1
|
Suresh S, Sadhu SPP, Mishra V, Paulus W, Ramachandra Rao MS. Tunable charge transport properties in non-stoichiometric SrIrO 3thin films. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 36:425601. [PMID: 38981585 DOI: 10.1088/1361-648x/ad6111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/09/2024] [Indexed: 07/11/2024]
Abstract
Delving into the intricate interplay between spin-orbit coupling and Coulomb correlations in strongly correlated oxides, particularly perovskite compounds, has unveiled a rich landscape of exotic phenomena ranging from unconventional superconductivity to the emergence of topological phases. In this study, we have employed pulsed laser deposition technique to grow SrIrO3(SIO) thin films on SrTiO3substrates, systematically varying the oxygen content during the post-deposition annealing. X-ray photoelectron spectroscopy (XPS) provided insights into the stoichiometry and spin-orbit splitting energy of Iridium within the SIO film, while high-resolution x-ray studies meticulously examined the structural integrity of the thin films. Remarkably, our findings indicate a decrease in the metallicity of SIO thin films with reduced annealing O2partial pressure. Furthermore, we carried out magneto-transport studies on the SIO thin films, the results revealed intriguing insights into spin transport as a function of oxygen content. The tunability of the electronic band structure of SIO films with varying oxygen vacancy is correlated with the density functional theory calculations. Our findings elucidate the intricate mechanisms dictating spin transport properties in SIO thin films, offering invaluable guidance for the design and optimization of spintronic devices based on complex oxide materials. Notably, the ability to tune bandwidth by varying post-annealing oxygen partial pressure in iridate-based spintronic materials holds significant promise for advancing technological applications in the spintronics domain.
Collapse
Affiliation(s)
- Sreya Suresh
- Department of Physics, Nano Functional Materials Technology Centre, Quantum Centre of Excellence for Diamond and Emergent Materials, and Materials Science Research Centre, Indian Institute of Technology Madras, Chennai 600 036, India
| | - Sai Pavan Prashanth Sadhu
- Department of Physics, Indian Institute of Information Technology, Design and Manufacturing, Kancheepuram, Chennai 600 127, India
| | - Vikash Mishra
- Department of Physics, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka 576 104, India
| | - Werner Paulus
- ICGM, Univ Montpellier, CNRS, ENSCM, 34000, Montpellier, France
| | - M S Ramachandra Rao
- Department of Physics, Nano Functional Materials Technology Centre, Quantum Centre of Excellence for Diamond and Emergent Materials, and Materials Science Research Centre, Indian Institute of Technology Madras, Chennai 600 036, India
| |
Collapse
|
2
|
Zhang TX, Coughlin AL, Lu CK, Heremans JJ, Zhang SX. Recent progress on topological semimetal IrO 2: electronic structures, synthesis, and transport properties. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 36:273001. [PMID: 38597335 DOI: 10.1088/1361-648x/ad3603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/20/2024] [Indexed: 04/11/2024]
Abstract
5dtransition metal oxides, such as iridates, have attracted significant interest in condensed matter physics throughout the past decade owing to their fascinating physical properties that arise from intrinsically strong spin-orbit coupling (SOC) and its interplay with other interactions of comparable energy scales. Among the rich family of iridates, iridium dioxide (IrO2), a simple binary compound long known as a promising catalyst for water splitting, has recently been demonstrated to possess novel topological states and exotic transport properties. The strong SOC and the nonsymmorphic symmetry that IrO2possesses introduce symmetry-protected Dirac nodal lines (DNLs) within its band structure as well as a large spin Hall effect in the transport. Here, we review recent advances pertaining to the study of this unique SOC oxide, with an emphasis on the understanding of the topological electronic structures, syntheses of high crystalline quality nanostructures, and experimental measurements of its fundamental transport properties. In particular, the theoretical origin of the presence of the fourfold degenerate DNLs in band structure and its implications in the angle-resolved photoemission spectroscopy measurement and in the spin Hall effect are discussed. We further introduce a variety of synthesis techniques to achieve IrO2nanostructures, such as epitaxial thin films and single crystalline nanowires, with the goal of understanding the roles that each key parameter plays in the growth process. Finally, we review the electrical, spin, and thermal transport studies. The transport properties under variable temperatures and magnetic fields reveal themselves to be uniquely sensitive and modifiable by strain, dimensionality (bulk, thin film, nanowire), quantum confinement, film texture, and disorder. The sensitivity, stemming from the competing energy scales of SOC, disorder, and other interactions, enables the creation of a variety of intriguing quantum states of matter.
Collapse
Affiliation(s)
- T X Zhang
- Department of Physics, Indiana University, Bloomington, IN 47405, United States of America
| | - A L Coughlin
- Department of Physics, Indiana University, Bloomington, IN 47405, United States of America
| | - Chi-Ken Lu
- Department of Mathematics and Computer Science, Rutgers University, Newark, NJ 07102, United States of America
| | - J J Heremans
- Department of Physics, Virginia Tech, Blacksburg, VA 24061, United States of America
| | - S X Zhang
- Department of Physics, Indiana University, Bloomington, IN 47405, United States of America
- Quantum Science and Engineering Center, Indiana University, Bloomington, IN 47405, United States of America
| |
Collapse
|
3
|
Ghosh M, Bhat SG, Pal A, Kumar PSA. Tuning the semimetallic charge transport in the Weyl semimetal candidate Eu 2Ir 2O 7(111) epitaxial thin film with an all-in-all-out spin structure. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:165701. [PMID: 35105826 DOI: 10.1088/1361-648x/ac50da] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 02/01/2022] [Indexed: 06/14/2023]
Abstract
We report the stoichiometric epitaxial growth of the Eu2Ir2O7(111) thin film on YSZ substrate by a two-step solid phase epitaxy (SPE) method. An optimized post-annealing environment of the SPE was superior over the conventional air annealing procedure to get rid of the typical impurity phase, Eu2O3. The thickness-dependent structural study on Eu2Ir2O7(111) thin films suggests a systematic control of Ir/Eu stoichiometry in our films, which is otherwise difficult to achieve. In addition, the low-temperature electrical resistivity studies strongly support the claim. The power-law dependence analysis of the resistivity data exhibits a power exponent of 0.52 in 50 nm sample suggesting possible disorder-driven semimetallic charge transport in the 3D Weyl semimetallic (WSM) candidate Eu2Ir2O7. In addition, the all-in-all-out/all-out-all-in antiferromagnetic domains of Ir4+sublattice is verified using the field cooled magnetoresistance measurements at 2 K. Hall resistivity analysis indicate semimetallic hole carrier type dominance near the Fermi level up to the measured temperature range of 2-120 K. Altogether, our study reveals the ground state of stoichiometric Eu2Ir2O7(111) thin film, with an indirect tuning of the off-stoichiometry using thickness of the samples, which is of interest in the search of the predicted 3D WSM phase.
Collapse
Affiliation(s)
- Mithun Ghosh
- Department of Physics, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | - Shwetha G Bhat
- Department of Physics, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | - Anand Pal
- Department of Physics, Indian Institute of Science, Bangalore 560012, Karnataka, India
- Department of Physics, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - P S Anil Kumar
- Department of Physics, Indian Institute of Science, Bangalore 560012, Karnataka, India
| |
Collapse
|
4
|
Kim WJ, Oh T, Song J, Ko EK, Li Y, Mun J, Kim B, Son J, Yang Z, Kohama Y, Kim M, Yang BJ, Noh TW. Strain engineering of the magnetic multipole moments and anomalous Hall effect in pyrochlore iridate thin films. SCIENCE ADVANCES 2020; 6:eabb1539. [PMID: 32832638 PMCID: PMC7439458 DOI: 10.1126/sciadv.abb1539] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 05/29/2020] [Indexed: 05/31/2023]
Abstract
The recent observation of the anomalous Hall effect (AHE) without notable magnetization in antiferromagnets has suggested that ferromagnetic ordering is not a necessary condition. Thus, recent theoretical studies have proposed that higher-rank magnetic multipoles formed by clusters of spins (cluster multipoles) can generate the AHE without magnetization. Despite such an intriguing proposal, controlling the unconventional AHE by inducing these cluster multipoles has not been investigated. Here, we demonstrate that strain can manipulate the hidden Berry curvature effect by inducing the higher-rank cluster multipoles in spin-orbit-coupled antiferromagnets. Observing the large AHE on fully strained antiferromagnetic Nd2Ir2O7 thin films, we prove that strain-induced cluster T 1-octupoles are the only source of observed AHE. Our results provide a previously unidentified pathway for generating the unconventional AHE via strain-induced magnetic structures and establish a platform for exploring undiscovered topological phenomena via strain in correlated materials.
Collapse
Affiliation(s)
- Woo Jin Kim
- Center for Correlated Electron Systems, Institute for Basic Science, Seoul 08826, Republic of Korea
- Department of Physics and Astronomy, Seoul National University, Seoul 08826, Republic of Korea
| | - Taekoo Oh
- Center for Correlated Electron Systems, Institute for Basic Science, Seoul 08826, Republic of Korea
- Department of Physics and Astronomy, Seoul National University, Seoul 08826, Republic of Korea
- Center for Theoretical Physics (CTP), Seoul National University, Seoul 08826, Republic of Korea
| | - Jeongkeun Song
- Center for Correlated Electron Systems, Institute for Basic Science, Seoul 08826, Republic of Korea
- Department of Physics and Astronomy, Seoul National University, Seoul 08826, Republic of Korea
| | - Eun Kyo Ko
- Center for Correlated Electron Systems, Institute for Basic Science, Seoul 08826, Republic of Korea
- Department of Physics and Astronomy, Seoul National University, Seoul 08826, Republic of Korea
| | - Yangyang Li
- Center for Correlated Electron Systems, Institute for Basic Science, Seoul 08826, Republic of Korea
- Department of Physics and Astronomy, Seoul National University, Seoul 08826, Republic of Korea
| | - Junsik Mun
- Department of Materials Science and Engineering and Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
| | - Bongju Kim
- Center for Correlated Electron Systems, Institute for Basic Science, Seoul 08826, Republic of Korea
- Department of Physics and Astronomy, Seoul National University, Seoul 08826, Republic of Korea
| | - Jaeseok Son
- Center for Correlated Electron Systems, Institute for Basic Science, Seoul 08826, Republic of Korea
- Department of Physics and Astronomy, Seoul National University, Seoul 08826, Republic of Korea
| | - Zhuo Yang
- Institute for Solid State Physics, The University of Tokyo, Kashiwa, Chiba 277-8581, Japan
| | - Yoshimitsu Kohama
- Institute for Solid State Physics, The University of Tokyo, Kashiwa, Chiba 277-8581, Japan
| | - Miyoung Kim
- Department of Materials Science and Engineering and Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
| | - Bohm-Jung Yang
- Center for Correlated Electron Systems, Institute for Basic Science, Seoul 08826, Republic of Korea
- Department of Physics and Astronomy, Seoul National University, Seoul 08826, Republic of Korea
- Center for Theoretical Physics (CTP), Seoul National University, Seoul 08826, Republic of Korea
| | - Tae Won Noh
- Center for Correlated Electron Systems, Institute for Basic Science, Seoul 08826, Republic of Korea
- Department of Physics and Astronomy, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
5
|
Reduced Transition Temperature in Al:ZnO/VO 2 Based Multi-Layered Device for low Powered Smart Window Application. Sci Rep 2020; 10:1824. [PMID: 32019980 PMCID: PMC7000706 DOI: 10.1038/s41598-020-58698-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Accepted: 10/16/2019] [Indexed: 11/19/2022] Open
Abstract
The metal-to-insulator transition (MIT) closest to room temperature of 68–70 °C as shown by vanadium oxide (VO2), compared with other transition metal oxides, makes it a potential candidate for smart window coating. We have successfully fabricated a potential smart window device after the optimum design of a multilayered thin film structure made out of transparent conducting oxide (aluminum doped zinc oxide) and pure VO2 using pulsed laser deposition technique. This comprehensive study is based on two different configurations for multi-layered structure approach, with the intention to reduce the transition temperature, as well as to maintain the MIT properties that would strengthen the potential of the structure to be used for a smart window device. By creating a multi-layered structure, we were able to create a low powered device that can operate less than 15 V that leads to significant decline in the infrared transmission by a magnitude of over 40% and provided sufficient heat to trigger the MIT at a temperature around 60 °C, which is almost 10 °C lower than its bulk counterpart. This finding would positively impact the research on VO2 thin films, not only as smart windows but also for numerous other applications like bolometers, infrared detectors, Mott transistors and many more.
Collapse
|
6
|
Kim SY, Lee MC, Han G, Kratochvilova M, Yun S, Moon SJ, Sohn C, Park JG, Kim C, Noh TW. Spectroscopic Studies on the Metal-Insulator Transition Mechanism in Correlated Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1704777. [PMID: 29761925 DOI: 10.1002/adma.201704777] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 12/18/2017] [Indexed: 06/08/2023]
Abstract
The metal-insulator transition (MIT) in correlated materials is a novel phenomenon that accompanies a large change in resistivity, often many orders of magnitude. It is important in its own right but its switching behavior in resistivity can be useful for device applications. From the material physics point of view, the starting point of the research on the MIT should be to understand the microscopic mechanism. Here, an overview of recent efforts to unravel the microscopic mechanisms for various types of MITs in correlated materials is provided. Research has focused on transition metal oxides (TMOs), but transition metal chalcogenides have also been studied. Along the way, a new class of MIT materials is discovered, the so-called relativistic Mott insulators in 5d TMOs. Distortions in the MO6 (M = transition metal) octahedron are found to have a large and peculiar effect on the band structure in an orbital dependent way, possibly paving a way to the orbital selective Mott transition. In the final section, the character of the materials suitable for applications is summarized, followed by a brief discussion of some of the efforts to control MITs in correlated materials, including a dynamical approach using light.
Collapse
Affiliation(s)
- So Yeun Kim
- Center for Correlated Electron Systems, Institute for Basic Science, Seoul, 08826, Republic of Korea
- Department of Physics and Astronomy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Min-Cheol Lee
- Center for Correlated Electron Systems, Institute for Basic Science, Seoul, 08826, Republic of Korea
- Department of Physics and Astronomy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Garam Han
- Center for Correlated Electron Systems, Institute for Basic Science, Seoul, 08826, Republic of Korea
- Department of Physics and Astronomy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Marie Kratochvilova
- Center for Correlated Electron Systems, Institute for Basic Science, Seoul, 08826, Republic of Korea
- Department of Physics and Astronomy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Seokhwan Yun
- Center for Correlated Electron Systems, Institute for Basic Science, Seoul, 08826, Republic of Korea
- Department of Physics and Astronomy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Soon Jae Moon
- Department of Physics, Hanyang University, Seoul, Republic of Korea
| | - Changhee Sohn
- Materials Science and Technology Division, Oak Ridge National Laboratory, TN, 37831, USA
| | - Je-Geun Park
- Center for Correlated Electron Systems, Institute for Basic Science, Seoul, 08826, Republic of Korea
- Department of Physics and Astronomy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Changyoung Kim
- Center for Correlated Electron Systems, Institute for Basic Science, Seoul, 08826, Republic of Korea
- Department of Physics and Astronomy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Tae Won Noh
- Center for Correlated Electron Systems, Institute for Basic Science, Seoul, 08826, Republic of Korea
- Department of Physics and Astronomy, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|