and respiratory disease states. In this review, we described the evidence that the inflammatory process regulates visceral afferent sensitivity and tonicity, affecting the control of the cardiovascular and respiratory system. Some inflammatory mediators like nitric oxide, angiotensin II, endothelin-1, and arginine vasopressin may inhibit baroreceptor afferents and contribute to the baroreflex impairment observed in cardiovascular diseases. Cytokines may act directly on peripheral afferent terminals that transmit information to the central nervous system (CNS). TLR-4 receptors, which recognize lipopolysaccharide, were identified in the nodose and petrosal ganglion and have been implicated in disrupting the blood-brain barrier, which can potentiate the inflammatory process. For example, cytokines may cross the blood-brain barrier to access the CNS. Additionally, pro-inflammatory cytokines such as IL-1β, IL-6, TNF-α and some of their receptors have been identified in the nodose ganglion and carotid body. These pro-inflammatory cytokines also sensitize the dorsal root ganglion or are released in the nucleus of the solitary tract. In cardiovascular disease, pro-inflammatory mediators increase in the brain, heart, vessels, and plasma and may act locally or systemically to activate/sensitize afferent nervous terminals. Recent evidence demonstrated that the carotid body chemoreceptor cells might sense systemic pro-inflammatory molecules, supporting the novel proposal that the carotid body is part of the afferent pathway in the central anti-inflammatory reflexes. The exact mechanisms of how pro-inflammatory mediators affects visceral afferent signals and contribute to the pathophysiology of cardiovascular diseases awaits future research.
Collapse
Affiliation(s)
- R M Lataro
- Department of Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil.
| | - F Brognara
- Department of Nursing, General and Specialized, Nursing School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - R Iturriaga
- Facultad de Ciencias Biológicas, Pontificia Universidad Catolica de Chile, Santiago, Chile; Centro de Investigación en Fisiología y Medicina en Altura - FIMEDALT, Universidad de Antofagasta, Antofagasta, Chile
| | - J F R Paton
- Manaaki Manawa - The Centre for Heart Research, Department of Physiology, Faculty of Medical & Health Sciences, University of Auckland, Grafton, Auckland, New Zealand
| |
Collapse
|
7
|
Suarez-Roca H, Mamoun N, Watkins LL, Bortsov AV, Mathew JP. Higher Cardiovagal Baroreflex Sensitivity Predicts Increased Pain Outcomes After Cardiothoracic Surgery. THE JOURNAL OF PAIN 2024; 25:187-201. [PMID: 37567546 PMCID: PMC10841280 DOI: 10.1016/j.jpain.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 08/05/2023] [Accepted: 08/06/2023] [Indexed: 08/13/2023]
Abstract
Excessive postoperative pain can lead to extended hospitalization and increased expenses, but factors that predict its severity are still unclear. Baroreceptor function could influence postoperative pain by modulating nociceptive processing and vagal-mediated anti-inflammatory reflexes. To investigate this relationship, we conducted a study with 55 patients undergoing minimally invasive cardiothoracic surgery to evaluate whether cardiovagal baroreflex sensitivity (BRS) can predict postoperative pain. We assessed the spontaneous cardiovagal BRS under resting pain-free conditions before surgery. We estimated postoperative pain outcomes with the Pain, Enjoyment, and General Activity scale and pressure pain thresholds on the first (POD1) and second (POD2) postoperative days and persistent pain 3 and 6 months after hospital discharge. We also measured circulating levels of relevant inflammatory biomarkers (C-reactive protein, albumin, cytokines) at baseline, POD1, and POD2 to assess the contribution of inflammation to the relationship between BRS and postoperative pain. Our mixed-effects model analysis showed a significant main effect of preoperative BRS on postoperative pain (P = .013). Linear regression analysis revealed a significant positive association between preoperative BRS and postoperative pain on POD2, even after adjusting for demographic, surgical, analgesic treatment, and psychological factors. Moreover, preoperative BRS was linked to pain interfering with general activity and enjoyment but not with other pain parameters (pain intensity and pressure pain thresholds). Preoperative BRS had modest associations with postoperative C-reactive protein and IL-10 levels, but they did not mediate its relationship with postoperative pain. These findings indicate that preoperative BRS can independently predict postoperative pain, which could serve as a modifiable criterion for optimizing postoperative pain management. PERSPECTIVE: This article shows that preoperative BRS predicts postoperative pain outcomes independently of the inflammatory response and pain sensitivity to noxious pressure stimulation. These results provide valuable insights into the role of baroreceptors in pain and suggest a helpful tool for improving postoperative pain management.
Collapse
Affiliation(s)
- Heberto Suarez-Roca
- Center for Translational Pain Medicine, Duke University Medical Center, Durham, North Carolina
| | - Negmeldeen Mamoun
- Division of Cardiothoracic Anesthesia and Critical Care Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina
| | - Lana L Watkins
- Psychiatry and Behavioral Sciences Department, Duke University Medical Center, Durham, North Carolina
| | - Andrey V Bortsov
- Center for Translational Pain Medicine, Duke University Medical Center, Durham, North Carolina
| | - Joseph P Mathew
- Division of Cardiothoracic Anesthesia and Critical Care Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
8
|
Soares JÍ, da Silva TM, Castania JA, Reis UÁ, Roque LFM, Ribeiro AB, Salgado HC, Ribeiro AB. Electrical carotid sinus nerve stimulation attenuates experimental colitis induced by acetic acid in rats. Life Sci 2023; 335:122281. [PMID: 37984513 DOI: 10.1016/j.lfs.2023.122281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/14/2023] [Accepted: 11/17/2023] [Indexed: 11/22/2023]
Abstract
AIMS The carotid bodies are sensors that detect physiological signals and convey them to the central nervous system, where the stimuli are processed inducing reflexes through efferent pathways. Recent studies have demonstrated that electrical stimulation of the carotid sinus nerve (CSN) triggers the anti-inflammatory reflex under different conditions. However, whether this electrical stimulation attenuates colitis was never examined. This study aimed to evaluate if the electrical CSN stimulation attenuates the experimental colitis induced by intrarectal administration of acetic acid in rats. METHODS Electrodes were implanted around the CSN to stimulate the CSN, and a catheter was inserted into the left femoral artery to record the arterial pressure. The observation of hypotensive responses confirmed the effectiveness of the electrical CNS stimulation. This maneuver was followed by a 4 % acetic acid or saline administered intrarectally. After 24 h, colons were segmented into distal and proximal parts for macroscopy, histological and biochemical assessment. KEY FINDINGS As expected, the electrical CSN stimulation was effective in decreasing arterial pressure in saline and colitis rats. Moreover, electrical CSN stimulation effectively reduced colonic tissue lesions, colitis scores, and histopathologic parameters associated with colitis. In addition, the CSN stimulation also reduced the colonic mucosa pro-inflammatory cytokine interleukin-1 beta, and increased the anti-inflammatory interleukin-10, in rats submitted to colitis. SIGNIFICANCE These findings indicated that electrical CSN stimulation breaks the vicious cycle of local colon inflammation in colitis, which might contribute to its better outcome.
Collapse
Affiliation(s)
- Jefferson Ícaro Soares
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Thaís Marques da Silva
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Jaci Airton Castania
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | | | | | | | - Helio Cesar Salgado
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Aline Barbosa Ribeiro
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil; Barão de Mauá University Center, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
9
|
Salgado HC, Brognara F, Ribeiro AB, Lataro RM, Castania JA, Ulloa L, Kanashiro A. Autonomic Regulation of Inflammation in Conscious Animals. Neuroimmunomodulation 2023; 30:102-112. [PMID: 37232031 DOI: 10.1159/000530908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/20/2023] [Indexed: 05/27/2023] Open
Abstract
Bioelectronic medicine is a novel field in modern medicine based on the specific neuronal stimulation to control organ function, cardiovascular, and immune homeostasis. However, most studies addressing neuromodulation of the immune system have been conducted on anesthetized animals, which can affect the nervous system and neuromodulation. Here, we review recent studies involving conscious experimental rodents (rats and mice) to better understand the functional organization of neural control of immune homeostasis. We highlight typical experimental models of cardiovascular regulation, such as electrical activation of the aortic depressor nerve or the carotid sinus nerve, bilateral carotid occlusion, the Bezold-Jarisch reflex, and intravenous administration of the bacterial endotoxin lipopolysaccharide. These models have been used to investigate the relationship between neuromodulation of the cardiovascular and immune systems in conscious rodents (rats and mice). These studies provide critical information about the neuromodulation of the immune system, particularly the role of the autonomic nervous system, i.e., the sympathetic and parasympathetic branches acting both centrally (hypothalamus, nucleus ambiguus, nucleus tractus solitarius, caudal ventrolateral medulla, and rostral ventrolateral medulla), and peripherally (particularly spleen and adrenal medulla). Overall, the studies in conscious experimental models have certainly highlighted to the reader how the methodological approaches used to investigate cardiovascular reflexes in conscious rodents (rats and mice) can also be valuable for investigating the neural mechanisms involved in inflammatory responses. The reviewed studies have clinical implications for future therapeutic approaches of bioelectronic modulation of the nervous system to control organ function and physiological homeostasis in conscious physiology.
Collapse
Affiliation(s)
- Helio Cesar Salgado
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Fernanda Brognara
- Department of Nursing, General and Specialized, Nursing School of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | | | - Renata Maria Lataro
- Department of Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Jaci Airton Castania
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Luis Ulloa
- Department of Anesthesiology, Center for Perioperative Organ Protection, Duke University Medical Center, Durham, North Carolina, USA
| | - Alexandre Kanashiro
- Department of Dermatology, School of Medicine and Public Health, University of Wisconsin Medical Sciences Center, Madison, Wisconsin, USA
| |
Collapse
|
10
|
Verdoorn D, Cleypool CG, Mackaaij C, Bleys RL. Visualization of the carotid body in situ in fixed human carotid bifurcations using a xylene-based tissue clearing method. Biotech Histochem 2023; 98:166-171. [PMID: 36330775 DOI: 10.1080/10520295.2022.2140831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The anatomy of the carotid body (CB) and its nerve supply are important, because it is a potential therapeutic target for treatment of various clinical conditions. Visualization of the CB in situ in fixed human anatomical specimens is hampered by obscuring adipose and connective tissues. We developed a tissue clearing method to optimize identification of the CB. We used single sided carotid bifurcations of six human cadavers fixed long term. Visualization of the CB was accomplished by clearing tissue with xylene. Under incident light, carotid bifurcations exhibited a less transparent, darker colored CB; hematoxylin and eosin stained paraffin sections confirmed its identity. Our visualization of the CB in situ in human carotid bifurcations fixed long term enabled targeted resection and subsequent topographic and morphometric measurements of the CB. Our procedure does not interfere with immunohistochemical staining of sections prepared from such specimens.
Collapse
Affiliation(s)
- Daphne Verdoorn
- Department of Anatomy, Division of Surgical Specialties, University Medical Center, Utrecht University, Utrecht, The Netherlands
| | - Cindy Gj Cleypool
- Department of Anatomy, Division of Surgical Specialties, University Medical Center, Utrecht University, Utrecht, The Netherlands
| | - Claire Mackaaij
- Department of Anatomy, Division of Surgical Specialties, University Medical Center, Utrecht University, Utrecht, The Netherlands
| | - Ronald Law Bleys
- Department of Anatomy, Division of Surgical Specialties, University Medical Center, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
11
|
Li YW, Li W, Wang ST, Gong YN, Dou BM, Lyu ZX, Ulloa L, Wang SJ, Xu ZF, Guo Y. The autonomic nervous system: A potential link to the efficacy of acupuncture. Front Neurosci 2022; 16:1038945. [PMID: 36570846 PMCID: PMC9772996 DOI: 10.3389/fnins.2022.1038945] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/21/2022] [Indexed: 12/13/2022] Open
Abstract
The autonomic nervous system (ANS) is a diffuse network that regulates physiological systems to maintain body homeostasis by integrating inputs from the internal and external environment, including the sympathetic, parasympathetic, and enteric nervous systems (ENS). Recent evidence suggests that ANS is one of the key neural pathways for acupuncture signal transduction, which has attracted worldwide attention in the acupuncture field. Here, we reviewed the basic and clinical research published in PubMed over the past 20 years on the effects of acupuncture on ANS regulation and homeostasis maintenance. It was found that acupuncture effectively alleviates ANS dysfunction-associated symptoms in its indications, such as migraine, depression, insomnia, functional dyspepsia, functional constipation. Acupuncture stimulation on some specific acupoints activates sensory nerve fibers, the spinal cord, and the brain. Using information integration and efferents from a complex network of autonomic nuclei of the brain, such as the insular cortex (IC), prefrontal cortex, anterior cingulate cortex (ACC), amygdala (AMG), hypothalamus, periaqueductal gray (PAG), nucleus tractus solitarius (NTS), ventrolateral medulla (VLM), nucleus ambiguus (AMB), acupuncture alleviates visceral dysfunction, inflammation via efferent autonomic nerves, and relieves pain and pain affect. The modulating pattern of sympathetic and parasympathetic nerves is associated with acupuncture stimulation on specific acupoints, intervention parameters, and disease models, and the relationships among them require further exploration. In conclusion, ANS is one of the therapeutic targets for acupuncture and mediates acupuncture's actions, which restores homeostasis. A systemic study is needed to determine the rules and mechanisms underlying the effects of acupoint stimulation on corresponding organs mediated by specific central nervous networks and the efferent ANS.
Collapse
Affiliation(s)
- Yan-Wei Li
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wei Li
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Song-Tao Wang
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yi-Nan Gong
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China,School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Bao-Min Dou
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhong-Xi Lyu
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China,School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Luis Ulloa
- Department of Anesthesiology, Center for Perioperative Organ Protection, Duke University, Durham, NC, United States
| | - Shen-Jun Wang
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China,School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China,Shen-Jun Wang,
| | - Zhi-Fang Xu
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China,School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China,Zhi-Fang Xu,
| | - Yi Guo
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China,School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China,*Correspondence: Yi Guo,
| |
Collapse
|
12
|
Katayama PL, Leirão IP, Kanashiro A, Menani JV, Zoccal DB, Colombari DSA, Colombari E. The carotid body: A novel key player in neuroimmune interactions. Front Immunol 2022; 13:1033774. [PMID: 36389846 PMCID: PMC9644854 DOI: 10.3389/fimmu.2022.1033774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/11/2022] [Indexed: 11/13/2022] Open
Abstract
The idea that the nervous system communicates with the immune system to regulate physiological and pathological processes is not new. However, there is still much to learn about how these interactions occur under different conditions. The carotid body (CB) is a sensory organ located in the neck, classically known as the primary sensor of the oxygen (O2) levels in the organism of mammals. When the partial pressure of O2 in the arterial blood falls, the CB alerts the brain which coordinates cardiorespiratory responses to ensure adequate O2 supply to all tissues and organs in the body. A growing body of evidence, however, has demonstrated that the CB is much more than an O2 sensor. Actually, the CB is a multimodal sensor with the extraordinary ability to detect a wide diversity of circulating molecules in the arterial blood, including inflammatory mediators. In this review, we introduce the literature supporting the role of the CB as a critical component of neuroimmune interactions. Based on ours and other studies, we propose a novel neuroimmune pathway in which the CB acts as a sensor of circulating inflammatory mediators and, in conditions of systemic inflammation, recruits a sympathetic-mediated counteracting mechanism that appears to be a protective response.
Collapse
Affiliation(s)
- Pedro L. Katayama
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University, Araraquara, São Paulo, Brazil
| | - Isabela P. Leirão
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University, Araraquara, São Paulo, Brazil
| | - Alexandre Kanashiro
- Department of Neurosciences and Behavior, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - José V. Menani
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University, Araraquara, São Paulo, Brazil
| | - Daniel B. Zoccal
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University, Araraquara, São Paulo, Brazil
| | - Débora S. A. Colombari
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University, Araraquara, São Paulo, Brazil
| | - Eduardo Colombari
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University, Araraquara, São Paulo, Brazil
| |
Collapse
|
13
|
Katayama PL, Leirão IP, Kanashiro A, Luiz JPM, Cunha FQ, Navegantes LCC, Menani JV, Zoccal DB, Colombari DSA, Colombari E. The carotid body detects circulating tumor necrosis factor-alpha to activate a sympathetic anti-inflammatory reflex. Brain Behav Immun 2022; 102:370-386. [PMID: 35339628 DOI: 10.1016/j.bbi.2022.03.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/10/2022] [Accepted: 03/21/2022] [Indexed: 12/28/2022] Open
Abstract
Recent evidence has suggested that the carotid bodies might act as immunological sensors, detecting pro-inflammatory mediators and signalling to the central nervous system, which, in turn, orchestrates autonomic responses. Here, we confirmed that the TNF-α receptor type I is expressed in the carotid bodies of rats. The systemic administration of TNF-α increased carotid body afferent discharge and activated glutamatergic neurons in the nucleus tractus solitarius (NTS) that project to the rostral ventrolateral medulla (RVLM), where many pre-sympathetic neurons reside. The activation of these neurons was accompanied by an increase in splanchnic sympathetic nerve activity. Carotid body ablation blunted the TNF-α-induced activation of RVLM-projecting NTS neurons and the increase in splanchnic sympathetic nerve activity. Finally, plasma and spleen levels of cytokines after TNF-α administration were higher in rats subjected to either carotid body ablation or splanchnic sympathetic denervation. Collectively, our findings indicate that the carotid body detects circulating TNF-α to activate a counteracting sympathetic anti-inflammatory mechanism.
Collapse
Affiliation(s)
- Pedro L Katayama
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University, Araraquara, São Paulo, Brazil.
| | - Isabela P Leirão
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University, Araraquara, São Paulo, Brazil
| | - Alexandre Kanashiro
- Department of Neurosciences and Behavior, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - João P M Luiz
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Fernando Q Cunha
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Luiz C C Navegantes
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Jose V Menani
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University, Araraquara, São Paulo, Brazil
| | - Daniel B Zoccal
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University, Araraquara, São Paulo, Brazil
| | - Débora S A Colombari
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University, Araraquara, São Paulo, Brazil
| | - Eduardo Colombari
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University, Araraquara, São Paulo, Brazil.
| |
Collapse
|
14
|
Falvey A, Metz CN, Tracey KJ, Pavlov VA. Peripheral nerve stimulation and immunity: the expanding opportunities for providing mechanistic insight and therapeutic intervention. Int Immunol 2022; 34:107-118. [PMID: 34498051 PMCID: PMC8783605 DOI: 10.1093/intimm/dxab068] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 09/07/2021] [Indexed: 12/29/2022] Open
Abstract
Pre-clinical research advances our understanding of the vagus nerve-mediated regulation of immunity and clinical trials successfully utilize electrical vagus nerve stimulation in the treatment of patients with inflammatory disorders. This symbiotic relationship between pre-clinical and clinical research exploring the vagus nerve-based 'inflammatory reflex' has substantially contributed to establishing the field of bioelectronic medicine. Recent studies identify a crosstalk between the vagus nerve and other neural circuitries in controlling inflammation and delineate new neural immunoregulatory pathways. Here we outline current mechanistic insights into the role of vagal and non-vagal neural pathways in neuro-immune communication and inflammatory regulation. We also provide a timely overview of expanding opportunities for bioelectronic neuromodulation in the treatment of various inflammatory disorders.
Collapse
Affiliation(s)
- Aidan Falvey
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA
| | - Christine N Metz
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| | - Kevin J Tracey
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| | - Valentin A Pavlov
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| |
Collapse
|
15
|
Abstract
The carotid body (CB) is a bilateral arterial chemoreceptor located in the carotid artery bifurcation with an essential role in cardiorespiratory homeostasis. It is composed of highly perfused cell clusters, or glomeruli, innervated by sensory fibers. Glomus cells, the most abundant in each glomerulus, are neuron-like multimodal sensory elements able to detect and integrate changes in several physical and chemical parameters of the blood, in particular O2 tension, CO2 and pH, as well as glucose, lactate, or blood flow. Activation of glomus cells (e.g., during hypoxia or hypercapnia) stimulates the afferent fibers which impinge on brainstem neurons to elicit rapid compensatory responses (hyperventilation and sympathetic activation). This chapter presents an updated view of the structural organization of the CB and the mechanisms underlying the chemosensory responses of glomus cells, with special emphasis on the molecular processes responsible for acute O2 sensing. The properties of the glomus cell-sensory fiber synapse as well as the organization of CB output are discussed. The chapter includes the description of recently discovered CB stem cells and progenitor cells, and their role in CB growth during acclimatization to hypoxemia. Finally, the participation of the CB in the mechanisms of disease is briefly discussed.
Collapse
Affiliation(s)
- José López-Barneo
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas (CSIC)/Universidad de Sevilla, Seville, Spain; Biomedical Research Center for Neurodegenerative Diseases (CIBERNED), Madrid, Spain.
| |
Collapse
|
16
|
Iturriaga R, Del Rio R, Alcayaga J. Carotid Body Inflammation: Role in Hypoxia and in the Anti-inflammatory Reflex. Physiology (Bethesda) 2021; 37:128-140. [PMID: 34866399 DOI: 10.1152/physiol.00031.2021] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Emergent evidence indicates that the carotid body (CB) chemoreceptors may sense systemic inflammatory molecules, and is an afferent-arm of the anti-inflammatory reflex. Moreover, a pro-inflammatory milieu within the CB is involved in the enhanced CB chemosensory responsiveness to oxygen following sustained and intermittent hypoxia. In this review, we focus on the physio-pathological participation of CBs in inflammatory diseases, such as sepsis and intermittent hypoxia.
Collapse
Affiliation(s)
- Rodrigo Iturriaga
- Laboratorio de Neurobiologia. Departamento de Fisiologia. Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Pontificia Universidad Catolica de Chile, Santiago-1, Región, Chile.,Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Santiago, Chile
| | - Rodrigo Del Rio
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Santiago, Chile.,Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Envejecimiento y Regeneración (CARE), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Julio Alcayaga
- Laboratorio de Fisiología Celular, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| |
Collapse
|
17
|
The Regulation Effect of α7nAChRs and M1AChRs on Inflammation and Immunity in Sepsis. Mediators Inflamm 2021; 2021:9059601. [PMID: 34776789 PMCID: PMC8580654 DOI: 10.1155/2021/9059601] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 09/14/2021] [Accepted: 10/25/2021] [Indexed: 02/07/2023] Open
Abstract
The inflammatory storm in the early stage and immunosuppression in the late stage are responsible for the high mortality rates and multiple organ dysfunction in sepsis. In recent years, studies have found that the body's cholinergic system can spontaneously and dynamically regulate inflammation and immunity in sepsis according to the needs of the body. Firstly, the vagus nerve senses and regulates local or systemic inflammation by means of the Cholinergic Anti-inflammatory Pathway (CAP) and activation of α7-nicotinic acetylcholine receptors (α7nAChRs); thus, α7nAChRs play important roles for the central nervous system (CNS) to modulate peripheral inflammation; secondly, the activation of muscarinic acetylcholine receptors 1 (M1AChRs) in the forebrain can affect the neurons of the Medullary Visceral Zone (MVZ), the core of CAP, to regulate systemic inflammation and immunity. Based on the critical role of these two cholinergic receptor systems in sepsis, it is necessary to collect and analyze the related findings in recent years to provide ideas for further research studies and clinical applications. By consulting the related literature, we draw some conclusions: MVZ is the primary center for the nervous system to regulate inflammation and immunity. It coordinates not only the sympathetic system and vagus system but also the autonomic nervous system and neuroendocrine system to regulate inflammation and immunity; α7nAChRs are widely expressed in immune cells, neurons, and muscle cells; the activation of α7nAChRs can suppress local and systemic inflammation; the expression of α7nAChRs represents the acute or chronic inflammatory state to a certain extent; M1AChRs are mainly expressed in the advanced centers of the brain and regulate systemic inflammation; neuroinflammation of the MVZ, hypothalamus, and forebrain induced by sepsis not only leads to their dysfunctions but also underlies the regulatory dysfunction on systemic inflammation and immunity. Correcting the neuroinflammation of these regulatory centers and adjusting the function of α7nAChRs and M1AChRs may be two key strategies for the treatment of sepsis in the future.
Collapse
|
18
|
Jendzjowsky NG, Roy A, Wilson RJA. Asthmatic allergen inhalation sensitises carotid bodies to lysophosphatidic acid. J Neuroinflammation 2021; 18:191. [PMID: 34465362 PMCID: PMC8408927 DOI: 10.1186/s12974-021-02241-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 08/17/2021] [Indexed: 11/10/2022] Open
Abstract
The carotid bodies are multimodal sensors that regulate various autonomic reflexes. Recent evidence demonstrates their role in immune reflex regulation. Our previous studies using the allergen (ovalbumin) sensitised and exposed Brown Norway rat model of asthma suggest that carotid bodies mediate asthmatic bronchoconstriction through a lysophosphatidic acid (LPA) receptor (LPAr)-protein kinase C epsilon (PKCε)-transient receptor potential vanilloid one channel (TRPV1) pathway. Whilst naïve carotid bodies respond to LPA, whether their response to LPA is enhanced in asthma is unknown. Here, we show that asthmatic sensitisation of Brown Norway rats involving repeated aerosolised allergen challenges over 6 days, results in an augmentation of the carotid bodies' acute sensitivity to LPA. Increased expression of LPAr in the carotid bodies and petrosal ganglia likely contributed to this sensitivity. Importantly, allergen sensitisation of the carotid bodies to LPA did not alter their hypoxic response, nor did hypoxia augment LPA sensitivity acutely. Our data demonstrate the ability of allergens to sensitise the carotid bodies, highlighting the likely role of the carotid bodies and blood-borne inflammatory mediators in asthma.
Collapse
Affiliation(s)
- Nicholas G Jendzjowsky
- Department of Respiratory Medicine and Exercise Physiology, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Rm 209 Martin Research Building, 1124 West Carson Street, Torrance, CA, 90502, USA.
| | - Arijit Roy
- Department of Physiology and Pharmacology, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Rm 203 Heritage Medical Research Building, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1, Canada
| | - Richard J A Wilson
- Department of Physiology and Pharmacology, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Rm 203 Heritage Medical Research Building, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1, Canada.
| |
Collapse
|
19
|
The ability of baroreflex activation to improve blood pressure and resistance vessel function in spontaneously hypertensive rats is dependent on stimulation parameters. Hypertens Res 2021; 44:932-940. [PMID: 33707760 DOI: 10.1038/s41440-021-00639-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 01/26/2021] [Accepted: 01/31/2021] [Indexed: 02/03/2023]
Abstract
Baroreflex activation by electric stimulation of the carotid sinus (CS) effectively lowers blood pressure. However, the degree to which differences between stimulation protocols impinge on cardiovascular outcomes has not been defined. To address this, we examined the effects of short- and long-duration (SD and LD) CS stimulation on hemodynamic and vascular function in spontaneously hypertensive rats (SHRs). We fit animals with miniature electrical stimulators coupled to electrodes positioned around the left CS nerve that delivered intermittent 5/25 s ON/OFF (SD) or 20/20 s ON/OFF (LD) square pulses (1 ms, 3 V, 30 Hz) continuously applied for 48 h in conscious animals. A sham-operated control group was also studied. We measured mean arterial pressure (MAP), systolic blood pressure variability (SBPV), heart rate (HR), and heart rate variability (HRV) for 60 min before stimulation, 24 h into the protocol, and 60 min after stimulation had stopped. SD stimulation reversibly lowered MAP and HR during stimulation. LD stimulation evoked a decrease in MAP that was sustained even after stimulation was stopped. Neither SD nor LD had any effect on SBPV or HRV when recorded after stimulation, indicating no adaptation in autonomic activity. Both the contractile response to phenylephrine and the relaxation response to acetylcholine were increased in mesenteric resistance vessels isolated from LD-stimulated rats only. In conclusion, the ability of baroreflex activation to modulate hemodynamics and induce lasting vascular adaptation is critically dependent on the electrical parameters and duration of CS stimulation.
Collapse
|
20
|
Ueno M. Restoring neuro-immune circuitry after brain and spinal cord injuries. Int Immunol 2021; 33:311-325. [PMID: 33851981 DOI: 10.1093/intimm/dxab017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 04/13/2021] [Indexed: 12/17/2022] Open
Abstract
Neuro-immune interactions are essential for our body's defense and homeostasis. Anatomical and physiological analyses have shown that the nervous system comprises multiple pathways that regulate the dynamics and functions of immune cells, which are mainly mediated by the autonomic nervous system and adrenal signals. These are disturbed when the neurons and circuits are damaged by diseases of the central nervous system (CNS). Injuries caused by stroke or trauma often cause immune dysfunction by abrogation of the immune-regulating neural pathways, which leads to an increased risk of infections. Here, I review the structures and functions of the neural pathways connecting the brain and the immune system, and the neurogenic mechanisms of immune dysfunction that emerge after CNS injuries. Recent technological advances in manipulating specific neural circuits have added mechanistic aspects of neuro-immune interactions and their dysfunctions. Understanding the neural bases of immune control and their pathological processes will deepen our knowledge of homeostasis and lead to the development of strategies to cure immune deficiencies observed in various CNS disorders.
Collapse
Affiliation(s)
- Masaki Ueno
- Department of System Pathology for Neurological Disorders, Brain Research Institute, Niigata University, Niigata, Niigata 951-8585, Japan
| |
Collapse
|
21
|
Cracchiolo M, Ottaviani MM, Panarese A, Strauss I, Vallone F, Mazzoni A, Micera S. Bioelectronic medicine for the autonomic nervous system: clinical applications and perspectives. J Neural Eng 2021; 18. [PMID: 33592597 DOI: 10.1088/1741-2552/abe6b9] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 02/16/2021] [Indexed: 12/11/2022]
Abstract
Bioelectronic medicine (BM) is an emerging new approach for developing novel neuromodulation therapies for pathologies that have been previously treated with pharmacological approaches. In this review, we will focus on the neuromodulation of autonomic nervous system (ANS) activity with implantable devices, a field of BM that has already demonstrated the ability to treat a variety of conditions, from inflammation to metabolic and cognitive disorders. Recent discoveries about immune responses to ANS stimulation are the laying foundation for a new field holding great potential for medical advancement and therapies and involving an increasing number of research groups around the world, with funding from international public agencies and private investors. Here, we summarize the current achievements and future perspectives for clinical applications of neural decoding and stimulation of the ANS. First, we present the main clinical results achieved so far by different BM approaches and discuss the challenges encountered in fully exploiting the potential of neuromodulatory strategies. Then, we present current preclinical studies aimed at overcoming the present limitations by looking for optimal anatomical targets, developing novel neural interface technology, and conceiving more efficient signal processing strategies. Finally, we explore the prospects for translating these advancements into clinical practice.
Collapse
Affiliation(s)
- Marina Cracchiolo
- The BioRobotics Institute and Department of Excellence in Robotics & AI, The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Matteo Maria Ottaviani
- The BioRobotics Institute and Department of Excellence in Robotics & AI, The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Alessandro Panarese
- The BioRobotics Institute and Department of Excellence in Robotics & AI, The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Ivo Strauss
- The BioRobotics Institute and Department of Excellence in Robotics & AI, The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Fabio Vallone
- The BioRobotics Institute and Department of Excellence in Robotics & AI, The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Alberto Mazzoni
- The BioRobotics Institute and Department of Excellence in Robotics & AI, The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Silvestro Micera
- The BioRobotics Institute and Department of Excellence in Robotics & AI, The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy.,Bertarelli Foundation Chair in Translational NeuroEngineering, Centre for Neuroprosthetics and Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
22
|
Suarez-Roca H, Mamoun N, Sigurdson MI, Maixner W. Baroreceptor Modulation of the Cardiovascular System, Pain, Consciousness, and Cognition. Compr Physiol 2021; 11:1373-1423. [PMID: 33577130 DOI: 10.1002/cphy.c190038] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Baroreceptors are mechanosensitive elements of the peripheral nervous system that maintain cardiovascular homeostasis by coordinating the responses to external and internal environmental stressors. While it is well known that carotid and cardiopulmonary baroreceptors modulate sympathetic vasomotor and parasympathetic cardiac neural autonomic drive, to avoid excessive fluctuations in vascular tone and maintain intravascular volume, there is increasing recognition that baroreceptors also modulate a wide range of non-cardiovascular physiological responses via projections from the nucleus of the solitary tract to regions of the central nervous system, including the spinal cord. These projections regulate pain perception, sleep, consciousness, and cognition. In this article, we summarize the physiology of baroreceptor pathways and responses to baroreceptor activation with an emphasis on the mechanisms influencing cardiovascular function, pain perception, consciousness, and cognition. Understanding baroreceptor-mediated effects on cardiac and extra-cardiac autonomic activities will further our understanding of the pathophysiology of multiple common clinical conditions, such as chronic pain, disorders of consciousness (e.g., abnormalities in sleep-wake), and cognitive impairment, which may result in the identification and implementation of novel treatment modalities. © 2021 American Physiological Society. Compr Physiol 11:1373-1423, 2021.
Collapse
Affiliation(s)
- Heberto Suarez-Roca
- Department of Anesthesiology, Center for Translational Pain Medicine, Duke University, Durham, North Carolina, USA
| | - Negmeldeen Mamoun
- Department of Anesthesiology, Division of Cardiothoracic Anesthesia and Critical Care Medicine, Duke University, Durham, North Carolina, USA
| | - Martin I Sigurdson
- Department of Anesthesiology and Critical Care Medicine, Landspitali, University Hospital, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - William Maixner
- Department of Anesthesiology, Center for Translational Pain Medicine, Duke University, Durham, North Carolina, USA
| |
Collapse
|
23
|
Zhang L, Wu Z, Tong Z, Yao Q, Wang Z, Li W. Vagus Nerve Stimulation Decreases Pancreatitis Severity in Mice. Front Immunol 2021; 11:595957. [PMID: 33519809 PMCID: PMC7840568 DOI: 10.3389/fimmu.2020.595957] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 11/30/2020] [Indexed: 12/16/2022] Open
Abstract
Background Vagus nerve stimulation (VNS) is effective in reducing inflammation in various diseases, such as rheumatoid arthritis, colitis and acute kidney injury. The anti-inflammatory effect of vagus nerve in these diseases necessitates the interactions of neural activation and α7 nicotinic acetylcholine receptors (α7nAChRs) on splenic macrophages. In this study, we aimed to investigate the effect of VNS on severity in experimental acute pancreatitis (AP). Methods Two independent AP models were used, which induced in ICR mice with caerulein or pancreatic duct ligation (PDL). Thirty minutes after modeling, the left cervical carotid sheath containing the vagus nerve was electrically stimulated for 2 min. Plasma lipase and amylase activities, TNF-α levels and pancreas histologic damage were evaluated. In caerulein mice, the percentages of α7nAChR+ macrophage in pancreas and spleen were assessed by flow cytometry. Furthermore, splenectomy and adoptive transfer of VNS-conditioned α7nAChR splenocytes were performed in caerulein mice to evaluate the role of spleen in the protective effect of VNS. Results VNS reduced plasma lipase and amylase activities, blunted the concentrations of TNF-α and protected against pancreas histologic damage in two AP models. Survival rates were improved in the PDL model after VNS. In caerulein AP mice, VNS increased the percentages of α7nAChR+ macrophages in pancreas and spleen. Adoptive transfer of VNS-treated α7nAChR splenocytes provided protection against pancreatitis in recipient mice. However, splenectomy did not abolish the protective effect of VNS. Conclusions VNS reduces disease severity and attenuates inflammation in AP mice. This effect is independent of spleen and is probably related to α7nAChR on macrophage.
Collapse
Affiliation(s)
- Luyao Zhang
- Department of Pathology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhiyang Wu
- Department of Critical Care Medicine, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Zhihui Tong
- Department of Critical Care Medicine, Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Qi Yao
- Department of Pathology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ziyu Wang
- Department of Pathology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Weiqin Li
- Department of Critical Care Medicine, Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
24
|
Conde SV, Sacramento JF, Martins FO. Immunity and the carotid body: implications for metabolic diseases. Bioelectron Med 2020; 6:24. [PMID: 33353562 PMCID: PMC7756955 DOI: 10.1186/s42234-020-00061-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/24/2020] [Indexed: 12/14/2022] Open
Abstract
Neuro-immune communication has gained enormous interest in recent years due to increasing knowledge of the way in which the brain coordinates functional alterations in inflammatory and autoimmune responses, and the mechanisms of neuron-immune cell interactions in the context of metabolic diseases such as obesity and type 2 diabetes. In this review, we will explain how this relationship between the nervous and immune system impacts the pro- and anti-inflammatory pathways with specific reference to the hypothalamus-pituitary-adrenal gland axis and the vagal reflex and will explore the possible involvement of the carotid body (CB) in the neural control of inflammation. We will also highlight the mechanisms of vagal anti-inflammatory reflex control of immunity and metabolism, and the consequences of functional disarrangement of this reflex in settlement and development of metabolic diseases, with special attention to obesity and type 2 diabetes. Additionally, the role of CB in the interplay between metabolism and immune responses will be discussed, with specific reference to the different stimuli that promote CB activation and the balance between sympathetic and parasympathetic in this context. In doing so, we clarify the multivarious neuronal reflexes that coordinate tissue-specific responses (gut, pancreas, adipose tissue and liver) critical to metabolic control, and metabolic disease settlement and development. In the final section, we will summarize how electrical modulation of the carotid sinus nerve may be utilized to adjust these reflex responses and thus control inflammation and metabolic diseases, envisioning new therapeutics horizons.
Collapse
Affiliation(s)
- Silvia V Conde
- iNOVA4Health, CEDOC, NOVA Medical School, NMS, Universidade Nova de Lisboa, Rua Câmara Pestana, n°6, Edifício 2, piso 3, 1150-274, Lisbon, Portugal.
| | - Joana F Sacramento
- iNOVA4Health, CEDOC, NOVA Medical School, NMS, Universidade Nova de Lisboa, Rua Câmara Pestana, n°6, Edifício 2, piso 3, 1150-274, Lisbon, Portugal
| | - Fatima O Martins
- iNOVA4Health, CEDOC, NOVA Medical School, NMS, Universidade Nova de Lisboa, Rua Câmara Pestana, n°6, Edifício 2, piso 3, 1150-274, Lisbon, Portugal
| |
Collapse
|
25
|
Falvey A, Duprat F, Simon T, Hugues-Ascery S, Conde SV, Glaichenhaus N, Blancou P. Electrostimulation of the carotid sinus nerve in mice attenuates inflammation via glucocorticoid receptor on myeloid immune cells. J Neuroinflammation 2020; 17:368. [PMID: 33267881 PMCID: PMC7709223 DOI: 10.1186/s12974-020-02016-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 10/29/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND The carotid bodies and baroreceptors are sensors capable of detecting various physiological parameters that signal to the brain via the afferent carotid sinus nerve for physiological adjustment by efferent pathways. Because receptors for inflammatory mediators are expressed by these sensors, we and others have hypothesised they could detect changes in pro-inflammatory cytokine blood levels and eventually trigger an anti-inflammatory reflex. METHODS To test this hypothesis, we surgically isolated the carotid sinus nerve and implanted an electrode, which could deliver an electrical stimulation package prior and following a lipopolysaccharide injection. Subsequently, 90 min later, blood was extracted, and cytokine levels were analysed. RESULTS Here, we found that carotid sinus nerve electrical stimulation inhibited lipopolysaccharide-induced tumour necrosis factor production in both anaesthetised and non-anaesthetised conscious mice. The anti-inflammatory effect of carotid sinus nerve electrical stimulation was so potent that it protected conscious mice from endotoxaemic shock-induced death. In contrast to the mechanisms underlying the well-described vagal anti-inflammatory reflex, this phenomenon does not depend on signalling through the autonomic nervous system. Rather, the inhibition of lipopolysaccharide-induced tumour necrosis factor production by carotid sinus nerve electrical stimulation is abolished by surgical removal of the adrenal glands, by treatment with the glucocorticoid receptor antagonist mifepristone or by genetic inactivation of the glucocorticoid gene in myeloid cells. Further, carotid sinus nerve electrical stimulation increases the spontaneous discharge activity of the hypothalamic paraventricular nucleus leading to enhanced production of corticosterone. CONCLUSION Carotid sinus nerve electrostimulation attenuates inflammation and protects against lipopolysaccharide-induced endotoxaemic shock via increased corticosterone acting on the glucocorticoid receptor of myeloid immune cells. These results provide a rationale for the use of carotid sinus nerve electrostimulation as a therapeutic approach for immune-mediated inflammatory diseases.
Collapse
Affiliation(s)
- Aidan Falvey
- Université Côte d'Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| | - Fabrice Duprat
- Université Côte d'Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| | - Thomas Simon
- Université Côte d'Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| | | | - Silvia V Conde
- CEDOC, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Nicolas Glaichenhaus
- Université Côte d'Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| | - Philippe Blancou
- Université Côte d'Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France.
| |
Collapse
|
26
|
Ribeiro AB, Brognara F, da Silva JF, Castania JA, Fernandes PG, Tostes RC, Salgado HC. Carotid sinus nerve stimulation attenuates alveolar bone loss and inflammation in experimental periodontitis. Sci Rep 2020; 10:19258. [PMID: 33159128 PMCID: PMC7648828 DOI: 10.1038/s41598-020-76194-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/23/2020] [Indexed: 12/12/2022] Open
Abstract
Baroreceptor and chemoreceptor reflexes modulate inflammatory responses. However, whether these reflexes attenuate periodontal diseases has been poorly examined. Thus, the present study determined the effects of electrical activation of the carotid sinus nerve (CSN) in rats with periodontitis. We hypothesized that activation of the baro and chemoreflexes attenuates alveolar bone loss and the associated inflammatory processes. Electrodes were implanted around the CSN, and bilateral ligation of the first mandibular molar was performed to, respectively, stimulate the CNS and induce periodontitis. The CSN was stimulated daily for 10 min, during nine days, in unanesthetized animals. On the eighth day, a catheter was inserted into the left femoral artery and, in the next day, the arterial pressure was recorded. Effectiveness of the CNS electrical stimulation was confirmed by hypotensive responses, which was followed by the collection of a blood sample, gingival tissue, and jaw. Long-term (9 days) electrical stimulation of the CSN attenuated bone loss and the histological damage around the first molar. In addition, the CSN stimulation also reduced the gingival and plasma pro-inflammatory cytokines induced by periodontitis. Thus, CSN stimulation has a protective effect on the development of periodontal disease mitigating alveolar bone loss and inflammatory processes.
Collapse
Affiliation(s)
- Aline Barbosa Ribeiro
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Avenida dos Bandeirantes, 3900, Ribeirão Preto, SP, 14049-900, Brazil
| | - Fernanda Brognara
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Avenida dos Bandeirantes, 3900, Ribeirão Preto, SP, 14049-900, Brazil
| | - Josiane Fernandes da Silva
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Jaci Airton Castania
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Avenida dos Bandeirantes, 3900, Ribeirão Preto, SP, 14049-900, Brazil
| | | | - Rita C Tostes
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Helio Cesar Salgado
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Avenida dos Bandeirantes, 3900, Ribeirão Preto, SP, 14049-900, Brazil.
| |
Collapse
|
27
|
Exploring the Mechanism on the Medullary Visceral Zone Inhibiting the Cholinergic Anti-inflammatory Pathway Induced by Sepsis. Mediators Inflamm 2020; 2020:1320278. [PMID: 33061821 PMCID: PMC7542527 DOI: 10.1155/2020/1320278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/23/2020] [Accepted: 08/31/2020] [Indexed: 12/29/2022] Open
Abstract
Inflammatory storm is an important pathological mechanism of multiple organ dysfunction, and it is associated with most deaths in septic patients, deserving to be studied. Recent findings have confirmed that the Medullary Visceral Zone (MVZ) regulates inflammation and immunity through the cholinergic anti-inflammatory pathway (CAP), but how sepsis affects the MVZ and leads to uncontrolled inflammation remain unclear. The current study reported that sepsis induced MVZ to inhibit CAP which underlies the inflammation storm. Our studies have shown that the rat models of sepsis prepared by cecal ligation and puncture had a higher inflammatory level, higher mortality, and higher Murine Sepsis Score. In septic rats, some indicators of heart rate variability (HRV) such as SDNN, HF band, RMSSD, SD1, and SD2 significantly reduced. In MVZ of septic rats, many cholinergic and catecholaminergic neurons showed apoptotic, with low expressions of tyrosine hydroxylase and choline acetyltransferase. The α7nAChR agonist GTS-21 can improve these pathologies, while the α7nAChR antagonist MLA is the opposite. Our study demonstrates for the first time that cholinergic and catecholaminergic neurons in MVZ went through significant apoptosis and inactiveness in sepsis, which contributes to the inhibition of CAP and acceleration of the inflammation storm in early sepsis. Intervening with CAP has a significant effect on the activity and apoptosis of MVZ neurons while altering systemic inflammation and immunity; in addition, for the first time, we confirmed that some indicators of HRV such as SDNN, HF band, RMSSD, SD1, and SD2 can reflect the activity of CAP, but the CAP interference had little effect on these indicators.
Collapse
|
28
|
Amorim MR, Moreira DA, Santos BM, Ferrari GD, Nogueira JE, de Deus JL, Alberici LC, Branco LGS. Increased lipopolysaccharide-induced hypothermia in neurogenic hypertension is caused by reduced hypothalamic PGE 2 production and increased heat loss. J Physiol 2020; 598:4663-4680. [PMID: 32749717 DOI: 10.1113/jp280321] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 07/31/2020] [Indexed: 12/30/2022] Open
Abstract
KEY POINTS The mechanisms involved in hypothermia and fever during systemic inflammation (SI) remain largely unknown. Our data support the contention that brain-mediated mechanisms are different in hypertension during SI. Considering that, clinically, it is not easy to assess all mechanisms involved in cardiovascular and thermoregulatory control during SI, the present study sheds light on these integrated mechanisms that may be triggered simultaneously in septic hypertensive patients. The result obtained demonstrate that, in lipopolysaccharide-induced SI, an increased hypothermia is observed in neurogenic hypertension, which is caused by reduced hypothalamic prostaglandin E2 production and increased heat loss in conscious rats. Therefore, the results of the present study provide useful insight for clinical trials evaluating the thermoregulatory outcomes of septic patients with hypertension. ABSTRACT Hypertension is a prevalent disease characterized by autonomic-induced elevated and sustained blood pressure levels and abnormal body core temperature (Tb) regulation. The present study aimed to determine the brain-mediated mechanisms involved in the thermoregulatory changes observed during lipopolysaccharide (LPS)-induced systemic inflammation (SI; at a septic-like model) in spontaneously hypertensive rats (SHR). We combined Tb and skin temperature (Tsk) analysis, assessment of prostaglandin (PG) E2 levels (the proximal mediator of fever) in the anteroventral region of the hypothalamus (AVPO; an important site for Tb control), oxygen consumption analysis, cardiovascular recordings, assays of inflammatory markers, and evaluation of oxidative stress in the plasma and brain of male Wistar rats and SHR that had received LPS (1.5 mg kg-1 ) or saline. LPS induced hypothermia followed by fever in Wistar rats, whereas, in SHR, a maintained hypothermia without fever were observed. These thermoregulatory responses were associated with an increased heat loss in SHR compared to Wistar rats. We measured LPS-induced increased PGE2 levels in the AVPO in Wistar rats, but not in SHR. The LPS-induced drop in blood pressure was higher in SHR than in Wistar rats. Furthermore, LPS-induced plasma and brain [regions involved in autonomic control: nucleus tractus solitarius (NTS) and rostral ventrolateral medulla (RVLM)] cytokine surges were blunted, whereas oxidative stress was higher in SHR. LPS-induced SI leads to blunted cytokine surges both systemically (plasma) and centrally (NTS and RVLM) and reduced hypothalamic PGE2 production, which are all associated with increased hypothermia mediated by increased heat loss, but not by heat production, in SHR.
Collapse
Affiliation(s)
- Mateus R Amorim
- Dental School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.,Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Diego A Moreira
- Dental School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Bruna M Santos
- Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Gustavo D Ferrari
- Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.,Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Jonatas E Nogueira
- School of Physical Education and Sports of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Júnia L de Deus
- Dental School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.,The Solomon H. Snyder. Department of Neuroscience, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Luciane C Alberici
- Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Luiz G S Branco
- Dental School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
29
|
Exploring the Mediators that Promote Carotid Body Dysfunction in Type 2 Diabetes and Obesity Related Syndromes. Int J Mol Sci 2020; 21:ijms21155545. [PMID: 32756352 PMCID: PMC7432672 DOI: 10.3390/ijms21155545] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/26/2020] [Accepted: 07/30/2020] [Indexed: 12/12/2022] Open
Abstract
Carotid bodies (CBs) are peripheral chemoreceptors that sense changes in blood O2, CO2, and pH levels. Apart from ventilatory control, these organs are deeply involved in the homeostatic regulation of carbohydrates and lipid metabolism and inflammation. It has been described that CB dysfunction is involved in the genesis of metabolic diseases and that CB overactivation is present in animal models of metabolic disease and in prediabetes patients. Additionally, resection of the CB-sensitive nerve, the carotid sinus nerve (CSN), or CB ablation in animals prevents and reverses diet-induced insulin resistance and glucose intolerance as well as sympathoadrenal overactivity, meaning that the beneficial effects of decreasing CB activity on glucose homeostasis are modulated by target-related efferent sympathetic nerves, through a reflex initiated in the CBs. In agreement with our pre-clinical data, hyperbaric oxygen therapy, which reduces CB activity, improves glucose homeostasis in type 2 diabetes patients. Insulin, leptin, and pro-inflammatory cytokines activate the CB. In this manuscript, we review in a concise manner the putative pathways linking CB chemoreceptor deregulation with the pathogenesis of metabolic diseases and discuss and present new data that highlight the roles of hyperinsulinemia, hyperleptinemia, and chronic inflammation as major factors contributing to CB dysfunction in metabolic disorders.
Collapse
|
30
|
李 红, 李 媛, 王 武, 彭 宗, 吴 芳. [Cholinergic anti-inflammatory pathway plays negative regulatory role in early inflammatory and immune responses in septic rats]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2020; 40:647-653. [PMID: 32897210 PMCID: PMC7277322 DOI: 10.12122/j.issn.1673-4254.2020.05.06] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To investigate the role of cholinergic anti-inflammatory pathway (CAP) in neuro-regulation of inflammatory and immune response in the early stage of sepsis. METHODS Sixty-four SD rats were randomly divided into control Group (n=8) with normal feeding without any treatment; sham operation group (n=8) with laparotomy but without cecal ligation and puncture (CLP), followed by intraperitoneal injection 50 mg/kg piperacillin 3 times a day for 3 consecutive days; and sepsis group (n=48) with CLP-induced sepsis. The rat models of sepsis were randomized into model groups (n=16) with intraperitoneal injection of piperacillin (50 mg/kg) and normal saline (1 mL/100 g) for 3 times a day for 3 days; GTS-21 group (n=16) with additional intraperitoneal injection of 4 mg/kg GTS-21 (once a day for 3 days); and methyllycaconitine (MLA) group (n=16) with intraperitoneal injection of MLA (4.8 mg/kg) in addition to piperacillin (once a day for 3 days). Murine Sepsis Score (MSS) of the rats and short-range HRV analysis were recorded. Three days later, the rats were sacrificed and serum levels of TNF-α, IL-1α, IL-10, IL-6, HMGB1, and sCD14 were measured with ELISA. The percentages of CD4+CD25+ Treg and TH17 lymphocytes and their ratios were measured using flow cytometry. RESULTS Compared with the control rats, the septic rats had significantly increased MSS scores and lowered HRV indexes (SDNN, RMSSD, HF, SD1, and SD2; P < 0.05); treatment with GTS-21 significantly decreased while MLA increased MSS scores (P < 0.05), but neither of them obviously affected HRV of the rats. Serum levels TNF-α, IL-1α, IL-10, IL-6, HMGB1, and sCD14 and the percentages of CD4+CD25+ Treg and TH17-positive lymphocytes were significantly higher and Treg/TH17 ratio was significantly lower in the septic rats compared with those in the control group (P < 0.05); treatment with GTS-21 significantly decreased the levels of serum levels of TNF-α, IL-1α, IL-6, HMGB1, and sCD14 and TH17 lymphocyte percentage (P < 0.05), whereas MLA treatment significantly increased serum levels of TNF-α, IL-1α, IL-10, IL-6, HMGB1, and sCD14 and the percentages of CD4+ CD25+ Treg and TH17-positive lymphocytes and decreased Treg/TH17 ratio in the septic rats (P < 0.05). CONCLUSIONS CAP plays negative regulatory role in early inflammatory and immune response to sepsis, and some of the HRV indicators can well reflect the regulatory effect of CAP on inflammation and immunity in the septic rats.
Collapse
Affiliation(s)
- 红兵 李
- />贵阳市第一人民医院急诊科,贵州 贵阳 550002Department of Emergency Medicine, Guiyang First People's Hospital, Guiyang 550002, China
| | - 媛 李
- />贵阳市第一人民医院急诊科,贵州 贵阳 550002Department of Emergency Medicine, Guiyang First People's Hospital, Guiyang 550002, China
| | - 武石 王
- />贵阳市第一人民医院急诊科,贵州 贵阳 550002Department of Emergency Medicine, Guiyang First People's Hospital, Guiyang 550002, China
| | - 宗爽 彭
- />贵阳市第一人民医院急诊科,贵州 贵阳 550002Department of Emergency Medicine, Guiyang First People's Hospital, Guiyang 550002, China
| | - 芳 吴
- />贵阳市第一人民医院急诊科,贵州 贵阳 550002Department of Emergency Medicine, Guiyang First People's Hospital, Guiyang 550002, China
| |
Collapse
|
31
|
Domingos-Souza G, Santos-Almeida FM, Meschiari CA, Ferreira NS, Pereira CA, Martinez D, Dias DPM, Silva LEV, Castania JA, Tostes RC, Fazan R. Electrical stimulation of the carotid sinus lowers arterial pressure and improves heart rate variability in L-NAME hypertensive conscious rats. Hypertens Res 2020; 43:1057-1067. [PMID: 32358534 DOI: 10.1038/s41440-020-0448-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 03/03/2020] [Accepted: 03/26/2020] [Indexed: 11/09/2022]
Abstract
We evaluated the effects of long-term (48 h) electrical stimulation of the carotid sinus (CS) in hypertensive rats. L-NAME-treated (10 days) Wistar rats were implanted with a catheter in the femoral artery and a miniaturized electrical stimulator attached to electrodes positioned around the left CS, encompassing the CS nerve. One day after implantation, arterial pressure (AP) was directly recorded in conscious animals for 60 min. Square pulses (1 ms, 3 V, 30 Hz) were applied intermittently (20/20 s ON/OFF) to the CS for 48 h. After the end of stimulation, AP was recorded again. Nonstimulated rats (control group) and rats without electrodes around the CS (sham-operated) were also studied. Next, the animals were decapitated, and segments of mesenteric resistance arteries were removed to study vascular function. After the stimulation period, AP was 16 ± 5 mmHg lower in the stimulated group, whereas sham-operated and control rats showed similar AP between the first and second recording periods. Heart rate variability (HRV) evaluated using time and frequency domain tools and a nonlinear approach (symbolic analysis) suggested that hypertensive rats with electrodes around the CS, stimulated or not, exhibited a shift in cardiac sympathovagal balance towards parasympathetic tone. The relaxation response to acetylcholine in endothelium-intact mesenteric arteries was enhanced in rats that underwent CS stimulation for 48 h. In conclusion, long-term CS stimulation is effective in reducing AP levels, improving HRV and increasing mesenteric vascular relaxation in L-NAME hypertensive rats. Moreover, only the presence of electrodes around the CS is effective in eliciting changes in HRV similar to those observed in stimulated rats.
Collapse
Affiliation(s)
- Gean Domingos-Souza
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil. .,Department of Biomedical Sciences, Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, 65211, USA.
| | | | - César Arruda Meschiari
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil.,Health and Sports Science Center, Federal University of Acre, Rio Branco, AC, Brazil
| | - Nathanne S Ferreira
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Camila A Pereira
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Diana Martinez
- Department of Biomedical Sciences, Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, 65211, USA
| | | | - Luiz Eduardo Virgílio Silva
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Jaci Airton Castania
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Rita C Tostes
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Rubens Fazan
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
32
|
Seicol BJ, Bejarano S, Behnke N, Guo L. Neuromodulation of metabolic functions: from pharmaceuticals to bioelectronics to biocircuits. J Biol Eng 2019; 13:67. [PMID: 31388355 PMCID: PMC6676523 DOI: 10.1186/s13036-019-0194-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 07/01/2019] [Indexed: 12/18/2022] Open
Abstract
Neuromodulation of central and peripheral neural circuitry brings together neurobiologists and neural engineers to develop advanced neural interfaces to decode and recapitulate the information encoded in the nervous system. Dysfunctional neuronal networks contribute not only to the pathophysiology of neurological diseases, but also to numerous metabolic disorders. Many regions of the central nervous system (CNS), especially within the hypothalamus, regulate metabolism. Recent evidence has linked obesity and diabetes to hyperactive or dysregulated autonomic nervous system (ANS) activity. Neural regulation of metabolic functions provides access to control pathology through neuromodulation. Metabolism is defined as cellular events that involve catabolic and/or anabolic processes, including control of systemic metabolic functions, as well as cellular signaling pathways, such as cytokine release by immune cells. Therefore, neuromodulation to control metabolic functions can be used to target metabolic diseases, such as diabetes and chronic inflammatory diseases. Better understanding of neurometabolic circuitry will allow for targeted stimulation to modulate metabolic functions. Within the broad category of metabolic functions, cellular signaling, including the production and release of cytokines and other immunological processes, is regulated by both the CNS and ANS. Neural innervations of metabolic (e.g. pancreas) and immunologic (e.g. spleen) organs have been understood for over a century, however, it is only now becoming possible to decode the neuronal information to enable exogenous controls of these systems. Future interventions taking advantage of this progress will enable scientists, engineering and medical doctors to more effectively treat metabolic diseases.
Collapse
Affiliation(s)
- Benjamin J. Seicol
- Neuroscience Graduate Program, The Ohio State University, Columbus, OH USA
- Department of Neuroscience, The Ohio State University, Columbus, OH USA
| | | | - Nicholas Behnke
- Department of Food, Agricultural, and Biological Engineering, The Ohio State University, Columbus, OH USA
| | - Liang Guo
- Department of Neuroscience, The Ohio State University, Columbus, OH USA
- Department of Electrical and Computer Engineering, The Ohio State University, Columbus, OH USA
| |
Collapse
|
33
|
Amorim MR, de Deus JL, Cazuza RA, Mota CMD, da Silva LEV, Borges GS, Batalhão ME, Cárnio EC, Branco LGS. Neuroinflammation in the NTS is associated with changes in cardiovascular reflexes during systemic inflammation. J Neuroinflammation 2019; 16:125. [PMID: 31221164 PMCID: PMC6587275 DOI: 10.1186/s12974-019-1512-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 06/03/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Lipopolysaccharide (LPS)-induced systemic inflammation (SI) is associated with neuroinflammation in the brain, hypotension, tachycardia, and multiple organs dysfunctions. Considering that during SI these important cardiovascular and inflammatory changes take place, we measured the sensitivity of the cardiovascular reflexes baroreflex, chemoreflex, and Bezold-Jarisch that are key regulators of hemodynamic function. We also evaluated neuroinflammation in the nucleus tractus solitarius (NTS), the first synaptic station that integrates peripheral signals arising from the cardiovascular and inflammatory status. METHODS We combined cardiovascular recordings, immunofluorescence, and assays of inflammatory markers in male Wistar rats that receive iv administration of LPS (1.5 or 2.5 mg kg-1) to investigate putative interactions of the neuroinflammation in the NTS and in the anteroventral preoptic region of the hypothalamus (AVPO) with the short-term regulation of blood pressure and heart rate. RESULTS LPS induced hypotension, tachycardia, autonomic disbalance, hypothermia followed by fever, and reduction in spontaneous baroreflex gain. On the other hand, during SI, the bradycardic component of Bezold-Jarisch and chemoreflex activation was increased. These changes were associated with a higher number of activated microglia and interleukin (IL)-1β levels in the NTS. CONCLUSIONS The present data are consistent with the notion that during SI and neuroinflammation in the NTS, rats have a reduced baroreflex gain, combined with an enhancement of the bradycardic component of Bezold-Jarisch and chemoreflex despite the important cardiovascular impairments (hypotension and tachycardia). These changes in the cardiac component of Bezold-Jarisch and chemoreflex may be beneficial during SI and indicate that the improvement of theses reflexes responsiveness though specific nerve stimulations may be useful in the management of sepsis.
Collapse
Affiliation(s)
- Mateus R. Amorim
- Dental School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14040-904 Brazil
| | - Júnia L. de Deus
- Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP 14049-900 Brazil
| | - Rafael A. Cazuza
- School of Philosophy, Science and Literature of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14040-901 Brazil
| | - Clarissa M. D. Mota
- Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP 14049-900 Brazil
| | - Luiz E. V. da Silva
- Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP 14049-900 Brazil
| | - Gabriela S. Borges
- Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP 14049-900 Brazil
| | - Marcelo E. Batalhão
- Nursing School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14040-902 Brazil
| | - Evelin C. Cárnio
- Nursing School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14040-902 Brazil
| | - Luiz G. S. Branco
- Dental School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14040-904 Brazil
| |
Collapse
|
34
|
Ulloa L, Quiroz-Gonzalez S, Torres-Rosas R. Nerve Stimulation: Immunomodulation and Control of Inflammation. Trends Mol Med 2017; 23:1103-1120. [PMID: 29162418 PMCID: PMC5724790 DOI: 10.1016/j.molmed.2017.10.006] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 10/16/2017] [Accepted: 10/20/2017] [Indexed: 12/31/2022]
Abstract
Neuronal stimulation is an emerging field in modern medicine to control organ function and re-establish physiological homeostasis during illness. Transdermal nerve stimulation with electroacupuncture is currently endorsed by the World Health Organization (WHO) and the National Institutes of Health (NIH), and is used by millions of people to control pain and inflammation. Recent advances in electroacupuncture may permit activation of specific neuronal networks to prevent organ damage in inflammatory and infectious disorders. Experimental studies of nerve stimulation are also providing new information on the functional organization of the nervous system to control inflammation and its clinical implications in infectious and inflammatory disorders. These studies may allow the design of novel non-invasive techniques for nerve stimulation to help to control immune and organ functions.
Collapse
Affiliation(s)
- Luis Ulloa
- Center for Immunology and Inflammation, Department of Surgery, Rutgers-New Jersey Medical School, Rutgers University, Newark, NJ 07101, USA; International Laboratory of Neuro-Immunomodulation, Shanghai University of Traditional Chinese Medicine, Shanghai 200030, China.
| | - Salvador Quiroz-Gonzalez
- Center for Immunology and Inflammation, Department of Surgery, Rutgers-New Jersey Medical School, Rutgers University, Newark, NJ 07101, USA
| | - Rafael Torres-Rosas
- Center for Immunology and Inflammation, Department of Surgery, Rutgers-New Jersey Medical School, Rutgers University, Newark, NJ 07101, USA; Universidad Autónoma 'Benito Juárez' de Oaxaca, 68120 Mexico
| |
Collapse
|