1
|
Huang YT, Chen TWW, Chen LY, Huang YY, Lu YS. The Application of 18F-FES PET in Clinical Cancer Care: A Systematic Review. Clin Nucl Med 2023:00003072-990000000-00634. [PMID: 37482660 DOI: 10.1097/rlu.0000000000004760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
INTRODUCTION [18F]fluoroestradiol (FES) can be used for the noninvasive visualization and quantification of tumor estrogen receptor (ER) expression and activity and was FDA-approved as a diagnostic agent in May 2022 for detecting ER-positive lesions in patients with recurrent or metastatic breast cancer. PET imaging was also used to detect ER-positive lesions and malignancy among patients with uterine, ovarian, and other ER-positive solid tumors. We conducted a systemic review of the studies on FES PET imaging used among patients with cancer not limited to breast cancer to better understand the application of FES PET imaging. METHODS PubMed/MEDLINE and Cochrane Library databases were used to perform a comprehensive and systematic search and were updated until August 15, 2022. Two authors independently reviewed the titles and abstracts of the retrieved articles by using the search algorithm and selected the articles based on the inclusion and exclusion criteria. All statistical analyses were conducted using R statistical software. RESULTS Forty-three studies with 2352 patients were included in the qualitative synthesis, and 23 studies with 1388 patients were included in the quantitative analysis, which estimated the FES-positive detection rate. Thirty-two studies (77%) included breast cancer patients in 43 included studies. The FES SUVmean was higher in patients with endometrial cancer (3.4-5.3) than in those with breast cancer (2.05) and uterine sarcoma (1.1-2.6). The pooled detection rates of FES PET imaging were 0.80 for breast and 0.84 for ovarian cancer patients, both similar to that of 18F-FDG. The FES uptake threshold of 1.1 to 1.82 could detect 11.1% to 45% ER heterogeneity, but the threshold of FES uptake did not have consistent predictive ability for prognosis among patients with breast cancer, unlike uterine cancer. However, FES uptake can effectively predict and monitor treatment response, especially endocrine therapy such as estradiol, ER-blocking agents (fulvestrant and tamifoxen), and aromatase inhibitors (such as letrozole and Z-endoxifen). CONCLUSIONS [18F]fluoroestradiol PET is not only a convenient and accurate diagnostic imaging tool for detecting ER-expressing lesions in patients with breast and ovarian cancer but also among patients with uterine cancer. [18F]fluoroestradiol PET is a noninvasive predictive and monitoring tool for treatment response and prognosis.
Collapse
Affiliation(s)
| | | | - Li-Yu Chen
- From the Primo Biotechnology Co, Ltd, Taipei
| | | | | |
Collapse
|
2
|
van Geel JJL, de Vries EFJ, van Kruchten M, Hospers GAP, Glaudemans AWJM, Schröder CP. Molecular imaging as biomarker for treatment response and outcome in breast cancer. Ther Adv Med Oncol 2023; 15:17588359231170738. [PMID: 37223262 PMCID: PMC10201167 DOI: 10.1177/17588359231170738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 03/28/2023] [Indexed: 05/25/2023] Open
Abstract
Molecular imaging, such as positron emission tomography (PET), is increasingly used as biomarker to predict and assess treatment response in breast cancer. The number of biomarkers is expanding with specific tracers for tumour characteristics throughout the body and this information can be used to aid the decision-making process. These measurements include metabolic activity using [18F]fluorodeoxyglucose PET ([18F]FDG-PET), oestrogen receptor (ER) expression using 16α-[18F]Fluoro-17β-oestradiol ([18F]FES)-PET and human epidermal growth factor receptor 2 (HER2) expression using PET with radiolabelled trastuzumab (HER2-PET). In early breast cancer, baseline [18F]FDG-PET is frequently used for staging, but limited subtype-specific data reduce its usefulness as biomarker for treatment response or outcome. Early metabolic change on serial [18F]FDG-PET is increasingly used in the neo-adjuvant setting as dynamic biomarker to predict pathological complete response to systemic therapy, potentially allowing de-intensification or step-up intensification of treatment. In the metastatic setting, baseline [18F]FDG-PET and [18F]FES-PET can be used as biomarker to predict treatment response, in triple-negative and ER-positive breast cancer, respectively. Metabolic progression on repeated [18F]FDG-PET appears to precede progressive disease on standard evaluation imaging; however, subtype-specific studies are limited and more prospective data are needed before implementation in clinical practice. Even though (repeated) [18F]FDG-PET, [18F]FES-PET and HER2-PEt all show promising results as biomarkers to predict therapy response and outcome, for eventual integration into clinical practice, future studies will have to clarify at what timepoint this integration has to optimally take place.
Collapse
Affiliation(s)
- Jasper J. L. van Geel
- Department of Medical Oncology, University
Medical Center Groningen, University of Groningen, Groningen, The
Netherlands
| | - Erik F. J. de Vries
- Department of Nuclear Medicine and Molecular
Imaging, University Medical Center Groningen, University of Groningen,
Groningen, The Netherlands
| | - Michel van Kruchten
- Department of Medical Oncology, University
Medical Center Groningen, University of Groningen, Groningen, The
Netherlands
| | - Geke A. P. Hospers
- Department of Medical Oncology, University
Medical Center Groningen, University of Groningen, Groningen, The
Netherlands
| | - Andor W. J. M. Glaudemans
- Department of Nuclear Medicine and Molecular
Imaging, University Medical Center Groningen, University of Groningen,
Groningen, The Netherlands
| | - Carolina P. Schröder
- Department of Medical Oncology, University
Medical Center Groningen, University of Groningen, Groningen, The
Netherlands
- Department of Medical Oncology, Netherlands
Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, The Netherlands
| |
Collapse
|
3
|
Zheng D, He X, Jing J. Overview of Artificial Intelligence in Breast Cancer Medical Imaging. J Clin Med 2023; 12:419. [PMID: 36675348 PMCID: PMC9864608 DOI: 10.3390/jcm12020419] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/26/2022] [Accepted: 12/30/2022] [Indexed: 01/07/2023] Open
Abstract
The heavy global burden and mortality of breast cancer emphasize the importance of early diagnosis and treatment. Imaging detection is one of the main tools used in clinical practice for screening, diagnosis, and treatment efficacy evaluation, and can visualize changes in tumor size and texture before and after treatment. The overwhelming number of images, which lead to a heavy workload for radiologists and a sluggish reporting period, suggests the need for computer-aid detection techniques and platform. In addition, complex and changeable image features, heterogeneous quality of images, and inconsistent interpretation by different radiologists and medical institutions constitute the primary difficulties in breast cancer screening and imaging diagnosis. The advancement of imaging-based artificial intelligence (AI)-assisted tumor diagnosis is an ideal strategy for improving imaging diagnosis efficient and accuracy. By learning from image data input and constructing algorithm models, AI is able to recognize, segment, and diagnose tumor lesion automatically, showing promising application prospects. Furthermore, the rapid advancement of "omics" promotes a deeper and more comprehensive recognition of the nature of cancer. The fascinating relationship between tumor image and molecular characteristics has attracted attention to the radiomic and radiogenomics, which allow us to perform analysis and detection on the molecular level with no need for invasive operations. In this review, we integrate the current developments in AI-assisted imaging diagnosis and discuss the advances of AI-based breast cancer precise diagnosis from a clinical point of view. Although AI-assisted imaging breast cancer screening and detection is an emerging field and draws much attention, the clinical application of AI in tumor lesion recognition, segmentation, and diagnosis is still limited to research or in limited patients' cohort. Randomized clinical trials based on large and high-quality cohort are lacking. This review aims to describe the progress of the imaging-based AI application in breast cancer screening and diagnosis for clinicians.
Collapse
Affiliation(s)
| | | | - Jing Jing
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu 610041, China
| |
Collapse
|
4
|
Lee Y, Yoo IR, Ha S. 18F-FES PET/CT for Characterization of Brain and Leptomeningeal Metastasis in Double Primary Cancer Patient. Clin Nucl Med 2022; 47:e554-e556. [PMID: 35797633 DOI: 10.1097/rlu.0000000000004197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
ABSTRACT The clinical value of 16α-18F-fluoro-17 β-estradiol (18F-FES) PET in breast cancer has been widely investigated because it can visualize estrogen receptor-expressing lesions. This relatively new radiotracer adds clinical values by characterization of metastasis in double primary cancer. It also has advantage in finding small brain lesions, which has no background brain activity. Here, we present 18F-FES PET findings of brain and leptomeningeal metastases in a patient with breast and lung malignancy.
Collapse
Affiliation(s)
- Yeongjoo Lee
- From the Division of Nuclear Medicine, Department of Radiology, Seoul St Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | | | | |
Collapse
|
5
|
Clinical Evaluation of Nuclear Imaging Agents in Breast Cancer. Cancers (Basel) 2022; 14:cancers14092103. [PMID: 35565232 PMCID: PMC9101155 DOI: 10.3390/cancers14092103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/16/2022] [Accepted: 04/20/2022] [Indexed: 12/07/2022] Open
Abstract
Precision medicine is the customization of therapy for specific groups of patients using genetic or molecular profiling. Noninvasive imaging is one strategy for molecular profiling and is the focus of this review. The combination of imaging and therapy for precision medicine gave rise to the field of theranostics. In breast cancer, the detection and quantification of therapeutic targets can help assess their heterogeneity, especially in metastatic disease, and may help guide clinical decisions for targeted treatments. Positron emission tomography (PET) or single-photon emission tomography (SPECT) imaging has the potential to play an important role in the molecular profiling of therapeutic targets in vivo for the selection of patients who are likely to respond to corresponding targeted therapy. In this review, we discuss the state-of-the-art nuclear imaging agents in clinical research for breast cancer. We reviewed 17 clinical studies on PET or SPECT agents that target 10 different receptors in breast cancer. We also discuss the limitations of the study designs and of the imaging agents in these studies. Finally, we offer our perspective on which imaging agents have the highest potential to be used in clinical practice in the future.
Collapse
|
6
|
Bodapati S, Abraham P, Chen A, Guilbault D, McDonald M, Matro J, Shatsky R, Obrzut S. 18F-FES PET/CT Improves the Detection of Intraorbital Metastases in Estrogen-Receptor-Positive Breast Cancer: Two Representative Cases and Review of the Literature. Tomography 2022; 8:1060-1065. [PMID: 35448720 PMCID: PMC9024434 DOI: 10.3390/tomography8020086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/17/2022] [Accepted: 03/30/2022] [Indexed: 11/16/2022] Open
Abstract
Orbital metastases are a rare but life-altering complication in cancer. Most commonly seen in breast cancer, metastases to the optic nerves or extraocular muscles can have a devastating impact on visual acuity and quality of life. Hormone receptor status plays a central role in metastatic breast cancer treatment, with endocrine therapy often representing first-line therapy in hormone-receptor-positive cancers. Staging and treatment response evaluation with positron emission tomography (PET) computed tomography (CT) imaging with 18F-fluorodeoxyglucose (18F-FDG) is limited by high physiologic uptake in the intracranial and intraorbital compartments. Thus, traditional staging scans with 18F-FDG PET/CT may under-detect intraorbital and intracranial metastatic disease and inaccurately evaluate active metastatic disease burden. In comparison, 18F-fluoroestradiol (18F-FES) is a novel estrogen-receptor-specific PET radiotracer, which more accurately assesses the intracranial and intraorbital compartments in patients with estrogen-receptor-positive (ER+) cancers than 18F-FDG, due to lack of physiologic background activity in these regions. We present two cases of breast cancer patients with orbital metastases confirmed on MR imaging who underwent PET/CT imaging with 18F-FES and 18F-FDG. Multimodality imaging with 18F-FES PET/CT offers higher detection sensitivity of orbital metastases, compared with traditional 18F-FDG PET/CT imaging, and can improve the assessment of treatment response in patients with estrogen-receptor-positive (ER+) cancers.
Collapse
Affiliation(s)
- Sandhya Bodapati
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, 309 E. Second St., Pomona, CA 91766, USA;
| | - Peter Abraham
- Department of Radiology, University of California San Diego School of Medicine, 200 W Arbor Dr., San Diego, CA 92103, USA; (P.A.); (A.C.); (M.M.)
| | - Angela Chen
- Department of Radiology, University of California San Diego School of Medicine, 200 W Arbor Dr., San Diego, CA 92103, USA; (P.A.); (A.C.); (M.M.)
| | | | - Marin McDonald
- Department of Radiology, University of California San Diego School of Medicine, 200 W Arbor Dr., San Diego, CA 92103, USA; (P.A.); (A.C.); (M.M.)
| | - Jennifer Matro
- Division of Hematology/Oncology, University of California San Diego School of Medicine, 3855 Health Sciences Dr., La Jolla, CA 92037, USA; (J.M.); (R.S.)
| | - Rebecca Shatsky
- Division of Hematology/Oncology, University of California San Diego School of Medicine, 3855 Health Sciences Dr., La Jolla, CA 92037, USA; (J.M.); (R.S.)
| | - Sebastian Obrzut
- Department of Radiology, University of California San Diego School of Medicine, 200 W Arbor Dr., San Diego, CA 92103, USA; (P.A.); (A.C.); (M.M.)
- Correspondence:
| |
Collapse
|
7
|
Ulaner GA. 16α-18F-fluoro-17β-Fluoroestradiol (FES): Clinical Applications for Patients With Breast Cancer. Semin Nucl Med 2022; 52:574-583. [DOI: 10.1053/j.semnuclmed.2022.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 02/22/2022] [Accepted: 03/01/2022] [Indexed: 12/25/2022]
|
8
|
Balma M, Liberini V, Racca M, Laudicella R, Bauckneht M, Buschiazzo A, Nicolotti DG, Peano S, Bianchi A, Albano G, Quartuccio N, Abgral R, Morbelli SD, D'Alessandria C, Terreno E, Huellner MW, Papaleo A, Deandreis D. Non-conventional and Investigational PET Radiotracers for Breast Cancer: A Systematic Review. Front Med (Lausanne) 2022; 9:881551. [PMID: 35492341 PMCID: PMC9039137 DOI: 10.3389/fmed.2022.881551] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/22/2022] [Indexed: 02/05/2023] Open
Abstract
Breast cancer is one of the most common malignancies in women, with high morbidity and mortality rates. In breast cancer, the use of novel radiopharmaceuticals in nuclear medicine can improve the accuracy of diagnosis and staging, refine surveillance strategies and accuracy in choosing personalized treatment approaches, including radioligand therapy. Nuclear medicine thus shows great promise for improving the quality of life of breast cancer patients by allowing non-invasive assessment of the diverse and complex biological processes underlying the development of breast cancer and its evolution under therapy. This review aims to describe molecular probes currently in clinical use as well as those under investigation holding great promise for personalized medicine and precision oncology in breast cancer.
Collapse
Affiliation(s)
- Michele Balma
- Nuclear Medicine Department, S. Croce e Carle Hospital, Cuneo, Italy
- *Correspondence: Michele Balma
| | - Virginia Liberini
- Nuclear Medicine Department, S. Croce e Carle Hospital, Cuneo, Italy
- Division of Nuclear Medicine, Department of Medical Science, University of Turin, Turin, Italy
| | - Manuela Racca
- Nuclear Medicine Unit, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Riccardo Laudicella
- Department of Biomedical and Dental Sciences and of Morpho-Functional Imaging, Nuclear Medicine Unit, University of Messina, Messina, Italy
- Department of Nuclear Medicine, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Nuclear Medicine Unit, Fondazione Istituto G. Giglio, Cefalù, Italy
| | - Matteo Bauckneht
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Health Science (DISSAL), University of Genoa, Genoa, Italy
| | - Ambra Buschiazzo
- Nuclear Medicine Department, S. Croce e Carle Hospital, Cuneo, Italy
| | | | - Simona Peano
- Nuclear Medicine Department, S. Croce e Carle Hospital, Cuneo, Italy
| | - Andrea Bianchi
- Nuclear Medicine Department, S. Croce e Carle Hospital, Cuneo, Italy
| | - Giovanni Albano
- Nuclear Medicine Unit, Fondazione Istituto G. Giglio, Cefalù, Italy
| | - Natale Quartuccio
- Nuclear Medicine Unit, A.R.N.A.S. Civico di Cristina and Benfratelli Hospitals, Palermo, Italy
| | - Ronan Abgral
- Department of Nuclear Medicine, University Hospital of Brest, Brest, France
| | - Silvia Daniela Morbelli
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Health Science (DISSAL), University of Genoa, Genoa, Italy
| | | | - Enzo Terreno
- Department of Molecular Biotechnology and Health Sciences, Molecular & Preclinical Imaging Centers, University of Turin, Turin, Italy
| | - Martin William Huellner
- Department of Nuclear Medicine, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Alberto Papaleo
- Nuclear Medicine Department, S. Croce e Carle Hospital, Cuneo, Italy
| | - Désirée Deandreis
- Division of Nuclear Medicine, Department of Medical Science, University of Turin, Turin, Italy
| |
Collapse
|
9
|
Hao W, Li Y, Du B, Li X. Heterogeneity of estrogen receptor based on 18F-FES PET imaging in breast cancer patients. Clin Transl Imaging 2021. [DOI: 10.1007/s40336-021-00456-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
10
|
Romeo V, Accardo G, Perillo T, Basso L, Garbino N, Nicolai E, Maurea S, Salvatore M. Assessment and Prediction of Response to Neoadjuvant Chemotherapy in Breast Cancer: A Comparison of Imaging Modalities and Future Perspectives. Cancers (Basel) 2021; 13:cancers13143521. [PMID: 34298733 PMCID: PMC8303777 DOI: 10.3390/cancers13143521] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 06/30/2021] [Indexed: 02/06/2023] Open
Abstract
Neoadjuvant chemotherapy (NAC) is becoming the standard of care for locally advanced breast cancer, aiming to reduce tumor size before surgery. Unfortunately, less than 30% of patients generally achieve a pathological complete response and approximately 5% of patients show disease progression while receiving NAC. Accurate assessment of the response to NAC is crucial for subsequent surgical planning. Furthermore, early prediction of tumor response could avoid patients being overtreated with useless chemotherapy sections, which are not free from side effects and psychological implications. In this review, we first analyze and compare the accuracy of conventional and advanced imaging techniques as well as discuss the application of artificial intelligence tools in the assessment of tumor response after NAC. Thereafter, the role of advanced imaging techniques, such as MRI, nuclear medicine, and new hybrid PET/MRI imaging in the prediction of the response to NAC is described in the second part of the review. Finally, future perspectives in NAC response prediction, represented by AI applications, are discussed.
Collapse
Affiliation(s)
- Valeria Romeo
- Department of Advanced Biomedical Sciences, University of Naples “Federico II”, 80131 Naples, Italy; (T.P.); (S.M.)
- Correspondence: ; Tel.: +39-3930426928; Fax: +39-081-746356
| | - Giuseppe Accardo
- Department of Breast Surgery, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), Rionero in Vulture, 85028 Potenza, Italy;
| | - Teresa Perillo
- Department of Advanced Biomedical Sciences, University of Naples “Federico II”, 80131 Naples, Italy; (T.P.); (S.M.)
| | - Luca Basso
- IRCCS SDN, 80143 Naples, Italy; (L.B.); (N.G.); (E.N.); (M.S.)
| | - Nunzia Garbino
- IRCCS SDN, 80143 Naples, Italy; (L.B.); (N.G.); (E.N.); (M.S.)
| | | | - Simone Maurea
- Department of Advanced Biomedical Sciences, University of Naples “Federico II”, 80131 Naples, Italy; (T.P.); (S.M.)
| | - Marco Salvatore
- IRCCS SDN, 80143 Naples, Italy; (L.B.); (N.G.); (E.N.); (M.S.)
| |
Collapse
|
11
|
Molecular Biomarkers for Contemporary Therapies in Hormone Receptor-Positive Breast Cancer. Genes (Basel) 2021; 12:genes12020285. [PMID: 33671468 PMCID: PMC7922594 DOI: 10.3390/genes12020285] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/08/2021] [Accepted: 02/12/2021] [Indexed: 02/06/2023] Open
Abstract
Systemic treatment of hormone receptor-positive (HR+) breast cancer is undergoing a renaissance, with a number of targeted therapies including CDK4/6, mTOR, and PI3K inhibitors now approved for use in combination with endocrine therapies. The increased use of targeted therapies has changed the natural history of HR+ breast cancers, with the emergence of new escape mechanisms leading to the inevitable progression of disease in patients with advanced cancers. The identification of new predictive and pharmacodynamic biomarkers to current standard-of-care therapies and discovery of new therapies is an evolving and urgent clinical challenge in this setting. While traditional, routinely measured biomarkers such as estrogen receptors (ERs), progesterone receptors (PRs), and human epidermal growth factor receptor 2 (HER2) still represent the best prognostic and predictive biomarkers for HR+ breast cancer, a significant proportion of patients either do not respond to endocrine therapy or develop endocrine resistant disease. Genomic tests have emerged as a useful adjunct prognostication tool and guide the addition of chemotherapy to endocrine therapy. In the treatment-resistant setting, mutational profiling has been used to identify ESR1, PIK3CA, and AKT mutations as predictive molecular biomarkers to newer therapies. Additionally, pharmacodynamic biomarkers are being increasingly used and considered in the metastatic setting. In this review, we summarise the current state-of-the-art therapies; prognostic, predictive, and pharmacodynamic molecular biomarkers; and how these are impacted by emerging therapies for HR+ breast cancer.
Collapse
|
12
|
Katzenellenbogen JA. The quest for improving the management of breast cancer by functional imaging: The discovery and development of 16α-[ 18F]fluoroestradiol (FES), a PET radiotracer for the estrogen receptor, a historical review. Nucl Med Biol 2021; 92:24-37. [PMID: 32229068 PMCID: PMC7442693 DOI: 10.1016/j.nucmedbio.2020.02.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 02/16/2020] [Indexed: 12/21/2022]
Abstract
INTRODUCTION 16α-[18F]Fluoroestradiol (FES), a PET radiotracer for the estrogen receptor (ER) in breast cancer, was the first receptor-targeted PET radiotracer for oncology and is continuing to prove its value in clinical research, antiestrogen development, and breast cancer care. The story of its conception, design, evaluation and use in clinical studies parallels the evolution of the whole field of receptor-targeted radiotracers, one greatly influenced by the research and intellectual contributions of William C. Eckelman. METHODS AND RESULTS The development of methods for efficient production of fluorine-18, for conversion of [18F]fluoride ion into chemically reactive form, and for its rapid and efficient incorporation into suitable estrogen precursor molecules at high molar activity, were all methodological underpinnings required for the preparation of FES. FES binds to ER with very high affinity, and its in vivo uptake by ER-dependent target tissues in animal models was efficient and selective, findings that preceded its use for PET imaging in patients with breast cancer. ADVANCES IN KNOWLEDGE AND IMPLICATIONS FOR PATIENT CARE Comparisons between ER levels measured by FES-PET imaging of breast tumors with tissue-specimen ER quantification by IHC and other methods show that imaging provided improved prediction of benefit from endocrine therapies. Serial imaging of ER by FES-PET, before and after dosing patients with antiestrogens, is used to determine the efficacious dose for established antiestrogens and to facilitate clinical development of new ER antagonists. Beyond FES imaging, PET-based hormone challenge tests, which evaluate the functional status of ER by monitoring rapid changes in tumor metabolic or transcriptional activity after a brief estrogen challenge, provide highly sensitive and selective predictions of whether or not there will be a favorable response to endocrine therapies. There is sufficient interest in the clinical applications of FES that FDA approval is being sought for its wider use in breast cancer. CONCLUSIONS FES was the first PET probe for a receptor in cancer, and its development and clinical applications in breast cancer parallel the conceptual evolution of the whole field of receptor-binding radiotracers.
Collapse
Affiliation(s)
- John A Katzenellenbogen
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States of America.
| |
Collapse
|
13
|
Ivanidze J, Subramanian K, Youn T, Cigler T, Osborne JR, Magge RS, Balogun OD, Knisely JPS, Ramakrishna R. Utility of [18F]-fluoroestradiol (FES) PET/CT with dedicated brain acquisition in differentiating brain metastases from posttreatment change in estrogen receptor-positive breast cancer. Neurooncol Adv 2021; 3:vdab178. [PMID: 34988456 PMCID: PMC8713741 DOI: 10.1093/noajnl/vdab178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Jana Ivanidze
- Division of Molecular Imaging and Therapeutics, Department of Radiology, NewYork-Presbyterian Hospital—Weill Cornell Campus, New York, New York, USA
| | - Kritika Subramanian
- Division of Molecular Imaging and Therapeutics, Department of Radiology, NewYork-Presbyterian Hospital—Weill Cornell Campus, New York, New York, USA
| | - Trisha Youn
- Division of Molecular Imaging and Therapeutics, Department of Radiology, NewYork-Presbyterian Hospital—Weill Cornell Campus, New York, New York, USA
| | - Tessa Cigler
- Department of Breast Oncology, NewYork-Presbyterian Hospital—Weill Cornell Campus, New York, New York, USA
| | - Joseph R Osborne
- Division of Molecular Imaging and Therapeutics, Department of Radiology, NewYork-Presbyterian Hospital—Weill Cornell Campus, New York, New York, USA
| | - Rajiv S Magge
- Department of Neurology, Weill Cornell Brain Tumor Center, NewYork-Presbyterian Hospital—Weill Cornell Campus, New York, New York, USA
| | - Onyinye D Balogun
- Department of Radiation Oncology, NewYork-Presbyterian Hospital—Weill Cornell Campus, New York, New York, USA
| | - Jonathan P S Knisely
- Department of Radiation Oncology, NewYork-Presbyterian Hospital—Weill Cornell Campus, New York, New York, USA
| | - Rohan Ramakrishna
- Department of Neurological Surgery, NewYork-Presbyterian Hospital—Weill Cornell Campus, New York, New York, USA
| |
Collapse
|
14
|
Liu C, Xu X, Yuan H, Zhang Y, Zhang Y, Song S, Yang Z. Dual Tracers of 16α-[18F]fluoro-17β-Estradiol and [18F]fluorodeoxyglucose for Prediction of Progression-Free Survival After Fulvestrant Therapy in Patients With HR+/HER2- Metastatic Breast Cancer. Front Oncol 2020; 10:580277. [PMID: 33251143 PMCID: PMC7673439 DOI: 10.3389/fonc.2020.580277] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 09/16/2020] [Indexed: 12/17/2022] Open
Abstract
Objective The purpose of this study was to employ dual tracers 16α-[18F]fluoro-17β-estradiol (18F-FES) and [18F]fluorodeoxyglucose (18F-FDG) as imaging biomarkers in predicting progression-free survival (PFS) in ER-positive metastatic breast cancer (MBC) patients receiving fulvestrant therapy. Methods We retrospectively analyzed 35 HR+HER2- MBC patients who underwent 18F-FES and 18F-FDG PET/CT scans prior to fulvestrant therapy in our center. The SUVmax across all metastatic lesions on the PET/CT were assessed. The heterogeneity of ER expression was assigned by the presence of any 18F-FES negative lesions for patients with entirely 18F-FES positive lesions categorized into two groups by the median ratio of FES/FDG SUVmax, low FES/FDG, and high FES/FDG. PFS were estimated by the Kaplan-Meier method and compared by the log-rank test. Univariate and multivariate analyses were performed using the Cox proportional hazard model. Results In total, 12 patients had both 18F-FES negative and positive lesions, indicating the heterogeneity of ER expression in metastatic lesions. These patients had a low median PFS of 5.5 months (95% CI 2.3–8.7). Of patients with entirely 18F-FES positive lesions, 11 had a low FES/FDG, and 12 had a high FES/FDG. These groups had a median PFS of 29.4 months (95% CI 2.3–56.5) and 14.7 months (95% CI 10.9–18.5), respectively. The patients were stratified in three categories based on incorporating both 18F-FES and 18F-FDG imaging results that were significantly correlated with PFS by univariate analysis (P < 0.001) and multivariate analysis (P = 0.006). Conclusion 18F-FES and 18F-FDG PET could serve as prognostic imaging biomarkers for ER-positive MBC patients treated with fulvestrant therapy.
Collapse
Affiliation(s)
- Cheng Liu
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Center for Biomedical Imaging, Fudan University, Shanghai, China.,Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, China.,Department of Nuclear Medicine, Shanghai Proton and Heavy Ion Center, Shanghai, China
| | - Xiaoping Xu
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Center for Biomedical Imaging, Fudan University, Shanghai, China.,Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, China.,Department of Nuclear Medicine, Shanghai Proton and Heavy Ion Center, Shanghai, China
| | - Huiyu Yuan
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Center for Biomedical Imaging, Fudan University, Shanghai, China.,Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, China.,Department of Nuclear Medicine, Shanghai Proton and Heavy Ion Center, Shanghai, China
| | - Yongping Zhang
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Center for Biomedical Imaging, Fudan University, Shanghai, China.,Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, China.,Department of Nuclear Medicine, Shanghai Proton and Heavy Ion Center, Shanghai, China
| | - Yingjian Zhang
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Center for Biomedical Imaging, Fudan University, Shanghai, China.,Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, China.,Department of Nuclear Medicine, Shanghai Proton and Heavy Ion Center, Shanghai, China
| | - Shaoli Song
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Center for Biomedical Imaging, Fudan University, Shanghai, China.,Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, China.,Department of Nuclear Medicine, Shanghai Proton and Heavy Ion Center, Shanghai, China
| | - Zhongyi Yang
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Center for Biomedical Imaging, Fudan University, Shanghai, China.,Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, China.,Department of Nuclear Medicine, Shanghai Proton and Heavy Ion Center, Shanghai, China
| |
Collapse
|
15
|
Boers J, Giatagana K, Schröder CP, Hospers GA, de Vries EF, Glaudemans AW. Image Quality and Interpretation of [18F]-FES-PET: Is There any Effect of Food Intake? Diagnostics (Basel) 2020; 10:diagnostics10100756. [PMID: 32993099 PMCID: PMC7600120 DOI: 10.3390/diagnostics10100756] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/21/2020] [Accepted: 09/23/2020] [Indexed: 11/16/2022] Open
Abstract
Background: High physiological 16α-[18F]-fluoro-17β-estradiol ([18F]-FES) uptake in the abdomen is a limitation of this positron emission tomography (PET) tracer. Therefore, we investigated the effect of food intake prior to PET acquisition on abdominal background activity in [18F]-FES-PET scans. Methods: Breast cancer patients referred for [18F]-FES-PET were included. Three groups were designed: (1) patients who consumed a chocolate bar (fatty meal) between tracer injection and imaging (n = 20), (2) patients who fasted before imaging (n = 20), and (3) patients without diet restrictions (control group, n = 20). We compared the physiological [18F]-FES uptake, expressed as mean standardized uptake value (SUVmean), in the abdomen between groups. Results: A significant difference in [18F]-FES uptake in the gall bladder and stomach lumen was observed between groups, with the lowest values for the chocolate group and highest for the fasting group (p = 0.015 and p = 0.011, respectively). Post hoc analysis showed significant differences in the SUVmean of these organs between the chocolate and fasting groups, but not between the chocolate and control groups. Conclusion: This exploratory study showed that, compared to fasting, eating chocolate decreases physiological gall bladder and stomach [18F]-FES uptake; further reduction through a normal diet was not seen. A prospective study is warranted to confirm this finding.
Collapse
Affiliation(s)
- Jorianne Boers
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands; (K.G.); (C.P.S.); (G.A.P.H.)
- Correspondence: ; Tel.: +31-50-36-12821
| | - Katerina Giatagana
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands; (K.G.); (C.P.S.); (G.A.P.H.)
| | - Carolina P. Schröder
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands; (K.G.); (C.P.S.); (G.A.P.H.)
| | - Geke A.P. Hospers
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands; (K.G.); (C.P.S.); (G.A.P.H.)
| | - Erik F.J. de Vries
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands; (E.F.J.d.V.); (A.W.J.M.G.)
| | - Andor W.J.M. Glaudemans
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands; (E.F.J.d.V.); (A.W.J.M.G.)
| |
Collapse
|
16
|
Ming Y, Wu N, Qian T, Li X, Wan DQ, Li C, Li Y, Wu Z, Wang X, Liu J, Wu N. Progress and Future Trends in PET/CT and PET/MRI Molecular Imaging Approaches for Breast Cancer. Front Oncol 2020; 10:1301. [PMID: 32903496 PMCID: PMC7435066 DOI: 10.3389/fonc.2020.01301] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 06/23/2020] [Indexed: 12/13/2022] Open
Abstract
Breast cancer is a major disease with high morbidity and mortality in women worldwide. Increased use of imaging biomarkers has been shown to add more information with clinical utility in the detection and evaluation of breast cancer. To date, numerous studies related to PET-based imaging in breast cancer have been published. Here, we review available studies on the clinical utility of different PET-based molecular imaging methods in breast cancer diagnosis, staging, distant-metastasis detection, therapeutic and prognostic prediction, and evaluation of therapeutic responses. For primary breast cancer, PET/MRI performed similarly to MRI but better than PET/CT. PET/CT and PET/MRI both have higher sensitivity than MRI in the detection of axillary and extra-axillary nodal metastases. For distant metastases, PET/CT has better performance in the detection of lung metastasis, while PET/MRI performs better in the liver and bone. Additionally, PET/CT is superior in terms of monitoring local recurrence. The progress in novel radiotracers and PET radiomics presents opportunities to reclassify tumors by combining their fine anatomical features with molecular characteristics and develop a beneficial pathway from bench to bedside to predict the treatment response and prognosis of breast cancer. However, further investigation is still needed before application of these modalities in clinical practice. In conclusion, PET-based imaging is not suitable for early-stage breast cancer, but it adds value in identifying regional nodal disease and distant metastases as an adjuvant to standard diagnostic imaging. Recent advances in imaging techniques would further widen the comprehensive and convergent applications of PET approaches in the clinical management of breast cancer.
Collapse
Affiliation(s)
- Yue Ming
- PET-CT Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Nan Wu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing, China
| | - Tianyi Qian
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiao Li
- Department of Radiology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - David Q Wan
- Department of Diagnostic and Interventional Imaging, McGovern Medical School, Health and Science Center at Houston, University of Texas, Houston, TX, United States
| | - Caiying Li
- Department of Medical Imaging, Second Hospital of Hebei Medical University, Hebei, China
| | - Yalun Li
- Department of Breast Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Zhihong Wu
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing, China.,Department of Central Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Xiang Wang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiaqi Liu
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ning Wu
- PET-CT Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
17
|
Boers J, de Vries EFJ, Glaudemans AWJM, Hospers GAP, Schröder CP. Application of PET Tracers in Molecular Imaging for Breast Cancer. Curr Oncol Rep 2020; 22:85. [PMID: 32627087 PMCID: PMC7335757 DOI: 10.1007/s11912-020-00940-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW Molecular imaging with positron emission tomography (PET) is a powerful tool to visualize breast cancer characteristics. Nonetheless, implementation of PET imaging into cancer care is challenging, and essential steps have been outlined in the international "imaging biomarker roadmap." In this review, we identify hurdles and provide recommendations for implementation of PET biomarkers in breast cancer care, focusing on the PET tracers 2-[18F]-fluoro-2-deoxyglucose ([18F]-FDG), sodium [18F]-fluoride ([18F]-NaF), 16α-[18F]-fluoroestradiol ([18F]-FES), and [89Zr]-trastuzumab. RECENT FINDINGS Technical validity of [18F]-FDG, [18F]-NaF, and [18F]-FES is established and supported by international guidelines. However, support for clinical validity and utility is still pending for these PET tracers in breast cancer, due to variable endpoints and procedures in clinical studies. Assessment of clinical validity and utility is essential towards implementation; however, these steps are still lacking for PET biomarkers in breast cancer. This could be solved by adding PET biomarkers to randomized trials, development of imaging data warehouses, and harmonization of endpoints and procedures.
Collapse
Affiliation(s)
- Jorianne Boers
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB, Groningen, The Netherlands
| | - Erik F J de Vries
- Medical Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Andor W J M Glaudemans
- Medical Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Geke A P Hospers
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB, Groningen, The Netherlands
| | - Carolina P Schröder
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB, Groningen, The Netherlands.
| |
Collapse
|
18
|
Besret L, d'Heilly S, Aubert C, Bluet G, Gruss-Leleu F, Le-Gall F, Caron A, Andrieu L, Vincent S, Shomali M, Bouaboula M, Voland C, Ming J, Roy S, Rao S, Carrez C, Jouannot E. Translational strategy using multiple nuclear imaging biomarkers to evaluate target engagement and early therapeutic efficacy of SAR439859, a novel selective estrogen receptor degrader. EJNMMI Res 2020; 10:70. [PMID: 32601772 PMCID: PMC7324464 DOI: 10.1186/s13550-020-00646-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 05/13/2020] [Indexed: 12/29/2022] Open
Abstract
PURPOSE Preclinical in vivo nuclear imaging of mice offers an enabling perspective to evaluate drug efficacy at optimal dose and schedule. In this study, we interrogated sufficient estrogen receptor occupancy and degradation for the selective estrogen receptor degrader (SERD) compound SAR439859 using molecular imaging and histological techniques. MATERIAL AND METHODS [18F]FluoroEstradiol positron emission tomography (FES-PET), [18F]FluoroDeoxyGlucose (FDG) PET, and [18F]FluoroThymidine (FLT) PET were investigated as early pharmacodynamic, tumor metabolism, and tumor proliferation imaging biomarkers, respectively, in mice bearing subcutaneous MCF7-Y537S mutant ERα+ breast cancer model treated with the SERD agent SAR439859. ER expression and proliferation index Ki-67 were assessed by immunohistochemistry (IHC). The combination of palbociclib CDK 4/6 inhibitor with SAR439859 was tested for its potential synergistic effect on anti-tumor activity. RESULTS After repeated SAR439859 oral administration over 4 days, FES tumoral uptake (SUVmean) decreases compared to baseline by 35, 57, and 55% for the 25 mg/kg qd, 12.5 mg/kg bid and 5 mg/kg bid treatment groups, respectively. FES tumor uptake following SAR439859 treatment at different doses correlates with immunohistochemical scoring for ERα expression. No significant difference in FDG uptake is observed after SAR439859 treatments over 3 days. FLT accumulation in tumor is significantly decreased when palbociclib is combined to SAR439859 (- 64%) but not different from the group dosed with palbociclib alone (- 46%). The impact on proliferation is corroborated by Ki-67 IHC data for both groups of treatment. CONCLUSIONS In our preclinical studies, dose-dependent inhibition of FES tumoral uptake confirmed target engagement of SAR439859 to ERα. FES-PET thus appears as a relevant imaging biomarker for measuring non-invasively the impact of SAR439859 on tumor estrogen receptor occupancy. This study further validates the use of FLT-PET to directly visualize the anti-proliferative tumor effect of the palbociclib CDK 4/6 inhibitor alone and in combination with SAR439859.
Collapse
Affiliation(s)
- Laurent Besret
- Sanofi Research and Development France, 13 quai Jules Guesde, 94403, Vitry-sur-Seine, France.
| | - Sébastien d'Heilly
- Sanofi Research and Development France, 13 quai Jules Guesde, 94403, Vitry-sur-Seine, France
| | - Cathy Aubert
- Sanofi Research and Development France, 13 quai Jules Guesde, 94403, Vitry-sur-Seine, France
| | - Guillaume Bluet
- Sanofi Research and Development France, 13 quai Jules Guesde, 94403, Vitry-sur-Seine, France
| | - Florence Gruss-Leleu
- Sanofi Research and Development France, 13 quai Jules Guesde, 94403, Vitry-sur-Seine, France
| | - Françoise Le-Gall
- Sanofi Research and Development France, 13 quai Jules Guesde, 94403, Vitry-sur-Seine, France
| | - Anne Caron
- Sanofi Research and Development France, 13 quai Jules Guesde, 94403, Vitry-sur-Seine, France
| | - Laurent Andrieu
- Sanofi Research and Development France, 13 quai Jules Guesde, 94403, Vitry-sur-Seine, France
| | - Sylvie Vincent
- Present address: Takeda Pharmaceuticals, 35 Landsdowne St, Cambridge, MA, 02139, USA
| | - Maysoun Shomali
- Sanofi Research and Development USA, 640 Memorial Drive, Cambridge, MA, 02139, USA
| | - Monsif Bouaboula
- Sanofi Research and Development USA, 640 Memorial Drive, Cambridge, MA, 02139, USA
| | - Carole Voland
- Sanofi Research and Development France, 371, rue du Pr Blayac, 34184, Montpellier Cedex 4, France
| | - Jeffrey Ming
- Sanofi Research and Development USA, 55 Corporate Drive, Bridgewater, NJ, 08807, USA
| | - Sébastien Roy
- Sanofi Research and Development France, 13 quai Jules Guesde, 94403, Vitry-sur-Seine, France
| | - Srinivas Rao
- Sanofi Research and Development USA, 640 Memorial Drive, Cambridge, MA, 02139, USA
| | - Chantal Carrez
- Sanofi Research and Development France, 13 quai Jules Guesde, 94403, Vitry-sur-Seine, France
| | - Erwan Jouannot
- Sanofi Research and Development France, 13 quai Jules Guesde, 94403, Vitry-sur-Seine, France
| |
Collapse
|
19
|
Peterson LM, Kurland BF, Yan F, Jiresova AN, Gadi VK, Specht JM, Gralow JR, Schubert EK, Link JM, Krohn KA, Eary JF, Mankoff DA, Linden HM. 18F-Fluoroestradiol PET Imaging in a Phase II Trial of Vorinostat to Restore Endocrine Sensitivity in ER+/HER2- Metastatic Breast Cancer. J Nucl Med 2020; 62:184-190. [PMID: 32591490 DOI: 10.2967/jnumed.120.244459] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/27/2020] [Indexed: 12/23/2022] Open
Abstract
Histone deacetylase inhibitors (HDACIs) may overcome endocrine resistance in estrogen receptor-positive (ER+) metastatic breast cancer. We tested whether 18F-fluoroestradiol PET imaging would elucidate the pharmacodynamics of combination HDACIs and endocrine therapy. Methods: Patients with ER+/human epidermal growth factor receptor 2 (HER2)-negative metastatic breast cancer with prior clinical benefit from endocrine therapy but later progression on aromatase inhibitor (AI) therapy were given vorinostat (400 mg daily) sequentially or simultaneously with AI. 18F-fluoroestradiol PET and 18F-FDG PET scans were performed at baseline, week 2, and week 8. Results: Eight patients were treated sequentially, and then 15 simultaneously. Eight patients had stable disease at week 8, and 6 of these 8 patients had more than 6 mo of stable disease. Higher baseline 18F-fluoroestradiol uptake was associated with longer progression-free survival. 18F-fluoroestradiol uptake did not systematically increase with vorinostat exposure, indicating no change in regional ER estradiol binding, and 18F-FDG uptake did not show a significant decrease, as would have been expected with tumor regression. Conclusion: Simultaneous HDACIs and AI dosing in patients with cancer resistant to AI alone showed clinical benefit (6 or more months without progression) in 4 of 10 evaluable patients. Higher 18F-fluoroestradiol PET uptake identified patients likely to benefit from combination therapy, but vorinostat did not change ER expression at the level of detection of 18F-fluoroestradiol PET.
Collapse
Affiliation(s)
- Lanell M Peterson
- Division of Medical Oncology, University of Washington/Seattle Cancer Care Alliance, Seattle, Washington
| | - Brenda F Kurland
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Fengting Yan
- Division of Medical Oncology, University of Washington/Seattle Cancer Care Alliance, Seattle, Washington
| | - Alena Novakova- Jiresova
- Department of Oncology, First Faculty of Medicine, Charles University and Thomayer Hospital, Prague, Czech Republic
| | - Vijayakrishna K Gadi
- Division of Medical Oncology, University of Washington/Seattle Cancer Care Alliance, Seattle, Washington.,Clinical Research and Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Jennifer M Specht
- Division of Medical Oncology, University of Washington/Seattle Cancer Care Alliance, Seattle, Washington
| | - Julie R Gralow
- Division of Medical Oncology, University of Washington/Seattle Cancer Care Alliance, Seattle, Washington
| | - Erin K Schubert
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jeanne M Link
- Department of Diagnostic Radiology, Oregon Health and Science University, Portland, Oregon; and
| | - Kenneth A Krohn
- Department of Diagnostic Radiology, Oregon Health and Science University, Portland, Oregon; and
| | - Janet F Eary
- Cancer Imaging Program, National Cancer Institute, Bethesda, Maryland
| | - David A Mankoff
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Hannah M Linden
- Division of Medical Oncology, University of Washington/Seattle Cancer Care Alliance, Seattle, Washington
| |
Collapse
|
20
|
Kurland BF, Wiggins JR, Coche A, Fontan C, Bouvet Y, Webner P, Divgi C, Linden HM. Whole-Body Characterization of Estrogen Receptor Status in Metastatic Breast Cancer with 16α-18F-Fluoro-17β-Estradiol Positron Emission Tomography: Meta-Analysis and Recommendations for Integration into Clinical Applications. Oncologist 2020; 25:835-844. [PMID: 32374053 DOI: 10.1634/theoncologist.2019-0967] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 04/02/2020] [Indexed: 12/19/2022] Open
Abstract
Estrogen receptor (ER) status by immunohistochemistry (IHC) of cancer tissue is currently used to direct endocrine therapy in breast cancer. Positron emission tomography (PET) with 16α-18F-fluoro-17β-estradiol (18 F-FES) noninvasively characterizes ER ligand-binding function of breast cancer lesions. Concordance of imaging and tissue assays should be established for 18 F-FES PET to be an alternative or complement to tissue biopsy for metastatic lesions. We conducted a meta-analysis of published results comparing 18 F-FES PET and tissue assays of ER status in patients with breast cancer. PubMed and EMBASE were searched for English-language manuscripts with at least 10 patients and low overall risk of bias. Thresholds for imaging and tissue classification could differ between studies but had to be clearly stated. We used hierarchical summary receiver-operating characteristic curve models for the meta-analysis. The primary analysis included 113 nonbreast lesions from 4 studies; an expanded analysis included 327 total lesions from 11 studies. Treating IHC results as the reference standard, sensitivity was 0.78 (95% confidence region 0.65-0.88) and specificity 0.98 (0.65-1.00) for the primary analysis of nonbreast lesions. In the expanded analysis including non-IHC tissue assays and all lesion sites, sensitivity was 0.81 (0.73-0.87) and specificity 0.86 (0.68-0.94). These results suggest that 18 F-FES PET is useful for characterization of ER status of metastatic breast cancer lesions. We also review current best practices for conducting 18 F-FES PET scans. This imaging assay has potential to improve clinically relevant outcomes for patients with (historically) ER-positive metastatic breast cancer, including those with brain metastases and/or lobular histology. IMPLICATIONS FOR PRACTICE: 16α-18F-fluoro-17β-estradiol positron emission tomography (18 F-FES PET) imaging assesses estrogen receptor status in breast cancer in vivo. This work reviews the sensitivity and specificity of 18 F-FES PET in a meta-analysis with reference tissue assays and discusses best practices for use of the tracer as an imaging biomarker. 18 F-FES PET could enhance breast cancer diagnosis and staging as well as aid in therapy selection for patients with metastatic disease. Tissue sampling limitations, intrapatient heterogeneity, and temporal changes in molecular markers make it likely that 18 F-FES PET will complement existing assays when clinically available in the near future.
Collapse
Affiliation(s)
| | - Jay R Wiggins
- Merlin Biomedical Consulting, LLC, Hendersonville, North Carolina, USA
| | | | | | - Yann Bouvet
- Zionexa US Corporation, Fishers, Indiana, USA
| | | | | | | |
Collapse
|
21
|
He M, Liu C, Shi Q, Sun Y, Zhang Y, Xu X, Yuan H, Zhang Y, Liu Y, Liu G, Di G, Yang Z, Wang Z, Shao Z. The Predictive Value of Early Changes in 18 F-Fluoroestradiol Positron Emission Tomography/Computed Tomography During Fulvestrant 500 mg Therapy in Patients with Estrogen Receptor-Positive Metastatic Breast Cancer. Oncologist 2020; 25:927-936. [PMID: 32272493 DOI: 10.1634/theoncologist.2019-0561] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 03/23/2020] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND The aim of this study was to investigate the predictive value of early changes in 18 F-fluoroestradiol (FES) positron emission tomography (PET)/computed tomography (CT) during fulvestrant 500 mg therapy in patients with estrogen receptor (ER)-positive metastatic breast cancer. MATERIALS AND METHODS Patients underwent 18 F-FES PET/CT scans at both baseline (scan 1) and day 28 (scan 2). The maximum standardized uptake value (SUVmax) of all metastatic sites was determined in each scan, and the percentage reduction in SUVmax (ΔSUVmax) was calculated as [(SUVmax on scan 1-SUVmax on scan 2)/ SUVmax on scan 1] * 100%. RESULTS In total, 294 18 F-FES-positive lesions from 36 patients were identified. The 18 F-FES SUVmax varied widely among lesions (median 5.7; range 1.8-32.4) and patients (median 5.1; range 2.5-13.2). After treatment, the median SUVmax among lesions and patients was 2.1 and 2.1, respectively. The ΔSUVmax ranged from -5.1% to 100%, with a median reduction of 61.3%. Using receiver operating characteristic analysis, the optimal cutoff point to discriminate patients who could derive clinical benefit from fulvestrant was determined to be 38.0%. Patients with a median ΔSUVmax ≥38.0% experienced significantly longer progression-free survival (PFS) than those with ΔSUVmax <38.0% (28.0 months vs. 3.5 months, p = .003). Multivariate analysis demonstrated that ΔSUVmax ≥38.0% was an independent predictor of PFS benefit in patients receiving fulvestrant therapy. CONCLUSION Changes in SUVmax measured by serial imaging of 18 F-FES PET/CT could be used early to predict PFS benefit in patients receiving fulvestrant therapy. IMPLICATIONS FOR PRACTICE The aim of this study was to evaluate the role of 18 F-fluoroestradiol (FES) positron emission tomography (PET)/computed tomography (CT) in predicting response to fulvestrant 500 mg therapy in patients with hormone receptor-positive/human epidermal growth receptor 2-negative metastatic breast cancer. This study highlights the utility of FES PET/CT as a predictive factor to discriminate patients who might benefit from fulvestrant. Moreover, these findings showed that this molecular imaging technique might be a potential tool for physicians to make individualized treatment strategies.
Collapse
Affiliation(s)
- Min He
- Department of Breast Surgery, Key Laboratory of Breast Cancer, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Cheng Liu
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China
- Center for Biomedical Imaging, Fudan University, Shanghai, People's Republic of China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, People's Republic of China
| | - Qin Shi
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China
- Center for Biomedical Imaging, Fudan University, Shanghai, People's Republic of China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, People's Republic of China
| | - Yuyun Sun
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China
- Center for Biomedical Imaging, Fudan University, Shanghai, People's Republic of China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, People's Republic of China
| | - Yongping Zhang
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China
- Center for Biomedical Imaging, Fudan University, Shanghai, People's Republic of China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, People's Republic of China
| | - Xiaoping Xu
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China
- Center for Biomedical Imaging, Fudan University, Shanghai, People's Republic of China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, People's Republic of China
| | - Huiyu Yuan
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China
- Center for Biomedical Imaging, Fudan University, Shanghai, People's Republic of China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, People's Republic of China
| | - Yingjian Zhang
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China
- Center for Biomedical Imaging, Fudan University, Shanghai, People's Republic of China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, People's Republic of China
| | - Yin Liu
- Department of Breast Surgery, Key Laboratory of Breast Cancer, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Guangyu Liu
- Department of Breast Surgery, Key Laboratory of Breast Cancer, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Genhong Di
- Department of Breast Surgery, Key Laboratory of Breast Cancer, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Zhongyi Yang
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China
- Center for Biomedical Imaging, Fudan University, Shanghai, People's Republic of China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, People's Republic of China
| | - Zhonghua Wang
- Department of Breast Surgery, Key Laboratory of Breast Cancer, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Zhiming Shao
- Department of Breast Surgery, Key Laboratory of Breast Cancer, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
22
|
Verburg FA, Flux G, Giovanella L, van Nostrand D, Muylle K, Luster M. Differentiated thyroid cancer patients potentially benefitting from postoperative I-131 therapy: a review of the literature of the past decade. Eur J Nucl Med Mol Imaging 2020; 47:78-83. [PMID: 31616967 PMCID: PMC6885024 DOI: 10.1007/s00259-019-04479-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 08/06/2019] [Indexed: 01/17/2023]
Abstract
BACKGROUND Since the last major review of literature on the benefit of I-131 therapy, the continued debate on postoperative radioiodine treatment (RIT) in differentiated thyroid carcinoma (DTC) has led to a number of further studies being published on this topic. AIM The aim of the present paper is to report the results of an updated structured review of the literature pertaining to the prognostic benefits of postoperative RIT in DTC in terms of recurrence-free and disease-specific survival. METHODS A systematic search of the literature was performed using the Medline and Cochrane Library database. The search period started in August 2007 and ended on December 6, 2017. Search terms used included "differentiated thyroid cancer" and "radioiodine therapy" amended by specific terms for recurrence/disease-free survival or overall and/or cancer-specific survival. Included in the search were systematic reviews, randomized clinical trials, or cohort studies consisting of both patients who underwent postoperative RIT and patients treated by surgery alone. RESULTS Eleven retrospective cohort studies met the defined inclusion criteria and were included in the present review. Results of the studies were mixed, with some showing a benefit of RIT even in microcarcinoma whereas others showed no benefit at all. CONCLUSION Literature published in the last decade offers data that support adjuvant postoperative RIT in DTC patients with a tumor diameter exceeding 1 cm. Therefore, at least until randomized prospective studies prove otherwise, the prescription of adjuvant I-131 treatment to all DTC patients with a primary tumor diameter exceeding 1 cm remains a reasonable option.
Collapse
Affiliation(s)
- Frederik A Verburg
- Department of Nuclear Medicine, University Hospital Marburg, Baldingerstraße, 35043, Marburg, Germany.
- European Association of Nuclear Medicine, Thyroid Committee, Vienna, Austria.
| | - Glenn Flux
- Joint Department of Physics, Royal Marsden Hospital and Institute of Cancer Research, Sutton, UK
- European Association of Nuclear Medicine, Radiation Protection Committee, Vienna, Austria
| | - Luca Giovanella
- European Association of Nuclear Medicine, Thyroid Committee, Vienna, Austria
- Ente Ospedaliero Cantonale, Clinic for Nuclear Medicine and Molecular Imaging and Integrated Centre for Thyroid Diseases, Bellinzona, Switzerland
| | - Douglas van Nostrand
- Washington Hospital Center, Nuclear Medicine, Washington, District of Columbia, USA
| | - Kristoff Muylle
- Department of Nuclear Medicine, University Hospital Brussels/UZ Brussel (VUB), Brussels, Belgium
- European Association of Nuclear Medicine, Board, Vienna, Austria
| | - Markus Luster
- Department of Nuclear Medicine, University Hospital Marburg, Baldingerstraße, 35043, Marburg, Germany
- European Association of Nuclear Medicine, Thyroid Committee, Vienna, Austria
| |
Collapse
|
23
|
Preclinical Molecular Imaging for Precision Medicine in Breast Cancer Mouse Models. CONTRAST MEDIA & MOLECULAR IMAGING 2019; 2019:8946729. [PMID: 31598114 PMCID: PMC6778915 DOI: 10.1155/2019/8946729] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/28/2019] [Accepted: 07/25/2019] [Indexed: 12/18/2022]
Abstract
Precision and personalized medicine is gaining importance in modern clinical medicine, as it aims to improve diagnostic precision and to reduce consequent therapeutic failures. In this regard, prior to use in human trials, animal models can help evaluate novel imaging approaches and therapeutic strategies and can help discover new biomarkers. Breast cancer is the most common malignancy in women worldwide, accounting for 25% of cases of all cancers and is responsible for approximately 500,000 deaths per year. Thus, it is important to identify accurate biomarkers for precise stratification of affected patients and for early detection of responsiveness to the selected therapeutic protocol. This review aims to summarize the latest advancements in preclinical molecular imaging in breast cancer mouse models. Positron emission tomography (PET) imaging remains one of the most common preclinical techniques used to evaluate biomarker expression in vivo, whereas magnetic resonance imaging (MRI), particularly diffusion-weighted (DW) sequences, has been demonstrated as capable of distinguishing responders from nonresponders for both conventional and innovative chemo- and immune-therapies with high sensitivity and in a noninvasive manner. The ability to customize therapies is desirable, as this will enable early detection of diseases and tailoring of treatments to individual patient profiles. Animal models remain irreplaceable in the effort to understand the molecular mechanisms and patterns of oncologic diseases.
Collapse
|
24
|
FDG-PET/CT Versus Contrast-Enhanced CT for Response Evaluation in Metastatic Breast Cancer: A Systematic Review. Diagnostics (Basel) 2019; 9:diagnostics9030106. [PMID: 31461923 PMCID: PMC6787711 DOI: 10.3390/diagnostics9030106] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 08/16/2019] [Accepted: 08/23/2019] [Indexed: 12/12/2022] Open
Abstract
18F-fluorodeoxyglucose positron emission tomography with integrated computed tomography (FDG-PET/CT) and contrast-enhanced computed tomography (CT) can be used for response evaluation in metastatic breast cancer (MBC). In this study, we aimed to review literature comparing the PET Response Criteria in Solid Tumors (PERCIST) with Response Evaluation Criteria in Solid Tumors (RECIST) in patients with MBC. We made a systematic search in Embase, PubMed/Medline, and Cochrane Library using a modified PICO model. The population was MBC patients and the intervention was PERCIST or RECIST. Quality assessment was performed using the QUADAS-2 checklist. A total of 1975 articles were identified. After screening by title/abstract, 78 articles were selected for further analysis of which 2 duplicates and 33 abstracts/out of focus articles were excluded. The remaining 43 articles provided useful information, but only one met the inclusion and none of the exclusion criteria. This was a retrospective study of 65 patients with MBC showing one-year progression-free survival for responders versus non-responders to be 59% vs. 27% (p = 0.2) by RECIST compared to 64% vs. 0% (p = 0.0001) by PERCIST. This systematic literature review identified a lack of studies comparing the use of RECIST (with CE-CT) and PERCIST (with FDG-PET/CT) for response evaluation in metastatic breast cancer. The available sparse literature suggests that PERCIST might be more appropriate than RECIST for predicting prognosis in patients with MBC.
Collapse
|
25
|
FDG-PET/CT for Response Monitoring in Metastatic Breast Cancer: Today, Tomorrow, and Beyond. Cancers (Basel) 2019; 11:cancers11081190. [PMID: 31443324 PMCID: PMC6721531 DOI: 10.3390/cancers11081190] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 08/14/2019] [Accepted: 08/14/2019] [Indexed: 12/25/2022] Open
Abstract
While current international guidelines include imaging of the target lesion for response monitoring in metastatic breast cancer, they do not provide specific recommendations for choice of imaging modality or response criteria. This is important as clinical decisions may vary depending on which imaging modality is used for monitoring metastatic breast cancer. FDG-PET/CT has shown high accuracy in diagnosing metastatic breast cancer, and the Positron Emission Tomography Response Criteria in Solid Tumors (PERCIST) have shown higher predictive values than the CT-based Response Evaluation Criteria in Solid Tumors (RECIST) for prediction of progression-free survival. No studies have yet addressed the clinical impact of using different imaging modalities or response evaluation criteria for longitudinal response monitoring in metastatic breast cancer. We present a case study of a patient with metastatic breast cancer who was monitored first with conventional CT and then with FDG-PET/CT. We retrospectively applied PERCIST to evaluate the longitudinal response to treatment. We used the one-lesion PERCIST model measuring SULpeak in the hottest metastatic lesion on consecutive scans. This model provides a continuous variable that allows graphical illustration of disease fluctuation along with response categories. The one-lesion PERCIST approach seems able to reflect molecular changes and has the potential to support clinical decision-making. Prospective clinical studies addressing the clinical impact of PERCIST in metastatic breast cancer are needed to establish evidence-based recommendations for response monitoring in this disease.
Collapse
|
26
|
Fruhwirth GO, Kneilling M, de Vries IJM, Weigelin B, Srinivas M, Aarntzen EHJG. The Potential of In Vivo Imaging for Optimization of Molecular and Cellular Anti-cancer Immunotherapies. Mol Imaging Biol 2018; 20:696-704. [PMID: 30030697 PMCID: PMC6153672 DOI: 10.1007/s11307-018-1254-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This review aims to emphasize the potential of in vivo imaging to optimize current and upcoming anti-cancer immunotherapies: spanning from preclinical to clinical applications. Immunotherapies are an emerging class of treatments for a variety of diseases. The agents include molecular and cellular therapeutics, which aim to treat the disease through re-education of the host immune system, often via complex mechanisms of action. In vivo imaging has the potential to contribute in several different ways: (1) as a drug development tool to improve our understanding of their complex mechanisms of action, (2) as a tool to predict efficacy, for example, to stratify patients into probable responders and likely non-responders, and (3) as a non-invasive treatment response biomarker to guide efficient immunotherapy use and to recognize early signs of potential loss of efficacy or resistance in patients. Areas where in vivo imaging is already successfully implemented in onco-immunology research will be discussed and domains where its use offers great potential will be highlighted. The focus of this article is on anti-cancer immunotherapy as it currently is the most advanced immunotherapy area. However, the described concepts can also be paralleled in other immune-mediated disorders and for conditions requiring immunotherapeutic intervention. Importantly, we introduce a new study group within the European Society of Molecular Imaging with the goal to facilitate and enhance immunotherapy development through the use of in vivo imaging.
Collapse
Affiliation(s)
- Gilbert O Fruhwirth
- Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, Kings' College London, London, UK
| | - Manfred Kneilling
- Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, Eberhard Karls University, Tuebingen, Germany
- Department of Dermatology, Eberhard Karls University, Tuebingen, Germany
| | - I Jolanda M de Vries
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Bettina Weigelin
- Genitourinary Medical Oncology and Koch Center, MD Anderson Cancer Center, Houston, USA
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Mangala Srinivas
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Erik H J G Aarntzen
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Geert Grooteplein 10, PO Box 9101, 6500 HB, Nijmegen, The Netherlands.
| |
Collapse
|