1
|
Rachmilovitz EN, Shaish L, Douek J, Rinkevich B. Population genetics assessment of two pocilloporid coral species from the northern red sea: Implications for urbanized reef sustainability. MARINE ENVIRONMENTAL RESEARCH 2024; 199:106580. [PMID: 38851082 DOI: 10.1016/j.marenvres.2024.106580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/30/2024] [Accepted: 06/02/2024] [Indexed: 06/10/2024]
Abstract
Understanding the genetic makeup of key coral species is vital for effective coral reef management, as heightened genetic diversity directly influences long-term survival and resilience against environmental changes. This study focused on two widespread Indo-Pacific branching corals, Pocillopora damicornis (referred as Pocillopora cf. damicornis (as identified only morphologically) and Seriatopora hystrix, by genotyping 222 and 195 colonies, respectively, from 10 sites in the northern Gulf of Eilat, Red Sea, using six and five microsatellite markers, respectively. Both species exhibited low observed heterozygosity (0.47 for P. cf. damicornis, 0.32 for S. hystrix) and similar expected heterozygosity (0.576 for P. cf. damicornis, 0.578 for S. hystrix). Pocillopora cf. damicornis showed minimal deviations from Hardy-Weinberg equilibrium (HWE) and low but positive F values, indicating high gene flow, while S. hystrix exhibited higher diversion from HWE and positive F values, suggesting isolation by distance and possible non-random mating or genetic drift. As the Gulf of Eilat undergoes rapid urbanization, this study highlights the anthropogenic impacts on the population genetics of key ecosystem engineering species and emphasizes the importance of managing genetics of Marine Protected Areas while implementing active coral reef restoration. The differences in reproductive traits between the two species (S. hystrix being a brooder, while P. cf. damicornis a broadcast spawner), underscore the need for sustainable population genetics management of the coral reefs for the future and resilience of the coral reef ecosystem of the northern Red Sea region.
Collapse
Affiliation(s)
- Elad Nehoray Rachmilovitz
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, Tel Shikmona, P.O. Box 2336, Haifa, 3102201, Israel; Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Mount Carmel, Haifa, 3498838, Israel.
| | - Lee Shaish
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, Tel Shikmona, P.O. Box 2336, Haifa, 3102201, Israel
| | - Jacob Douek
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, Tel Shikmona, P.O. Box 2336, Haifa, 3102201, Israel.
| | - Baruch Rinkevich
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, Tel Shikmona, P.O. Box 2336, Haifa, 3102201, Israel.
| |
Collapse
|
2
|
Alvarado-Cerón V, Muñiz-Castillo AI, León-Pech MG, Prada C, Arias-González JE. A decade of population genetics studies of scleractinian corals: A systematic review. MARINE ENVIRONMENTAL RESEARCH 2023; 183:105781. [PMID: 36371949 DOI: 10.1016/j.marenvres.2022.105781] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Coral reefs are the most diverse marine ecosystems. However, coral cover has decreased worldwide due to natural disturbances, climate change, and local anthropogenic drivers. In recent decades, various genetic methods and molecular markers have been developed to assess genetic diversity, structure, and connectivity in different coral species to determine the vulnerability of their populations. This review aims to identify population genetic studies of scleractinian corals in the last decade (2010-2020), and the techniques and molecular markers used. Bibliometric analysis was conducted to identify journals and authors working in this field. We then calculated the number of genetic studies by species and ecoregion based on data obtained from 178 studies found in Scopus and Web of Science. Coral Reefs and Molecular Ecology were the main journals published population genetics studies, and microsatellites are the most widely used molecular markers. The Caribbean, Australian Barrier Reef, and South Kuroshio in Japan are among the ecoregions with the most population genetics data. In contrast, we found limited information about the Coral Triangle, a region with the highest biodiversity and key to coral reef conservation. Notably, only 117 (out of 1500 described) scleractinian coral species have genetic studies. This review emphasizes which coral species have been studied and highlights remaining gaps and locations where such data is critical for coral conservation.
Collapse
Affiliation(s)
- Viridiana Alvarado-Cerón
- Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del I.P.N., Unidad Mérida. Km. 6 Antigua carretera a Progreso, Cordemex, 97310, Mérida, Yucatán, Mexico.
| | - Aarón Israel Muñiz-Castillo
- Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del I.P.N., Unidad Mérida. Km. 6 Antigua carretera a Progreso, Cordemex, 97310, Mérida, Yucatán, Mexico.
| | - María Geovana León-Pech
- Department of Biological Science, University of Rhode Island, 120 Flag Road, Kingston, RI, 02881, USA.
| | - Carlos Prada
- Department of Biological Science, University of Rhode Island, 120 Flag Road, Kingston, RI, 02881, USA.
| | - Jesús Ernesto Arias-González
- Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del I.P.N., Unidad Mérida. Km. 6 Antigua carretera a Progreso, Cordemex, 97310, Mérida, Yucatán, Mexico.
| |
Collapse
|
3
|
Ballesteros-Contreras DC, Barrios LM, Preziosi R. New microsatellite markers for the shallow coral Madracis auretenra from the Caribbean. PLoS One 2022; 17:e0274895. [PMID: 36170271 PMCID: PMC9518922 DOI: 10.1371/journal.pone.0274895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 09/06/2022] [Indexed: 11/18/2022] Open
Abstract
Coral reefs species represent one-third of all marine species described in the ocean. They are also responsible for providing habitat and support to different species. Recently, Caribbean coral reefs ecosystems have suffered an alarming decrease in their populations as a result of overexploitation. Madracis auretenra in particular, is a widespread shallow coral in marine protected areas (MPAs) of the Caribbean. Due to the important role of MPAs as a biodiversity conservation tool, this species can be used as a model to estimate its dispersion/migration among Caribbean reefs through the use of informative genetic markers (microsatellites) specifically designed for it. Seventeen new polymorphic microsatellites markers for M. auretenra were developed and tested in 330 samples from Colombia, Guatemala, Curacao and Barbados. The gene diversity (1-D) ranged from 0.482 to 0.903, while the evenness ranged from 0.456 to 0.884 after clone removal. The expected heterozygosity (He) ranged from 0.347 to 0.742, while the observed heterozygosity (Ho) ranged from 0.078 to 0.578. The specificity of our microsatellites shows the potential use of these markers in a-posteriori analysis to detect population structure at different spatial scales, where M. auretenra is reported.
Collapse
Affiliation(s)
- Diana Carolina Ballesteros-Contreras
- Faculty of Science and Engineering, Manchester Metropolitan University-MMU, Manchester, United Kingdom
- Instituto de Investigaciones Marinas y Costeras de Colombia-INVEMAR, Santa Marta D.T.C.H., Colombia
- * E-mail:
| | - Lina Maria Barrios
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, United Kingdom
| | - Richard Preziosi
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, United Kingdom
| |
Collapse
|
4
|
Hayes JM, Abdul-Rahman NH, Gerdes MJ, Musah RA. Coral Genus Differentiation Based on Direct Analysis in Real Time-High Resolution Mass Spectrometry-Derived Chemical Fingerprints. Anal Chem 2021; 93:15306-15314. [PMID: 34761917 DOI: 10.1021/acs.analchem.1c02519] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Coral reefs are one of the most biologically diverse ecosystems, and the accurate identification of the species is essential for diversity assessment and conservation. Current genus determination approaches are time-consuming and resource-intensive and can be highly subjective. To explore the hypothesis that the small-molecule profiles of coral are genus-specific and can be used as a rapid tool to catalogue and distinguish between coral genera, the small-molecule chemical fingerprints of the species Acanthastrea echinata, Catalaphyllia jardinei, Duncanopsammia axifuga, Echinopora lamellosa, Euphyllia divisa, Euphyllia paraancora, Euphyllia paradivisa, Galaxea fascicularis, Herpolitha limax, Montipora confusa, Monitpora digitata, Montipora setosa, Pachyseris rugosa, Pavona cactus, Plerogyra sinuosa, Pocillopora acuta, Seriatopora hystrix, Sinularia dura, Turbinaria peltata, Turbinaria reniformis, Xenia elongata, and Xenia umbellata were generated using direct analysis in real time-high resolution mass spectrometry (DART-HRMS). It is demonstrated here that the mass spectrum-derived small-molecule profiles for coral of different genera are distinct. Multivariate statistical analysis processing of the DART-HRMS data enabled rapid genus-level differentiation based on the chemical composition of the coral. Coral samples were analyzed with no sample preparation required, making the approach rapid and efficient. The resulting spectra were subjected to kernel discriminant analysis (KDA), which furnished accurate genus differentiation of the coral. Leave-one-out cross-validation (LOOCV) was carried out to determine the classification accuracy of each model and confirm that this approach can be used for coral genus attribution with prediction accuracies ranging from 86.67 to 97.33%. The advantages and application of the statistical analysis to DART-HRMS-derived coral chemical signatures for genus-level differentiation are discussed.
Collapse
Affiliation(s)
- Jessica M Hayes
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Avenue, Albany, New York 12222, United States
| | - Nana-Hawwa Abdul-Rahman
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Avenue, Albany, New York 12222, United States
| | - Michael J Gerdes
- CapitalCorals Inc., 20 Colvin Avenue, Albany, New York 12206, United States
| | - Rabi A Musah
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Avenue, Albany, New York 12222, United States
| |
Collapse
|
5
|
Stankiewicz KH, Vasquez Kuntz KL, Baums IB. The impact of estimator choice: Disagreement in clustering solutions across K estimators for Bayesian analysis of population genetic structure across a wide range of empirical data sets. Mol Ecol Resour 2021; 22:1135-1148. [PMID: 34597471 DOI: 10.1111/1755-0998.13522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 08/21/2021] [Accepted: 09/07/2021] [Indexed: 11/29/2022]
Abstract
The software program STRUCTURE is one of the most cited tools for determining population structure. To infer the optimal number of clusters from STRUCTURE output, the ΔK method is often applied. However, a recent study relying on simulated microsatellite data suggested that this method has a downward bias in its estimation of K and is sensitive to uneven sampling. If this finding holds for empirical data sets, conclusions about the scale of gene flow may have to be revised for a large number of studies. To determine the impact of method choice, we applied recently described estimators of K to re-estimate genetic structure in 41 empirical microsatellite data sets; 15 from a broad range of taxa and 26 from one phylogenetic group, coral. We compared alternative estimates of K (Puechmaille statistics) with traditional (ΔK and posterior probability) estimates and found widespread disagreement of estimators across data sets. Thus, one estimator alone is insufficient for determining the optimal number of clusters; this was regardless of study organism or evenness of sampling scheme. Subsequent analysis of molecular variance (AMOVA) did not necessarily clarify which clustering solution was best. To better infer population structure, we suggest a combination of visual inspection of STRUCTURE plots and calculation of the alternative estimators at various thresholds in addition to ΔK. Disagreement between traditional and recent estimators may have important biological implications, such as previously unrecognized population structure, as was the case for many studies reanalysed here.
Collapse
Affiliation(s)
- Kathryn H Stankiewicz
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Kate L Vasquez Kuntz
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania, USA
| | | | | |
Collapse
|
6
|
Nakajima Y, Chuang PS, Ueda N, Mitarai S. First evidence of asexual recruitment of Pocillopora acuta in Okinawa Island using genotypic identification. PeerJ 2018; 6:e5915. [PMID: 30473933 PMCID: PMC6237110 DOI: 10.7717/peerj.5915] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 10/10/2018] [Indexed: 11/20/2022] Open
Abstract
Okinawa Island is located near the center of the Nansei Islands (∼24–31°N), at a relatively high latitude for coral reefs. Nevertheless, more than 80 coral genera (over 400 species) are abundant in the Nansei Islands. Since March, 2017, scleractinian corals have been held in an outdoor tank at the OIST Marine Science Station at Seragaki, Onna with natural sea water flow-through in order to be used in molecular biological and physiological studies. In January, 2018, we found small pocilloporid-like colonies suspected to have originated asexually. We collected 25 small colonies and measured their sizes and weights. Also, we validated the classification and clonality of the colonies using a mitochondrial locus and nine microsatellite loci. Almost all of the small colonies collected in the outdoor tank were ≤1 cm in both width and height. The weight of dried skeletons ranged from 0.0287 to 0.1807 g. Genetic analysis determined that they were, in fact, Pocillopora acuta. Only one mitochondrial haplotype was shared and two microsatellite multilocus genotypes were detected (20 colonies of one and four colonies of the other). The mitochondrial haplotype and one microsatellite multilocus genotype for 20 colonies corresponded to those of one P. acuta colony being kept in the tank. One small colony matched both multilocus genotypes. This may have been a chimeric colony resulting from allogenic fusion. These small colonies were not produced sexually, because the only potential parent in the tank was the aforementioned P. acuta colony. Instead, they were more likely derived from asexual planula release or polyp bail-out. Corals as Pocillopora acuta have the capacity to produce clonal offspring rapidly and to adapt readily to local environments. This is the first report of asexual reproduction by planulae or expelled polyps in P. acuta at Okinawa Island.
Collapse
Affiliation(s)
- Yuichi Nakajima
- Marine Biophysics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Po-Shun Chuang
- Marine Biophysics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Nobuo Ueda
- Okinawa Marine Science Support Section, OIST Marine Science Station, Onna, Okinawa, Japan
| | - Satoshi Mitarai
- Marine Biophysics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| |
Collapse
|