1
|
Zhou L, Xu R. Invertebrate genetic models of amyotrophic lateral sclerosis. Front Mol Neurosci 2024; 17:1328578. [PMID: 38500677 PMCID: PMC10944931 DOI: 10.3389/fnmol.2024.1328578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/24/2024] [Indexed: 03/20/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a common adult-onset neurodegenerative disease characterized by the progressive death of motor neurons in the cerebral cortex, brain stem, and spinal cord. The exact mechanisms underlying the pathogenesis of ALS remain unclear. The current consensus regarding the pathogenesis of ALS suggests that the interaction between genetic susceptibility and harmful environmental factors is a promising cause of ALS onset. The investigation of putative harmful environmental factors has been the subject of several ongoing studies, but the use of transgenic animal models to study ALS has provided valuable information on the onset of ALS. Here, we review the current common invertebrate genetic models used to study the pathology, pathophysiology, and pathogenesis of ALS. The considerations of the usage, advantages, disadvantages, costs, and availability of each invertebrate model will also be discussed.
Collapse
Affiliation(s)
- LiJun Zhou
- Department of Neurology, National Regional Center for Neurological Diseases, Clinical College of Nanchang Medical College, Jiangxi Provincial People's Hospital, First Affiliated Hospital of Nanchang Medical College, Xiangya Hospital of Central South University Jiangxi Hospital, Nanchang, Jiangxi, China
- Medical College of Nanchang University, Nanchang, China
| | - RenShi Xu
- Department of Neurology, National Regional Center for Neurological Diseases, Clinical College of Nanchang Medical College, Jiangxi Provincial People's Hospital, First Affiliated Hospital of Nanchang Medical College, Xiangya Hospital of Central South University Jiangxi Hospital, Nanchang, Jiangxi, China
- Medical College of Nanchang University, Nanchang, China
| |
Collapse
|
2
|
Rahimpouresfahani F, Tabatabaei N, Rezai P. High-throughput light sheet imaging of adult and larval C. elegans Parkinson's disease model using a low-cost optofluidic device and a fluorescent microscope. RSC Adv 2024; 14:626-639. [PMID: 38173569 PMCID: PMC10759043 DOI: 10.1039/d3ra06323b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 11/30/2023] [Indexed: 01/05/2024] Open
Abstract
Recent advancements at the interface of microfluidics technology and light sheet fluorescence microscopy have opened the door for high-throughput and high-content investigation of C. elegans disease models. In this paper, we report on the development of a simple, miniaturized, and low-cost optofluidic platform that can be added to a conventional inverted fluorescent microscope for continuous light sheet imaging of transgenic worm populations with high lateral and axial resolutions of 1.1 µm and 2.4 µm, respectively. The optofluidic device is made entirely of PDMS with integrated optics for light sheet generation. Laser excitation is delivered to the device via a low-cost free space laser, and cross-sections of worm populations are imaged as they pass continuously through a channel. Results show the platform can image NW1229 whole worms with pan-neural fluorescent expression at a throughput of >20 worms per minute at L3 and young adult (YA) stages. As a benchmark test, we show that the low-cost device can quantify the reduced neuronal expressions of L3 and YA NW1229 worms when exposed to 500 µM 6-OHDA neurodegenerative agent. Following the benchmark validation, we utilized the platform in a novel application for imaging human alpha-synuclein reporter in populations of Parkinson's transgenic model (ERS100). Results show the ability of the low-cost platform to reliably detect and quantify the anomalous neural phenotypic changes in ERS100 populations at L3 and YA stages with high spatial resolution. The findings of this study show the potential of our low-cost optofluidic add-on platform to equip conventional fluorescent microscopes with light sheet capability for quantitative phenotypic studies of transgenic C. elegans at high resolution and throughput.
Collapse
Affiliation(s)
- Faraz Rahimpouresfahani
- Department of Mechanical Engineering, York University 4700 Keele St Toronto M3J 1P3 Ontario Canada +1-416-7362100
| | - Nima Tabatabaei
- Department of Mechanical Engineering, York University 4700 Keele St Toronto M3J 1P3 Ontario Canada +1-416-7362100
| | - Pouya Rezai
- Department of Mechanical Engineering, York University 4700 Keele St Toronto M3J 1P3 Ontario Canada +1-416-7362100
| |
Collapse
|
3
|
Shin YJ, Kim YJ, Lee JE, Kim YS, Lee JW, Kim H, Shin JY, Lee PH. Uric acid regulates α-synuclein transmission in Parkinsonian models. Front Aging Neurosci 2023; 15:1117491. [PMID: 37711993 PMCID: PMC10497982 DOI: 10.3389/fnagi.2023.1117491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 08/11/2023] [Indexed: 09/16/2023] Open
Abstract
Ample evidence demonstrates that α-synuclein (α-syn) has a critical role in the pathogenesis of Parkinson's disease (PD) with evidence indicating that its propagation from one area of the brain to others may be the primary mechanism for disease progression. Uric acid (UA), a natural antioxidant, has been proposed as a potential disease modifying candidate in PD. In the present study, we investigated whether UA treatment modulates cell-to-cell transmission of extracellular α-syn and protects dopaminergic neurons in the α-syn-enriched model. In a cellular model, UA treatment decreased internalized cytosolic α-syn levels and neuron-to-neuron transmission of α-syn in donor-acceptor cell models by modulating dynamin-mediated and clathrin-mediated endocytosis. Moreover, UA elevation in α-syn-inoculated mice inhibited propagation of extracellular α-syn which decreased expression of phosphorylated α-syn in the dopaminergic neurons of the substantia nigra leading to their increased survival. UA treatment did not lead to change in markers related with autophagolysosomal and microglial activity under the same experimental conditions. These findings suggest UA may control the pathological conditions of PD via additive mechanisms which modulate the propagation of α-syn.
Collapse
Affiliation(s)
- Yu Jin Shin
- Department of Neurology, Yonsei University College of Medicine, Seoul, Republic of Korea
- Severance Biomedical Science Institute, Yonsei University, Seoul, Republic of Korea
| | - Yeon Ju Kim
- Department of Neurology, Yonsei University College of Medicine, Seoul, Republic of Korea
- Severance Biomedical Science Institute, Yonsei University, Seoul, Republic of Korea
| | - Ji Eun Lee
- Department of Neurology, Yonsei University College of Medicine, Seoul, Republic of Korea
- Severance Biomedical Science Institute, Yonsei University, Seoul, Republic of Korea
| | - Yi Seul Kim
- Department of Neurology, Yonsei University College of Medicine, Seoul, Republic of Korea
- Severance Biomedical Science Institute, Yonsei University, Seoul, Republic of Korea
| | - Jung Wook Lee
- Department of Medical Science, Catholic Kwandong University College of Medicine, Gangneung-si, Republic of Korea
| | - HyeonJeong Kim
- Department of Neurology, Yonsei University College of Medicine, Seoul, Republic of Korea
- Severance Biomedical Science Institute, Yonsei University, Seoul, Republic of Korea
| | - Jin Young Shin
- Department of Neurology, Yonsei University College of Medicine, Seoul, Republic of Korea
- Severance Biomedical Science Institute, Yonsei University, Seoul, Republic of Korea
| | - Phil Hyu Lee
- Department of Neurology, Yonsei University College of Medicine, Seoul, Republic of Korea
- Severance Biomedical Science Institute, Yonsei University, Seoul, Republic of Korea
| |
Collapse
|
4
|
Salaramoli S, Joshaghani HR, Hashemy SI. Salivary Biomarkers: Noninvasive Ways for Diagnosis of Parkinson's Disease. Neurol Res Int 2023; 2023:3555418. [PMID: 37434876 PMCID: PMC10332915 DOI: 10.1155/2023/3555418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 06/25/2023] [Accepted: 06/27/2023] [Indexed: 07/13/2023] Open
Abstract
Finding reliable biomarkers has a crucial role in Parkinson's disease (PD) assessments. Saliva is a bodily fluid, which might be used as a source of biomarkers for PD. Our article has reviewed several publications on salivary proteins in PD patients and their potential as biomarkers. We find out that α-Syn's proportion in oligomeric form is higher in PD patients' saliva, which is potent to use as a biomarker for PD. The salivary concentration of DJ-1 and alpha-amylase is lower in PD patients. Also, substance P level is more moderate in PD patients. Although salivary flow rate is decreased in PD patients, high levels of heme oxygenase and acetylcholinesterase might be used as noninvasive biomarkers. Salivary miRNAs (miR-153, miR-223, miR-874, and miR-145-3p) are novel diagnostic biomarkers that should be given more attention.
Collapse
Affiliation(s)
- Sanaz Salaramoli
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Reza Joshaghani
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Seyed Isaac Hashemy
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
5
|
Chen M, Mor DE. Gut-to-Brain α-Synuclein Transmission in Parkinson's Disease: Evidence for Prion-like Mechanisms. Int J Mol Sci 2023; 24:ijms24087205. [PMID: 37108366 PMCID: PMC10139032 DOI: 10.3390/ijms24087205] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Parkinson's disease (PD) is a multifactorial disorder involving both motor and non-motor symptoms caused by the progressive death of distinct neuronal populations, including dopaminergic neurons in the substantia nigra. The deposition of aggregated α-synuclein protein into Lewy body inclusions is a hallmark of the disorder, and α-synuclein pathology has been found in the enteric nervous system (ENS) of PD patients up to two decades prior to diagnosis. In combination with the high occurrence of gastrointestinal dysfunction in early stages of PD, current evidence strongly suggests that some forms of PD may originate in the gut. In this review, we discuss human studies that support ENS Lewy pathology as a characteristic feature of PD, and present evidence from humans and animal model systems that α-synuclein aggregation may follow a prion-like spreading cascade from enteric neurons, through the vagal nerve, and into the brain. Given the accessibility of the human gut to pharmacologic and dietary interventions, therapeutic strategies aimed at reducing pathological α-synuclein in the gastrointestinal tract hold significant promise for PD treatment.
Collapse
Affiliation(s)
- Merry Chen
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Danielle E Mor
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
6
|
Lee RMQ, Koh TW. Genetic modifiers of synucleinopathies-lessons from experimental models. OXFORD OPEN NEUROSCIENCE 2023; 2:kvad001. [PMID: 38596238 PMCID: PMC10913850 DOI: 10.1093/oons/kvad001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/04/2023] [Accepted: 03/07/2023] [Indexed: 04/11/2024]
Abstract
α-Synuclein is a pleiotropic protein underlying a group of progressive neurodegenerative diseases, including Parkinson's disease and dementia with Lewy bodies. Together, these are known as synucleinopathies. Like all neurological diseases, understanding of disease mechanisms is hampered by the lack of access to biopsy tissues, precluding a real-time view of disease progression in the human body. This has driven researchers to devise various experimental models ranging from yeast to flies to human brain organoids, aiming to recapitulate aspects of synucleinopathies. Studies of these models have uncovered numerous genetic modifiers of α-synuclein, most of which are evolutionarily conserved. This review discusses what we have learned about disease mechanisms from these modifiers, and ways in which the study of modifiers have supported ongoing efforts to engineer disease-modifying interventions for synucleinopathies.
Collapse
Affiliation(s)
- Rachel Min Qi Lee
- Temasek Life Sciences Laboratory, 1 Research Link, Singapore, 117604, Singapore
| | - Tong-Wey Koh
- Temasek Life Sciences Laboratory, 1 Research Link, Singapore, 117604, Singapore
- Department of Biological Sciences, National University of Singapore, Block S3 #05-01, 16 Science Drive 4, Singapore, 117558, Singapore
| |
Collapse
|
7
|
Estaun-Panzano J, Arotcarena ML, Bezard E. Monitoring α-synuclein aggregation. Neurobiol Dis 2023; 176:105966. [PMID: 36527982 PMCID: PMC9875312 DOI: 10.1016/j.nbd.2022.105966] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Synucleinopathies, including Parkinson's disease (PD), dementia with Lewy Bodies (DLB), and multiple system atrophy (MSA), are characterized by the misfolding and subsequent aggregation of alpha-synuclein (α-syn) that accumulates in cytoplasmic inclusions bodies in the cells of affected brain regions. Since the seminal report of likely-aggregated α-syn presence within the Lewy bodies by Spillantini et al. in 1997, the keyword "synuclein aggregation" has appeared in over 6000 papers (Source: PubMed October 2022). Studying, observing, describing, and quantifying α-syn aggregation is therefore of paramount importance, whether it happens in tubo, in vitro, in post-mortem samples, or in vivo. The past few years have witnessed tremendous progress in understanding aggregation mechanisms and identifying various polymorphs. In this context of growing complexity, it is of utmost importance to understand what tools we possess, what exact information they provide, and in what context they may be applied. Nonetheless, it is also crucial to rationalize the relevance of the information and the limitations of these methods for gauging the final result. In this review, we present the main techniques that have shaped the current views about α-syn structure and dynamics, with particular emphasis on the recent breakthroughs that may change our understanding of synucleinopathies.
Collapse
Affiliation(s)
| | | | - Erwan Bezard
- Univ. Bordeaux, CNRS, IMN, UMR 5293, F-33000 Bordeaux, France; Motac Neuroscience Ltd, Manchester, United Kingdom.
| |
Collapse
|
8
|
Chen M, Vincent J, Ezeanii A, Wakade S, Yerigenahally S, Mor DE. Heparan sulfate proteoglycans mediate prion-like α-synuclein toxicity in Parkinson's in vivo models. Life Sci Alliance 2022; 5:5/11/e202201366. [PMID: 35790300 PMCID: PMC9259873 DOI: 10.26508/lsa.202201366] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 11/24/2022] Open
Abstract
This study offers new Caenorhabditis elegans models in which feeding with α-synuclein pre-formed fibrils results in prion-like aggregation of host α-synuclein and dopamine neuron degeneration, and these disease phenotypes are regulated by the heparan sulfate proteoglycan pathway. Parkinson’s disease (PD) is a debilitating neurodegenerative disorder characterized by progressive motor decline and the aggregation of α-synuclein protein. Growing evidence suggests that α-synuclein aggregates may spread from neurons of the digestive tract to the central nervous system in a prion-like manner, yet the mechanisms of α-synuclein transmission and neurotoxicity remain poorly understood. Animal models that are amenable to high-throughput investigations are needed to facilitate the discovery of disease mechanisms. Here we describe the first Caenorhabditis elegans models in which feeding with α-synuclein preformed fibrils (PFFs) induces dopaminergic neurodegeneration, prion-like seeding of aggregation of human α-synuclein expressed in the host, and an associated motor decline. RNAi-mediated knockdown of the C. elegans syndecan sdn-1, or other enzymes involved in heparan sulfate proteoglycan synthesis, protected against PFF-induced α-synuclein aggregation, motor dysfunction, and dopamine neuron degeneration. This work offers new models by which to investigate gut-derived α-synuclein spreading and propagation of disease.
Collapse
Affiliation(s)
- Merry Chen
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Julie Vincent
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Alexis Ezeanii
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Saurabh Wakade
- College of Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Shobha Yerigenahally
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Danielle E Mor
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, USA
| |
Collapse
|
9
|
Invited review: Unearthing the mechanisms of age-related neurodegenerative disease using Caenorhabditis elegans. Comp Biochem Physiol A Mol Integr Physiol 2022; 267:111166. [PMID: 35176489 DOI: 10.1016/j.cbpa.2022.111166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 12/11/2022]
Abstract
As human life expectancy increases, neurodegenerative diseases present a growing public health threat, for which there are currently few effective treatments. There is an urgent need to understand the molecular and genetic underpinnings of these disorders so new therapeutic targets can be identified. Here we present the argument that the simple nematode worm Caenorhabditis elegans is a powerful tool to rapidly study neurodegenerative disorders due to their short lifespan and vast array of genetic tools, which can be combined with characterization of conserved neuronal processes and behavior orthologous to those disrupted in human disease. We review how pre-existing C. elegans models provide insight into human neurological disease as well as an overview of current tools available to study neurodegenerative diseases in the worm, with an emphasis on genetics and behavior. We also discuss open questions that C. elegans may be particularly well suited for in future studies and how worms will be a valuable preclinical model to better understand these devastating neurological disorders.
Collapse
|
10
|
Marino G, Calabresi P, Ghiglieri V. Alpha-synuclein and cortico-striatal plasticity in animal models of Parkinson disease. HANDBOOK OF CLINICAL NEUROLOGY 2022; 184:153-166. [PMID: 35034731 DOI: 10.1016/b978-0-12-819410-2.00008-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Alpha-synuclein (α-synuclein) is a small, acidic protein containing 140 amino acids, highly expressed in the brain and primarily localized in the presynaptic terminals. It is found in high concentrations in Lewy Bodies, proteinaceous aggregates that constitute a typical histopathologic hallmark of Parkinson's disease. Altered environmental conditions, genetic mutations and post-translational changes can trigger abnormal aggregation processes with the increased frequency of oligomers, protofibrils, and fibrils formation that perturbs the neuronal homeostasis leading to cell death. Relevant to neuronal activity, a function of α-synuclein that has been extensively detailed is its regulatory actions in the trafficking of synaptic vesicles, including the processes of exocytosis, endocytosis and neurotransmitter release. Most recently, increasing attention has been paid to the possible role that α-synuclein plays at a postsynaptic level by interacting with selective subunits of the glutamate N-methyl-d-aspartate receptor, altering the corticostriatal plasticity of distinct neuronal populations.
Collapse
Affiliation(s)
- Gioia Marino
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Rome, Italy; Dipartimento di Medicina, Università degli Studi di Perugia, Perugia, Italy
| | - Paolo Calabresi
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Rome, Italy; UOC Neurologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | | |
Collapse
|
11
|
Chen KS, Menezes K, Rodgers JB, O’Hara DM, Tran N, Fujisawa K, Ishikura S, Khodaei S, Chau H, Cranston A, Kapadia M, Pawar G, Ping S, Krizus A, Lacoste A, Spangler S, Visanji NP, Marras C, Majbour NK, El-Agnaf OMA, Lozano AM, Culotti J, Suo S, Ryu WS, Kalia SK, Kalia LV. Small molecule inhibitors of α-synuclein oligomers identified by targeting early dopamine-mediated motor impairment in C. elegans. Mol Neurodegener 2021; 16:77. [PMID: 34772429 PMCID: PMC8588601 DOI: 10.1186/s13024-021-00497-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 10/21/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Parkinson's disease is a disabling neurodegenerative movement disorder characterized by dopaminergic neuron loss induced by α-synuclein oligomers. There is an urgent need for disease-modifying therapies for Parkinson's disease, but drug discovery is challenged by lack of in vivo models that recapitulate early stages of neurodegeneration. Invertebrate organisms, such as the nematode worm Caenorhabditis elegans, provide in vivo models of human disease processes that can be instrumental for initial pharmacological studies. METHODS To identify early motor impairment of animals expressing α-synuclein in dopaminergic neurons, we first used a custom-built tracking microscope that captures locomotion of single C. elegans with high spatial and temporal resolution. Next, we devised a method for semi-automated and blinded quantification of motor impairment for a population of simultaneously recorded animals with multi-worm tracking and custom image processing. We then used genetic and pharmacological methods to define the features of early motor dysfunction of α-synuclein-expressing C. elegans. Finally, we applied the C. elegans model to a drug repurposing screen by combining it with an artificial intelligence platform and cell culture system to identify small molecules that inhibit α-synuclein oligomers. Screen hits were validated using in vitro and in vivo mammalian models. RESULTS We found a previously undescribed motor phenotype in transgenic α-synuclein C. elegans that correlates with mutant or wild-type α-synuclein protein levels and results from dopaminergic neuron dysfunction, but precedes neuronal loss. Together with artificial intelligence-driven in silico and in vitro screening, this C. elegans model identified five compounds that reduced motor dysfunction induced by α-synuclein. Three of these compounds also decreased α-synuclein oligomers in mammalian neurons, including rifabutin which has not been previously investigated for Parkinson's disease. We found that treatment with rifabutin reduced nigrostriatal dopaminergic neurodegeneration due to α-synuclein in a rat model. CONCLUSIONS We identified a C. elegans locomotor abnormality due to dopaminergic neuron dysfunction that models early α-synuclein-mediated neurodegeneration. Our innovative approach applying this in vivo model to a multi-step drug repurposing screen, with artificial intelligence-driven in silico and in vitro methods, resulted in the discovery of at least one drug that may be repurposed as a disease-modifying therapy for Parkinson's disease.
Collapse
Affiliation(s)
- Kevin S. Chen
- Krembil Brain Institute, Toronto Western Hospital, University Health Network, Toronto, ON Canada
| | - Krystal Menezes
- Krembil Brain Institute, Toronto Western Hospital, University Health Network, Toronto, ON Canada
| | | | - Darren M. O’Hara
- Krembil Brain Institute, Toronto Western Hospital, University Health Network, Toronto, ON Canada
| | - Nhat Tran
- Krembil Brain Institute, Toronto Western Hospital, University Health Network, Toronto, ON Canada
| | - Kazuko Fujisawa
- Krembil Brain Institute, Toronto Western Hospital, University Health Network, Toronto, ON Canada
| | - Seiya Ishikura
- Krembil Brain Institute, Toronto Western Hospital, University Health Network, Toronto, ON Canada
| | - Shahin Khodaei
- Donnelly Centre, University of Toronto, Toronto, ON Canada
| | - Hien Chau
- Krembil Brain Institute, Toronto Western Hospital, University Health Network, Toronto, ON Canada
| | - Anna Cranston
- Krembil Brain Institute, Toronto Western Hospital, University Health Network, Toronto, ON Canada
| | - Minesh Kapadia
- Krembil Brain Institute, Toronto Western Hospital, University Health Network, Toronto, ON Canada
| | - Grishma Pawar
- Krembil Brain Institute, Toronto Western Hospital, University Health Network, Toronto, ON Canada
| | - Susan Ping
- Krembil Brain Institute, Toronto Western Hospital, University Health Network, Toronto, ON Canada
| | - Aldis Krizus
- Krembil Brain Institute, Toronto Western Hospital, University Health Network, Toronto, ON Canada
| | | | | | - Naomi P. Visanji
- Edmond J. Safra Program in Parkinson’s Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Division of Neurology, Department of Medicine, Toronto Western Hospital, University Health Network, Toronto, ON Canada
| | - Connie Marras
- Edmond J. Safra Program in Parkinson’s Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Division of Neurology, Department of Medicine, Toronto Western Hospital, University Health Network, Toronto, ON Canada
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, ON Canada
| | - Nour K. Majbour
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Omar M. A. El-Agnaf
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Andres M. Lozano
- Krembil Brain Institute, Toronto Western Hospital, University Health Network, Toronto, ON Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON Canada
| | - Joseph Culotti
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON Canada
| | - Satoshi Suo
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON Canada
- Department of Pharmacology, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| | - William S. Ryu
- Donnelly Centre, University of Toronto, Toronto, ON Canada
- Department of Physics, University of Toronto, Toronto, ON Canada
| | - Suneil K. Kalia
- Krembil Brain Institute, Toronto Western Hospital, University Health Network, Toronto, ON Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON Canada
- KITE and CRANIA, University Health Network, Toronto, ON Canada
| | - Lorraine V. Kalia
- Krembil Brain Institute, Toronto Western Hospital, University Health Network, Toronto, ON Canada
- Edmond J. Safra Program in Parkinson’s Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Division of Neurology, Department of Medicine, Toronto Western Hospital, University Health Network, Toronto, ON Canada
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, ON Canada
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON Canada
| |
Collapse
|
12
|
Chandler R, Cogo S, Lewis P, Kevei E. Modelling the functional genomics of Parkinson's disease in Caenorhabditis elegans: LRRK2 and beyond. Biosci Rep 2021; 41:BSR20203672. [PMID: 34397087 PMCID: PMC8415217 DOI: 10.1042/bsr20203672] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 08/03/2021] [Accepted: 08/13/2021] [Indexed: 12/12/2022] Open
Abstract
For decades, Parkinson's disease (PD) cases have been genetically categorised into familial, when caused by mutations in single genes with a clear inheritance pattern in affected families, or idiopathic, in the absence of an evident monogenic determinant. Recently, genome-wide association studies (GWAS) have revealed how common genetic variability can explain up to 36% of PD heritability and that PD manifestation is often determined by multiple variants at different genetic loci. Thus, one of the current challenges in PD research stands in modelling the complex genetic architecture of this condition and translating this into functional studies. Caenorhabditis elegans provide a profound advantage as a reductionist, economical model for PD research, with a short lifecycle, straightforward genome engineering and high conservation of PD relevant neural, cellular and molecular pathways. Functional models of PD genes utilising C. elegans show many phenotypes recapitulating pathologies observed in PD. When contrasted with mammalian in vivo and in vitro models, these are frequently validated, suggesting relevance of C. elegans in the development of novel PD functional models. This review will discuss how the nematode C. elegans PD models have contributed to the uncovering of molecular and cellular mechanisms of disease, with a focus on the genes most commonly found as causative in familial PD and risk factors in idiopathic PD. Specifically, we will examine the current knowledge on a central player in both familial and idiopathic PD, Leucine-rich repeat kinase 2 (LRRK2) and how it connects to multiple PD associated GWAS candidates and Mendelian disease-causing genes.
Collapse
Affiliation(s)
| | - Susanna Cogo
- School of Biological Sciences, University of Reading, Reading, RG6 6AH, U.K
- Department of Biology, University of Padova, Padova, Via Ugo Bassi 58/B, 35121, Italy
| | - Patrick A. Lewis
- Royal Veterinary College, University of London, London, NW1 0TU, U.K
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, U.K
| | - Eva Kevei
- School of Biological Sciences, University of Reading, Reading, RG6 6AH, U.K
| |
Collapse
|
13
|
Ray B, Mahalakshmi AM, Tuladhar S, Bhat A, Srinivasan A, Pellegrino C, Kannan A, Bolla SR, Chidambaram SB, Sakharkar MK. "Janus-Faced" α-Synuclein: Role in Parkinson's Disease. Front Cell Dev Biol 2021; 9:673395. [PMID: 34124057 PMCID: PMC8194081 DOI: 10.3389/fcell.2021.673395] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 04/15/2021] [Indexed: 01/03/2023] Open
Abstract
Parkinson's disease (PD) is a pathological condition characterized by the aggregation and the resultant presence of intraneuronal inclusions termed Lewy bodies (LBs) and Lewy neurites which are mainly composed of fibrillar α-synuclein (α-syn) protein. Pathogenic aggregation of α-syn is identified as the major cause of LBs deposition. Several mutations in α-syn showing varied aggregation kinetics in comparison to the wild type (WT) α-syn are reported in PD (A30P, E46K, H 50Q, G51D, A53E, and A53T). Also, the cell-to-cell spread of pathological α-syn plays a significant role in PD development. Interestingly, it has also been suggested that the pathology of PD may begin in the gastrointestinal tract and spread via the vagus nerve (VN) to brain proposing the gut-brain axis of α-syn pathology in PD. Despite multiple efforts, the behavior and functions of this protein in normal and pathological states (specifically in PD) is far from understood. Furthermore, the etiological factors responsible for triggering aggregation of this protein remain elusive. This review is an attempt to collate and present latest information on α-syn in relation to its structure, biochemistry and biophysics of aggregation in PD. Current advances in therapeutic efforts toward clearing the pathogenic α-syn via autophagy/lysosomal flux are also reviewed and reported.
Collapse
Affiliation(s)
- Bipul Ray
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru, India
| | - Arehally M. Mahalakshmi
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
| | - Sunanda Tuladhar
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru, India
| | - Abid Bhat
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru, India
| | - Asha Srinivasan
- Division of Nanoscience & Technology, Faculty of Life Sciences, JSS Academy of Higher Education & Research, Mysuru, India
| | - Christophe Pellegrino
- Institut National de la Santé et de la Recherche Médicale, Institute of Mediterranean Neurobiology, Aix-Marseille University, Marseille, France
| | - Anbarasu Kannan
- Department of Protein Chemistry and Technology, CSIR-Central Food Technological Research Institute, Mysuru, India
| | - Srinivasa Rao Bolla
- Department of Biomedical Sciences, School of Medicine, Nazarbayev University, Nur-Sultan City, Kazakhstan
| | - Saravana Babu Chidambaram
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru, India
- Special Interest Group – Brain, Behaviour, and Cognitive Neurosciences Research, JSS Academy of Higher Education & Research, Mysuru, India
| | | |
Collapse
|
14
|
Retrogradely transmitted α-synuclein is taken up by the endophilin-independent endocytosis in the C. elegans neural circuit. Biochem Biophys Res Commun 2021; 552:176-182. [PMID: 33751935 DOI: 10.1016/j.bbrc.2021.03.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 03/07/2021] [Indexed: 11/23/2022]
Abstract
α-Synuclein is a major component of Lewy bodies and Lewy neuritis which are hallmarks of Parkinson's disease, and is known to propagate from cell-to-cell in a prion-like manner. However, the exact mechanism of α-synuclein propagation in cells remains unclear. Despite the increasing number of studies and models of α-synuclein propagation, there is no direct evidence demonstrating whether the propagation is trans-synaptic or synaptic connection-independent, what the direction of propagation is, and what the regulators of α-synuclein propagation are. In this study, we generated a Caenorhabditis elegans model that can help monitoring the neuron-to-neuron propagation of α-synuclein using BiFC system. Using this model, we demonstrated that α-synuclein was propagated into neurons in both anterograde and retrograde manners, with retrograde propagation being dominant. Interestingly, we also found that endophilin, which is a protein required for classical clathrin-mediated endocytic machinery, was not involved in this retrograde propagation. Furthermore, we demonstrated that α-synuclein inhibits neuronal activity through voltage-gated calcium channels. Our findings suggest a possible mechanism for α-synuclein propagation via synapses through a novel uptake pathway.
Collapse
|
15
|
Dominguez-Meijide A, Parrales V, Vasili E, González-Lizárraga F, König A, Lázaro DF, Lannuzel A, Haik S, Del Bel E, Chehín R, Raisman-Vozari R, Michel PP, Bizat N, Outeiro TF. Doxycycline inhibits α-synuclein-associated pathologies in vitro and in vivo. Neurobiol Dis 2021; 151:105256. [PMID: 33429042 DOI: 10.1016/j.nbd.2021.105256] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/29/2020] [Accepted: 01/06/2021] [Indexed: 02/07/2023] Open
Abstract
Parkinson's disease (PD) and dementia with Lewy bodies (DLB) are neurodegenerative disorders characterized by the misfolding and aggregation of alpha-synuclein (aSyn). Doxycycline, a tetracyclic antibiotic shows neuroprotective effects, initially proposed to be due to its anti-inflammatory properties. More recently, an additional mechanism by which doxycycline may exert its neuroprotective effects has been proposed as it has been shown that it inhibits amyloid aggregation. Here, we studied the effects of doxycycline on aSyn aggregation in vivo, in vitro and in a cell free system using real-time quaking induced conversion (RT-QuiC). Using H4, SH-SY5Y and HEK293 cells, we found that doxycycline decreases the number and size of aSyn aggregates in cells. In addition, doxycycline inhibits the aggregation and seeding of recombinant aSyn, and attenuates the production of mitochondrial-derived reactive oxygen species. Finally, we found that doxycycline induces a cellular redistribution of aggregates in a C.elegans animal model of PD, an effect that is associated with a recovery of dopaminergic function. In summary, we provide strong evidence that doxycycline treatment may be an effective strategy against synucleinopathies.
Collapse
Affiliation(s)
- Antonio Dominguez-Meijide
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Goettingen, Goettingen, Germany; Laboratory of Neuroanatomy and Experimental Neurology, Dept. of Morphological Sciences, CIMUS, IDIS, University of Santiago de Compostela, Santiago de Compostela, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Valeria Parrales
- Paris Brain Institute, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, F-75013 Paris, France
| | - Eftychia Vasili
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Goettingen, Goettingen, Germany
| | | | - Annekatrin König
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Goettingen, Goettingen, Germany
| | - Diana F Lázaro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Goettingen, Goettingen, Germany
| | - Annie Lannuzel
- Paris Brain Institute, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, F-75013 Paris, France; University Hospital of Pointe-à-Pitre, Neurology Department, route de Chauvel, 97139 Abymes, Guadeloupe
| | - Stéphane Haik
- Paris Brain Institute, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, F-75013 Paris, France; AP-HP, Cellule Nationale de Référence des Maladies de Creutzfeldt-Jakob, University Hospital Pitié-Salpêtrière, Paris F-75013, France
| | - Elaine Del Bel
- Department of Basic and Oral Biology, Faculty of Odontology of Ribeirão Preto, University of São Paulo (USP), Av do Café s/n, São Paulo, Brazil
| | - Rosana Chehín
- Instituto de Investigación en Medicina Molecular y Celular Aplicada (IMMCA) (CONICET-UNT-SIPROSA), Argentina
| | - Rita Raisman-Vozari
- Paris Brain Institute, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, F-75013 Paris, France
| | - Patrick P Michel
- Paris Brain Institute, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, F-75013 Paris, France
| | - Nicolas Bizat
- Paris Brain Institute, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, F-75013 Paris, France; Faculté de Pharmacie de Paris, Paris University, 4 avenue de l'Observatoire, Paris F-75006, France.
| | - Tiago Fleming Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Goettingen, Goettingen, Germany; Max Planck Institute for Experimental Medicine, Goettingen, Germany; Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle Upon Tyne NE2 4HH, UK.
| |
Collapse
|
16
|
Arnold ML, Cooper J, Grant BD, Driscoll M. Quantitative Approaches for Scoring in vivo Neuronal Aggregate and Organelle Extrusion in Large Exopher Vesicles in C. elegans. J Vis Exp 2020:10.3791/61368. [PMID: 33016946 PMCID: PMC7805482 DOI: 10.3791/61368] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Toxicity of misfolded proteins and mitochondrial dysfunction are pivotal factors that promote age-associated functional neuronal decline and neurodegenerative disease across species. Although these neurotoxic challenges have long been considered to be cell-intrinsic, considerable evidence now supports that misfolded human disease proteins originating in one neuron can appear in neighboring cells, a phenomenon proposed to promote pathology spread in human neurodegenerative disease. C. elegans adult neurons that express aggregating proteins can extrude large (~4 µm) membrane-surrounded vesicles that can include the aggregated protein, mitochondria, and lysosomes. These large vesicles are called "exophers" and are distinct from exosomes (which are about 100x smaller and have different biogenesis). Throwing out cellular debris in exophers may occur by a conserved mechanism that constitutes a fundamental, but formerly unrecognized, branch of neuronal proteostasis and mitochondrial quality control, relevant to processes by which aggregates spread in human neurodegenerative diseases. While exophers have been mostly studied in animals that express high copy transgenic mCherry within touch neurons, these protocols are equally useful in the study of exophergenesis using fluorescently tagged organelles or other proteins of interest in various classes of neurons. Described here are the physical features of C. elegans exophers, strategies for their detection, identification criteria, optimal timing for quantitation, and animal growth protocols that control for stresses that can modulate exopher production levels. Together, details of protocols outlined here should serve to establish a standard for quantitative analysis of exophers across laboratories. This document seeks to serve as a resource in the field for laboratories seeking to elaborate molecular mechanisms by which exophers are produced and by which exophers are reacted to by neighboring and distant cells.
Collapse
Affiliation(s)
- Meghan Lee Arnold
- Department of Molecular Biology and Biochemistry, Rutgers University
| | - Jason Cooper
- Department of Molecular Biology and Biochemistry, Rutgers University
| | - Barth D Grant
- Department of Molecular Biology and Biochemistry, Rutgers University
| | - Monica Driscoll
- Department of Molecular Biology and Biochemistry, Rutgers University;
| |
Collapse
|
17
|
Soo SK, Rudich PD, Traa A, Harris-Gauthier N, Shields HJ, Van Raamsdonk JM. Compounds that extend longevity are protective in neurodegenerative diseases and provide a novel treatment strategy for these devastating disorders. Mech Ageing Dev 2020; 190:111297. [PMID: 32610099 PMCID: PMC7484136 DOI: 10.1016/j.mad.2020.111297] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 12/13/2022]
Abstract
While aging is the greatest risk factor for the development of neurodegenerative disease, the role of aging in these diseases is poorly understood. In the inherited forms of these diseases, the disease-causing mutation is present from birth but symptoms appear decades later. This indicates that these mutations are well tolerated in younger individuals but not in older adults. Based on this observation, we hypothesized that changes taking place during normal aging make the cells in the brain (and elsewhere) susceptible to the disease-causing mutations. If so, then delaying some of these age-related changes may be beneficial in the treatment of neurodegenerative disease. In this review, we examine the effects of five compounds that have been shown to extend longevity (metformin, rapamycin, resveratrol, N-acetyl-l-cysteine, curcumin) in four of the most common neurodegenerative diseases (Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis). While not all investigations observe a beneficial effect of these compounds, there are multiple studies that show a protective effect of each of these lifespan-extending compounds in animal models of neurodegenerative disease. Combined with genetic studies, this suggests the possibility that targeting the aging process may be an effective strategy to treat neurodegenerative disease.
Collapse
Affiliation(s)
- Sonja K Soo
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, H4A 3J1, Canada; Metabolic Disorders and Complications Program, and Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, QC, H4A 3J1, Canada
| | - Paige D Rudich
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, H4A 3J1, Canada; Metabolic Disorders and Complications Program, and Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, QC, H4A 3J1, Canada
| | - Annika Traa
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, H4A 3J1, Canada; Metabolic Disorders and Complications Program, and Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, QC, H4A 3J1, Canada
| | - Namasthée Harris-Gauthier
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, H4A 3J1, Canada; Metabolic Disorders and Complications Program, and Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, QC, H4A 3J1, Canada
| | - Hazel J Shields
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, H4A 3J1, Canada; Metabolic Disorders and Complications Program, and Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, QC, H4A 3J1, Canada
| | - Jeremy M Van Raamsdonk
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, H4A 3J1, Canada; Metabolic Disorders and Complications Program, and Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, QC, H4A 3J1, Canada; Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, QC, H4A 3J1, Canada; Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
18
|
C. elegans Models to Study the Propagation of Prions and Prion-Like Proteins. Biomolecules 2020; 10:biom10081188. [PMID: 32824215 PMCID: PMC7464663 DOI: 10.3390/biom10081188] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/10/2020] [Accepted: 08/13/2020] [Indexed: 12/14/2022] Open
Abstract
A hallmark common to many age-related neurodegenerative diseases, such as Alzheimer’s disease (AD), Parkinson’s disease (PD), and amyotrophic lateral sclerosis (ALS), is that patients develop proteinaceous deposits in their central nervous system (CNS). The progressive spreading of these inclusions from initially affected sites to interconnected brain areas is reminiscent of the behavior of bona fide prions in transmissible spongiform encephalopathies (TSEs), hence the term prion-like proteins has been coined. Despite intensive research, the exact mechanisms that facilitate the spreading of protein aggregation between cells, and the associated loss of neurons, remain poorly understood. As population demographics in many countries continue to shift to higher life expectancy, the incidence of neurodegenerative diseases is also rising. This represents a major challenge for healthcare systems and patients’ families, since patients require extensive support over several years and there is still no therapy to cure or stop these diseases. The model organism Caenorhabditis elegans offers unique opportunities to accelerate research and drug development due to its genetic amenability, its transparency, and the high degree of conservation of molecular pathways. Here, we will review how recent studies that utilize this soil dwelling nematode have proceeded to investigate the propagation and intercellular transmission of prions and prion-like proteins and discuss their relevance by comparing their findings to observations in other model systems and patients.
Collapse
|
19
|
Sandhof CA, Hoppe SO, Druffel-Augustin S, Gallrein C, Kirstein J, Voisine C, Nussbaum-Krammer C. Reducing INS-IGF1 signaling protects against non-cell autonomous vesicle rupture caused by SNCA spreading. Autophagy 2020; 16:878-899. [PMID: 31354022 PMCID: PMC7144869 DOI: 10.1080/15548627.2019.1643657] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 07/02/2019] [Accepted: 07/11/2019] [Indexed: 01/28/2023] Open
Abstract
Aging is associated with a gradual decline of cellular proteostasis, giving rise to devastating protein misfolding diseases, such as Alzheimer disease (AD) or Parkinson disease (PD). These diseases often exhibit a complex pathology involving non-cell autonomous proteotoxic effects, which are still poorly understood. Using Caenorhabditis elegans we investigated how local protein misfolding is affecting neighboring cells and tissues showing that misfolded PD-associated SNCA/α-synuclein is accumulating in highly dynamic endo-lysosomal vesicles. Irrespective of whether being expressed in muscle cells or dopaminergic neurons, accumulated proteins were transmitted into the hypodermis with increasing age, indicating that epithelial cells might play a role in remote degradation when the local endo-lysosomal degradation capacity is overloaded. Cell biological and genetic approaches revealed that inter-tissue dissemination of SNCA was regulated by endo- and exocytosis (neuron/muscle to hypodermis) and basement membrane remodeling (muscle to hypodermis). Transferred SNCA conformers were, however, inefficiently cleared and induced endo-lysosomal membrane permeabilization. Remarkably, reducing INS (insulin)-IGF1 (insulin-like growth factor 1) signaling provided protection by maintaining endo-lysosomal integrity. This study suggests that the degradation of lysosomal substrates is coordinated across different tissues in metazoan organisms. Because the chronic dissemination of poorly degradable disease proteins into neighboring tissues exerts a non-cell autonomous toxicity, this implies that restoring endo-lysosomal function not only in cells with pathological inclusions, but also in apparently unaffected cell types might help to halt disease progression.Abbreviations: AD: Alzheimer disease; BM: basement membrane; BWM: body wall muscle; CEP: cephalic sensilla; CLEM: correlative light and electron microscopy; CTNS-1: cystinosin (lysosomal protein) homolog; DA: dopaminergic; DAF-2: abnormal dauer formation; ECM: extracellular matrix; FLIM: fluorescence lifetime imaging microscopy; fps: frames per second; GFP: green fluorescent protein; HPF: high pressure freezing; IGF1: insulin-like growth factor 1; INS: insulin; KD: knockdown; LMP: lysosomal membrane permeabilization; MVB: multivesicular body; NOC: nocodazole; PD: Parkinson disease; RFP: red fluorescent protein; RNAi: RNA interference; sfGFP: superfolder GFP; SNCA: synuclein alpha; TEM: transmission electron microscopy; TNTs: tunneling nanotubes; TCSPC: time correlated single photon counting; YFP: yellow fluorescent protein.
Collapse
Affiliation(s)
- Carl Alexander Sandhof
- Center for Molecular Biology of Heidelberg University (ZMBH) and German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Simon Oliver Hoppe
- Center for Molecular Biology of Heidelberg University (ZMBH) and German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Silke Druffel-Augustin
- Center for Molecular Biology of Heidelberg University (ZMBH) and German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Christian Gallrein
- Department of Molecular Physiology and Cell Biology, Leibniz-Institute for Molecular Pharmacology (FMP) im Forschungsverbund Berlin e.V, Berlin, Germany
| | - Janine Kirstein
- Department of Molecular Physiology and Cell Biology, Leibniz-Institute for Molecular Pharmacology (FMP) im Forschungsverbund Berlin e.V, Berlin, Germany
| | - Cindy Voisine
- Department of Biology, Northeastern Illinois University, Chicago, IL, USA
| | - Carmen Nussbaum-Krammer
- Center for Molecular Biology of Heidelberg University (ZMBH) and German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany
| |
Collapse
|
20
|
Wong SQ, Kumar AV, Mills J, Lapierre LR. C. elegans to model autophagy-related human disorders. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 172:325-373. [PMID: 32620247 DOI: 10.1016/bs.pmbts.2020.01.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Autophagy is a highly conserved degradation process that clears damaged intracellular macromolecules and organelles in order to maintain cellular health. Dysfunctional autophagy is fundamentally linked to the development of various human disorders and pathologies. The use of the nematode Caenorhabditis elegans as a model system to study autophagy has improved our understanding of its regulation and function in organismal physiology. Here, we review the genetic, functional, and regulatory conservation of the autophagy pathway in C. elegans and we describe tools to quantify and study the autophagy process in this incredibly useful model organism. We further discuss how these nematodes have been modified to model autophagy-related human diseases and underscore the important insights obtained from such models. Altogether, we highlight the strengths of C. elegans as an exceptional tool to understand the genetic and molecular foundations underlying autophagy-related human diseases.
Collapse
Affiliation(s)
- Shi Quan Wong
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, United States
| | - Anita V Kumar
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, United States
| | - Joslyn Mills
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, United States
| | - Louis R Lapierre
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, United States.
| |
Collapse
|
21
|
Hua J, Yin N, Xu S, Chen Q, Tao T, Zhang J, Ding J, Fan Y, Hu G. Enhancing the Astrocytic Clearance of Extracellular α-Synuclein Aggregates by Ginkgolides Attenuates Neural Cell Injury. Cell Mol Neurobiol 2019; 39:1017-1028. [PMID: 31165943 DOI: 10.1007/s10571-019-00696-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 06/01/2019] [Indexed: 12/19/2022]
Abstract
The accumulation of aggregated forms of the α-Synuclein (α-Syn) is associated with the pathogenesis of Parkinson's disease (PD), and the efficient clearance of aggregated α-Syn represents a potential approach in PD therapy. Astrocytes are the most numerous glia cells in the brain and play an essential role in supporting brain functions in PD state. In the present study, we demonstrated that cultured primary astrocytes engulfed and degraded extracellular aggregated recombinant human α-Syn. Meanwhile, we observed that the clearance of α-Syn by astrocytes was abolished by proteasome inhibitor MG132 and autophagy inhibitor 3-methyladenine (3MA). We further showed that intracellular α-Syn was reduced after ginkgolide B (GB) and bilobalide (BB) treatment, and the decrease was reversed by MG132 and 3MA. More importantly, GB and BB reduced indirect neurotoxicity to neurons induced by α-Syn-stimulated astrocytic conditioned medium. Together, we firstly find that astrocytes can engulf and degrade α-Syn aggregates via the proteasome and autophagy pathways, and further show that GB and BB enhance astrocytic clearance of α-Syn, which gives us an insight into the novel therapy for PD in future.
Collapse
Affiliation(s)
- Jun Hua
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 101 Longmian Road, Nanjing, 211166, Jiangsu, China
- Department of Neurology & Psychology, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, 1 Fuhua Road, Shenzhen, 518033, Guangdong, China
| | - Nuo Yin
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 101 Longmian Road, Nanjing, 211166, Jiangsu, China
| | - Shi Xu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 101 Longmian Road, Nanjing, 211166, Jiangsu, China
| | - Qiang Chen
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 101 Longmian Road, Nanjing, 211166, Jiangsu, China
- Neuroprotective Drug Discovery Key Laboratory of Nanjing Medical University, 101 Longmian Road, Nanjing, 211166, Jiangsu, China
| | - Tingting Tao
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 101 Longmian Road, Nanjing, 211166, Jiangsu, China
- Neuroprotective Drug Discovery Key Laboratory of Nanjing Medical University, 101 Longmian Road, Nanjing, 211166, Jiangsu, China
| | - Ji Zhang
- Division of Clinical Pharmacy, Department of Pharmacy, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Jianhua Ding
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 101 Longmian Road, Nanjing, 211166, Jiangsu, China
| | - Yi Fan
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 101 Longmian Road, Nanjing, 211166, Jiangsu, China.
- Neuroprotective Drug Discovery Key Laboratory of Nanjing Medical University, 101 Longmian Road, Nanjing, 211166, Jiangsu, China.
| | - Gang Hu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 101 Longmian Road, Nanjing, 211166, Jiangsu, China.
- Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, 210023, Jiangsu, China.
| |
Collapse
|
22
|
Jellinger KA. Animal models of synucleinopathies and how they could impact future drug discovery and delivery efforts. Expert Opin Drug Discov 2019; 14:969-982. [DOI: 10.1080/17460441.2019.1638908] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
23
|
Youssef K, Tandon A, Rezai P. Studying Parkinson’s disease using Caenorhabditis elegans models in microfluidic devices. Integr Biol (Camb) 2019; 11:186-207. [DOI: 10.1093/intbio/zyz017] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 04/30/2019] [Accepted: 05/16/2019] [Indexed: 12/21/2022]
Abstract
Abstract
Parkinson’s disease (PD) is a progressive neurological disorder associated with the loss of dopaminergic neurons (DNs) in the substantia nigra and the widespread accumulation of α-synuclein (α-syn) protein, leading to motor impairments and eventual cognitive dysfunction. In-vitro cell cultures and in-vivo animal models have provided the opportunity to investigate the PD pathological hallmarks and identify different therapeutic compounds. However, PD pathogenesis and causes are still not well understood, and effective inhibitory drugs for PD are yet to be discovered. Biologically simple but pathologically relevant disease models and advanced screening technologies are needed to reveal the mechanisms underpinning protein aggregation and PD progression. For instance, Caenorhabditis elegans (C. elegans) offers many advantages for fundamental PD neurobehavioral studies including a simple, well-mapped, and accessible neuronal system, genetic homology to humans, body transparency and amenability to genetic manipulation. Several transgenic worm strains that exhibit multiple PD-related phenotypes have been developed to perform neuronal and behavioral assays and drug screening. However, in conventional worm-based assays, the commonly used techniques are equipment-intensive, slow and low in throughput. Over the past two decades, microfluidics technology has contributed significantly to automation and control of C. elegans assays. In this review, we focus on C. elegans PD models and the recent advancements in microfluidic platforms used for manipulation, handling and neurobehavioral screening of these models. Moreover, we highlight the potential of C. elegans to elucidate the in-vivo mechanisms of neuron-to-neuron protein transfer that may underlie spreading Lewy pathology in PD, and its suitability for in-vitro studies. Given the advantages of C. elegans and microfluidics technology, their integration has the potential to facilitate the investigation of disease pathology and discovery of potential chemical leads for PD.
Collapse
Affiliation(s)
- Khaled Youssef
- Department of Mechanical Engineering, York University, Toronto, ON, Canada
| | - Anurag Tandon
- Tanz Centre for Research in Neurodegenerative Diseases, Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Pouya Rezai
- Department of Mechanical Engineering, York University, Toronto, ON, Canada
| |
Collapse
|
24
|
Found in Translation: The Utility of C. elegans Alpha-Synuclein Models of Parkinson's Disease. Brain Sci 2019; 9:brainsci9040073. [PMID: 30925741 PMCID: PMC6523935 DOI: 10.3390/brainsci9040073] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 03/21/2019] [Accepted: 03/24/2019] [Indexed: 01/18/2023] Open
Abstract
Parkinson's Disease (PD) is the second-most common neurodegenerative disease in the world, yet the fundamental and underlying causes of the disease are largely unknown, and treatments remain sparse and impotent. Several biological systems have been employed to model the disease but the nematode roundworm Caenorhabditis elegans (C. elegans) shows unique promise among these to disinter the elusive factors that may prevent, halt, and/or reverse PD phenotypes. Some of the most salient of these C. elegans models of PD are those that position the misfolding-prone protein alpha-synuclein (α-syn), a hallmark pathological component of PD, as the primary target for scientific interrogation. By transgenic expression of human α-syn in different tissues, including dopamine neurons and muscle cells, the primary cellular phenotypes of PD in humans have been recapitulated in these C. elegans models and have already uncovered multifarious genetic factors and chemical compounds that attenuate dopaminergic neurodegeneration. This review describes the paramount discoveries obtained through the application of different α-syn models of PD in C. elegans and highlights their established utility and respective promise to successfully uncover new conserved genetic modifiers, functional mechanisms, therapeutic targets and molecular leads for PD with the potential to translate to humans.
Collapse
|
25
|
Kumar NN, Pizzo ME, Nehra G, Wilken-Resman B, Boroumand S, Thorne RG. Passive Immunotherapies for Central Nervous System Disorders: Current Delivery Challenges and New Approaches. Bioconjug Chem 2018; 29:3937-3966. [PMID: 30265523 PMCID: PMC7234797 DOI: 10.1021/acs.bioconjchem.8b00548] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Passive immunotherapy, i.e., the administration of exogenous antibodies that recognize a specific target antigen, has gained significant momentum as a potential treatment strategy for several central nervous system (CNS) disorders, including Alzheimer's disease, Parkinson's disease, Huntington's disease, and brain cancer, among others. Advances in antibody engineering to create therapeutic antibody fragments or antibody conjugates have introduced new strategies that may also be applied to treat CNS disorders. However, drug delivery to the CNS for antibodies and other macromolecules has thus far proven challenging, due in large part to the blood-brain barrier and blood-cerebrospinal fluid barriers that greatly restrict transport of peripherally administered molecules from the systemic circulation into the CNS. Here, we summarize the various passive immunotherapy approaches under study for the treatment of CNS disorders, with a primary focus on disease-specific and target site-specific challenges to drug delivery and new, cutting edge methods.
Collapse
Affiliation(s)
- Niyanta N. Kumar
- Pharmaceutical Sciences Division, University of
Wisconsin-Madison School of Pharmacy
| | - Michelle E. Pizzo
- Pharmaceutical Sciences Division, University of
Wisconsin-Madison School of Pharmacy
- Clinical Neuroengineering Training Program, University of
Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Geetika Nehra
- Pharmaceutical Sciences Division, University of
Wisconsin-Madison School of Pharmacy
| | - Brynna Wilken-Resman
- Pharmaceutical Sciences Division, University of
Wisconsin-Madison School of Pharmacy
| | - Sam Boroumand
- Pharmaceutical Sciences Division, University of
Wisconsin-Madison School of Pharmacy
| | - Robert G. Thorne
- Pharmaceutical Sciences Division, University of
Wisconsin-Madison School of Pharmacy
- Clinical Neuroengineering Training Program, University of
Wisconsin-Madison, Madison, Wisconsin 53705, United States
- Neuroscience Training Program & Center for
Neuroscience, University of Wisconsin-Madison, Madison, Wisconsin 53705, United
States
- Cellular and Molecular Pathology Graduate Training Program,
University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| |
Collapse
|
26
|
Kang SJ, Kim JS, Park SM. Ubiquitin C-terminal Hydrolase L1 Regulates Lipid Raft-dependent Endocytosis. Exp Neurobiol 2018; 27:377-386. [PMID: 30429647 PMCID: PMC6221840 DOI: 10.5607/en.2018.27.5.377] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 09/17/2018] [Accepted: 09/18/2018] [Indexed: 11/19/2022] Open
Abstract
Ubiquitin C-terminal hydrolase L1 (UCH-L1) is a deubiquitinating enzyme that is highly expressed in neurons, and gathering evidence indicates that UCH-L1 may play pathogenic roles in many neurodegenerative disorders such as Alzheimer's disease and Parkinson's disease (PD). Additionally, lipid rafts have attracted interest in neurodegeneration as playing a common role in many neurodegenerative diseases. In the present study, we demonstrated that UCH-L1 associates with lipid rafts as with other PD-associated gene products. In addition, UCH-L1 regulates lipid raft-dependent endocytosis and it is not dependent on the expression and degradation of caveolin-1 or flotillin-1. Finally, UCH-L1 regulates cell-to-cell transmission of α-synuclein. This study provides evidence that many PD-associated gene products share common signaling pathways to explain the pathogenesis of PD.
Collapse
Affiliation(s)
- Seo-Jun Kang
- Department of Pharmacology, Ajou University School of Medicine, Suwon 16499, Korea.,Chronic Inflammatory Disease Research Center, Ajou University School of Medicine, Suwon 16499, Korea.,BK21 plus program, Department of Biological Sciences, Ajou University School of Medicine, Suwon 16499, Korea
| | - Jin Soo Kim
- Department of Pharmacology, Ajou University School of Medicine, Suwon 16499, Korea.,Chronic Inflammatory Disease Research Center, Ajou University School of Medicine, Suwon 16499, Korea
| | - Sang Myun Park
- Department of Pharmacology, Ajou University School of Medicine, Suwon 16499, Korea.,Chronic Inflammatory Disease Research Center, Ajou University School of Medicine, Suwon 16499, Korea.,BK21 plus program, Department of Biological Sciences, Ajou University School of Medicine, Suwon 16499, Korea
| |
Collapse
|
27
|
Bae EJ, Kim DK, Kim C, Mante M, Adame A, Rockenstein E, Ulusoy A, Klinkenberg M, Jeong GR, Bae JR, Lee C, Lee HJ, Lee BD, Di Monte DA, Masliah E, Lee SJ. LRRK2 kinase regulates α-synuclein propagation via RAB35 phosphorylation. Nat Commun 2018; 9:3465. [PMID: 30150626 PMCID: PMC6110743 DOI: 10.1038/s41467-018-05958-z] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 07/17/2018] [Indexed: 01/08/2023] Open
Abstract
Propagation of α-synuclein aggregates has been suggested as a contributing factor in Parkinson's disease (PD) progression. However, the molecular mechanisms underlying α-synuclein aggregation are not fully understood. Here, we demonstrate in cell culture, nematode, and rodent models of PD that leucine-rich repeat kinase 2 (LRRK2), a PD-linked kinase, modulates α-synuclein propagation in a kinase activity-dependent manner. The PD-linked G2019S mutation in LRRK2, which increases kinase activity, enhances propagation efficiency. Furthermore, we show that the role of LRRK2 in α-synuclein propagation is mediated by RAB35 phosphorylation. Constitutive activation of RAB35 overrides the reduced α-synuclein propagation phenotype in lrk-1 mutant C. elegans. Finally, in a mouse model of synucleinopathy, administration of an LRRK2 kinase inhibitor reduced α-synuclein aggregation via enhanced interaction of α-synuclein with the lysosomal degradation pathway. These results suggest that LRRK2-mediated RAB35 phosphorylation is a potential therapeutic target for modifying disease progression.
Collapse
Affiliation(s)
- Eun-Jin Bae
- Departments of Biomedical Sciences and Medicine, Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Dong-Kyu Kim
- Departments of Biomedical Sciences and Medicine, Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Changyoun Kim
- Molecular Neuropathology Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA.,Department Neurosciences, School of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Michael Mante
- Department Neurosciences, School of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Anthony Adame
- Department Neurosciences, School of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Edward Rockenstein
- Department Neurosciences, School of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Ayse Ulusoy
- German Center for Neurodegenerative Diseases (DZNE), Sigmund-Freud-Strasse 27, 53127, Bonn, Germany
| | - Michael Klinkenberg
- German Center for Neurodegenerative Diseases (DZNE), Sigmund-Freud-Strasse 27, 53127, Bonn, Germany
| | - Ga Ram Jeong
- Department of Neuroscience, Graduate School, Kyung Hee University, Seoul, 02447, Korea
| | - Jae Ryul Bae
- Department of Neuroscience, Graduate School, Kyung Hee University, Seoul, 02447, Korea
| | - Cheolsoon Lee
- Department of Anatomy, School of Medicine, Konkuk University, Seoul, 05029, Korea
| | - He-Jin Lee
- Department of Anatomy, School of Medicine, Konkuk University, Seoul, 05029, Korea
| | - Byung-Dae Lee
- Department of Physiology, School of Medicine, Kyung Hee University, Seoul, 02447, Korea
| | - Donato A Di Monte
- German Center for Neurodegenerative Diseases (DZNE), Sigmund-Freud-Strasse 27, 53127, Bonn, Germany
| | - Eliezer Masliah
- Molecular Neuropathology Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA.,Department Neurosciences, School of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA.,Department of Pathology, School of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Seung-Jae Lee
- Departments of Biomedical Sciences and Medicine, Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, 03080, Korea.
| |
Collapse
|
28
|
Madhivanan K, Greiner ER, Alves-Ferreira M, Soriano-Castell D, Rouzbeh N, Aguirre CA, Paulsson JF, Chapman J, Jiang X, Ooi FK, Lemos C, Dillin A, Prahlad V, Kelly JW, Encalada SE. Cellular clearance of circulating transthyretin decreases cell-nonautonomous proteotoxicity in Caenorhabditis elegans. Proc Natl Acad Sci U S A 2018; 115:E7710-E7719. [PMID: 30061394 PMCID: PMC6099907 DOI: 10.1073/pnas.1801117115] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Cell-autonomous and cell-nonautonomous mechanisms of neurodegeneration appear to occur in the proteinopathies, including Alzheimer's and Parkinson's diseases. However, how neuronal toxicity is generated from misfolding-prone proteins secreted by nonneuronal tissues and whether modulating protein aggregate levels at distal locales affects the degeneration of postmitotic neurons remains unknown. We generated and characterized animal models of the transthyretin (TTR) amyloidoses that faithfully recapitulate cell-nonautonomous neuronal proteotoxicity by expressing human TTR in the Caenorhabditis elegans muscle. We identified sensory neurons with affected morphological and behavioral nociception-sensing impairments. Nonnative TTR oligomer load and neurotoxicity increased following inhibition of TTR degradation in distal macrophage-like nonaffected cells. Moreover, reducing TTR levels by RNAi or by kinetically stabilizing natively folded TTR pharmacologically decreased TTR aggregate load and attenuated neuronal dysfunction. These findings reveal a critical role for in trans modulation of aggregation-prone degradation that directly affects postmitotic tissue degeneration observed in the proteinopathies.
Collapse
Affiliation(s)
- Kayalvizhi Madhivanan
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037
- Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, La Jolla, CA 92037
- Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037
| | - Erin R Greiner
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037
- Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, La Jolla, CA 92037
- Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037
| | - Miguel Alves-Ferreira
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037
- Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, La Jolla, CA 92037
- Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037
- Instituto de Biologia Molecular e Celular, Universidade do Porto, 4150-171 Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4150-171 Porto, Portugal
- Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, 4150-171 Porto, Portugal
| | - David Soriano-Castell
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037
- Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, La Jolla, CA 92037
- Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037
| | - Nirvan Rouzbeh
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037
- Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, La Jolla, CA 92037
- Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037
| | - Carlos A Aguirre
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037
- Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, La Jolla, CA 92037
- Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037
| | - Johan F Paulsson
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037
| | | | - Xin Jiang
- Misfolding Diagnostics, San Diego, CA 92121
| | - Felicia K Ooi
- Department of Biology, Aging Mind and Brain Initiative, University of Iowa, Iowa City, IA 52242
| | - Carolina Lemos
- Instituto de Biologia Molecular e Celular, Universidade do Porto, 4150-171 Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4150-171 Porto, Portugal
- Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, 4150-171 Porto, Portugal
| | - Andrew Dillin
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
- Howard Hughes Medical Institute, University of California, Berkeley, CA 94720
| | - Veena Prahlad
- Department of Biology, Aging Mind and Brain Initiative, University of Iowa, Iowa City, IA 52242
| | - Jeffery W Kelly
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037
| | - Sandra E Encalada
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037;
- Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, La Jolla, CA 92037
- Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037
| |
Collapse
|
29
|
Guerrero-Ferreira R, Taylor NM, Mona D, Ringler P, Lauer ME, Riek R, Britschgi M, Stahlberg H. Cryo-EM structure of alpha-synuclein fibrils. eLife 2018; 7:36402. [PMID: 29969391 PMCID: PMC6092118 DOI: 10.7554/elife.36402] [Citation(s) in RCA: 403] [Impact Index Per Article: 57.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 07/01/2018] [Indexed: 01/03/2023] Open
Abstract
Parkinson’s disease is a progressive neuropathological disorder that belongs to the class of synucleinopathies, in which the protein alpha-synuclein is found at abnormally high concentrations in affected neurons. Its hallmark are intracellular inclusions called Lewy bodies and Lewy neurites. We here report the structure of cytotoxic alpha-synuclein fibrils (residues 1–121), determined by cryo-electron microscopy at a resolution of 3.4 Å. Two protofilaments form a polar fibril composed of staggered β-strands. The backbone of residues 38 to 95, including the fibril core and the non-amyloid component region, are well resolved in the EM map. Residues 50–57, containing three of the mutation sites associated with familial synucleinopathies, form the interface between the two protofilaments and contribute to fibril stability. A hydrophobic cleft at one end of the fibril may have implications for fibril elongation, and invites for the design of molecules for diagnosis and treatment of synucleinopathies. People with Parkinson’s disease have damaged cells in a part of the brain involved in movement, learning and reward-seeking behaviors. These cells contain blob-like aggregates that contain abnormally high amounts of a protein called alpha-synuclein. It is generally believed that, within these blobs, this protein clusters together into small needles called fibrils. Discerning the structure of a fibril could help researchers to understand both how alpha-synuclein damages brain cells and how diseases like Parkinson’s spread. Biophysicists have attempted to reveal the fibril structure previously. But many of these efforts only looked at short segments of the alpha-synuclein protein. Researchers still need more detailed imagery of the fibrils to confirm previous findings regarding their architecture and ultimately to identify ways to counteract the damage they cause. Guerrero-Ferreira et al. used a technique called cryo-electron microscopy to capture images of frozen fibrils made from a version of human alpha-synuclein that readily aggregates and that is only slightly shorter than the full-length protein. Processing these high-resolution images with computer software then revealed a three-dimensional model of the fibril structure, in which fine details are clearly visible. In the fibril, the proteins cluster to form a helix, similar to a flight of stairs. Each turn of the helix is formed by two alpha-synuclein molecules, facing each other but rotated by almost 180 degrees from one another. The three-dimensional model displays which parts of the protein lie at the core of the helix and thereby stabilize the fibril structure. Guerrero-Ferreira et al. speculate that fibrils may also take alternative forms because common alpha-synuclein mutations, which correlate with disease, would destabilize the observed helical structure. In the future, researchers may be able to use the features of this three-dimensional model to help design molecules that would make the fibrils detectable via medical imaging. This could help doctors to diagnose people with Parkinson’s disease at an earlier stage. Further research is also needed to understand where and how fibrils form, if differences in fibril structures exist within or between patients, possibly leading to different sub-classes of the disease, and how such fibrils interact with and possibly damage human brain cells.
Collapse
Affiliation(s)
| | - Nicholas Mi Taylor
- Center for Cellular Imaging and NanoAnalytics, Biozentrum, University of Basel, Basel, Switzerland
| | - Daniel Mona
- Roche Pharma Research and Early Development, Neuroscience, Ophthalmology and Rare Diseases Discovery and Translational Area/Neuroscience Discovery, Roche Innovation Center Basel, Basel, Switzerland
| | - Philippe Ringler
- Center for Cellular Imaging and NanoAnalytics, Biozentrum, University of Basel, Basel, Switzerland
| | - Matthias E Lauer
- Roche Pharma Research and Early Development, Chemical Biology, Roche Innovation Center Basel, Basel, Switzerland
| | - Roland Riek
- Laboratory of Physical Chemistry, ETH Zürich, Zürich, Switzerland
| | - Markus Britschgi
- Roche Pharma Research and Early Development, Neuroscience, Ophthalmology and Rare Diseases Discovery and Translational Area/Neuroscience Discovery, Roche Innovation Center Basel, Basel, Switzerland
| | - Henning Stahlberg
- Center for Cellular Imaging and NanoAnalytics, Biozentrum, University of Basel, Basel, Switzerland
| |
Collapse
|
30
|
Peelaerts W, Bousset L, Baekelandt V, Melki R. ɑ-Synuclein strains and seeding in Parkinson's disease, incidental Lewy body disease, dementia with Lewy bodies and multiple system atrophy: similarities and differences. Cell Tissue Res 2018; 373:195-212. [PMID: 29704213 DOI: 10.1007/s00441-018-2839-5] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 03/28/2018] [Indexed: 12/20/2022]
Abstract
Several age-related neurodegenerative disorders are characterized by the deposition of aberrantly folded endogenous proteins. These proteins have prion-like propagation and amplification properties but so far appear nontransmissible between individuals. Because of the features they share with the prion protein, PrP, the characteristics of pathogenic protein aggregates in several progressive brain disorders, including different types of Lewy body diseases (LBDs), such as Parkinson's disease (PD), multiple system atrophy (MSA) and dementia with Lewy bodies (DLB), have been actively investigated. Even though the pleomorphic nature of these syndromes might suggest different underlying causes, ɑ-synuclein (ɑSyn) appears to play an important role in this heterogeneous group of diseases (the synucleinopathies). An attractive hypothesis is that different types of ɑSyn protein assemblies have a unique and causative role in distinct synucleinopathies. We will discuss the recent research progress on ɑSyn assemblies involved in PD, MSA and DLB; their behavior as strains; current spreading hypotheses; their ability to seed centrally and peripherally; and their implication for disease pathogenesis.
Collapse
Affiliation(s)
- W Peelaerts
- Laboratory for Neurobiology and Gene Therapy, KU Leuven, 3000, Leuven, Belgium.,Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI, 49503, USA
| | - L Bousset
- Paris-Saclay Institute of Neuroscience, CNRS, 91190, Gif-sur-Yvette, France
| | - V Baekelandt
- Laboratory for Neurobiology and Gene Therapy, KU Leuven, 3000, Leuven, Belgium.
| | - R Melki
- Paris-Saclay Institute of Neuroscience, CNRS, 91190, Gif-sur-Yvette, France
| |
Collapse
|
31
|
Steiner JA, Quansah E, Brundin P. The concept of alpha-synuclein as a prion-like protein: ten years after. Cell Tissue Res 2018; 373:161-173. [PMID: 29480459 DOI: 10.1007/s00441-018-2814-1] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 01/29/2018] [Indexed: 12/18/2022]
Abstract
Parkinson's disease is characterized by the loss of nigrostriatal dopaminergic signaling and the presence of alpha-synuclein aggregates (also called Lewy bodies and neurites) throughout the brain. In 2003, Braak and colleagues created a staging system for Parkinson's disease describing the connection between the alpha-synuclein pathology and disease severity. Later, they suggested that the pathology might initially be triggered by exogenous insults targeting the gut and olfactory system. In 2008, we and other groups documented Lewy pathology in grafted neurons in people with Parkinson's disease who had been transplanted over a decade prior to autopsy. We proposed that the Lewy pathology in the grafted neurons was the result of permissive templating or prion-like spread of alpha-synuclein pathology from neurons in the host to those in the grafts. During the following ten years, several studies described the transmission of alpha-synuclein pathology between neurons, both in cell culture and in experimental animals. Recent research has also begun to identify underlying molecular mechanisms. Collectively, these experimental studies tentatively support the idea that the progression from one Braak stage to the next is the consequence of prion-like propagation of Lewy pathology. However, definitive proof that intercellular propagation of alpha-synuclein pathology occurs in Parkinson's disease cases has proven difficult to secure. In this review, we highlight several open questions that currently prevent us from concluding with certainty that prion-like transfer of alpha-synuclein contributes to the progression of Parkinson's disease.
Collapse
Affiliation(s)
- Jennifer A Steiner
- Center for Neurodegenerative Science, Van Andel Research Institute, 333 Bostwick Ave. NE, Grand Rapids, MI, 49503, USA.
| | - Emmanuel Quansah
- Center for Neurodegenerative Science, Van Andel Research Institute, 333 Bostwick Ave. NE, Grand Rapids, MI, 49503, USA
| | - Patrik Brundin
- Center for Neurodegenerative Science, Van Andel Research Institute, 333 Bostwick Ave. NE, Grand Rapids, MI, 49503, USA
| |
Collapse
|
32
|
Trigo-Damas I, del Rey NLG, Blesa J. Novel models for Parkinson’s disease and their impact on future drug discovery. Expert Opin Drug Discov 2018; 13:229-239. [DOI: 10.1080/17460441.2018.1428556] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Ines Trigo-Damas
- HM CINAC, Hospital Universitario HM Puerta del Sur, Móstoles, Spain
- CIBERNED, Instituto Carlos III, Madrid, Spain
| | | | - Javier Blesa
- HM CINAC, Hospital Universitario HM Puerta del Sur, Móstoles, Spain
- CIBERNED, Instituto Carlos III, Madrid, Spain
| |
Collapse
|
33
|
Cooper JF, Van Raamsdonk JM. Modeling Parkinson's Disease in C. elegans. JOURNAL OF PARKINSON'S DISEASE 2018; 8:17-32. [PMID: 29480229 PMCID: PMC5836411 DOI: 10.3233/jpd-171258] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 01/16/2018] [Indexed: 12/29/2022]
Abstract
Parkinson's disease (PD) is an adult onset neurodegenerative disease that is characterized by selective degeneration of neurons primarily in the substantia nigra. At present, the pathogenesis of PD is incompletely understood and there are no neuroprotective treatments available. Accurate animal models of PD provide the opportunity to elucidate disease mechanisms and identify therapeutic targets. This review focuses on C. elegans models of PD, including both genetic and toxicant models. This microscopic worm offers several advantages for the study of PD including ease of genetic manipulation, ability to complete experiments rapidly, low cost, and ability to perform large scale screens for disease modifiers. A number of C. elegans models of PD have been generated including transgenic worms that express α-synuclein or LRRK2, and worms with deletions in PRKN/pdr-1, PINK1/pink-1, DJ-1/djr-1.1/djr-1.2 and ATP13A2/catp-6. These worms have been shown to exhibit multiple phenotypic deficits including the loss of dopamine neurons, disruption of dopamine-dependent behaviors, increased sensitivity to stress, age-dependent aggregation, and deficits in movement. As a result, these phenotypes can be used as outcome measures to gain insight into disease pathogenesis and to identify disease modifiers. In this way, C. elegans can be used as an experimental tool to elucidate mechanisms involved in PD and to find novel therapeutic targets that can subsequently be validated in other models.
Collapse
Affiliation(s)
- Jason F. Cooper
- Laboratory of Aging and Neurodegenerative Disease, Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Jeremy M. Van Raamsdonk
- Laboratory of Aging and Neurodegenerative Disease, Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI, USA
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Metabolic Disorders and Complications Program, and Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| |
Collapse
|
34
|
Cisbani G, Maxan A, Kordower JH, Planel E, Freeman TB, Cicchetti F. Presence of tau pathology within foetal neural allografts in patients with Huntington's and Parkinson's disease. Brain 2017; 140:2982-2992. [PMID: 29069396 DOI: 10.1093/brain/awx255] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 08/05/2017] [Indexed: 11/12/2022] Open
Abstract
Cell replacement has been explored as a therapeutic strategy to repair the brain in patients with Huntington's and Parkinson's disease. Post-mortem evaluations of healthy grafted tissue in such cases have revealed the development of Huntington- or Parkinson-like pathology including mutant huntingtin aggregates and Lewy bodies. An outstanding question remains if tau pathology can also be seen in patients with Huntington's and Parkinson's disease who had received foetal neural allografts. This was addressed by immunohistochemical/immunofluorescent stainings performed on grafted tissue of two Huntington's disease patients, who came to autopsy 9 and 12 years post-transplantation, and two patients with Parkinson's disease who came to autopsy 18 months and 16 years post-transplantation. We show that grafts also contain tau pathology in both types of transplanted patients. In two patients with Huntington's disease, the grafted tissue showed the presence of hyperphosphorylated tau [both AT8 (phospho-tau Ser202 and Thr205) and CP13 (pSer202) immunohistochemical stainings] pathological inclusions, neurofibrillary tangles and neuropil threads. In patients with Parkinson's disease, the grafted tissue was characterized by hyperphosphorylated tau (AT8; immunofluorescent staining) pathological inclusions, neurofibrillary tangles and neuropil threads but only in the patient who came to autopsy 16 years post-transplantation. Abundant tau-related pathology was observed in the cortex and striatum of all cases studied. While the striatum of the grafted Huntington's disease patient revealed an equal amount of 3-repeat and 4-repeat isoforms of tau, the grafted tissue showed elevated 4-repeat isoforms by western blot. This suggests that transplants may have acquired tau pathology from the host brain, although another possibility is that this was due to acceleration of ageing. This finding not only adds to the recent reports that tau pathology is a feature of these neurodegenerative diseases, but also that tau pathology can manifest in healthy neural tissue transplanted into the brains of patients with two distinct neurodegenerative disorders.
Collapse
Affiliation(s)
- Giulia Cisbani
- Centre de Recherche du CHU de Québec-Université Laval, Axe Neurosciences, 2705 Boulevard Laurier, Québec, QC, Canada
| | - Alexander Maxan
- Centre de Recherche du CHU de Québec-Université Laval, Axe Neurosciences, 2705 Boulevard Laurier, Québec, QC, Canada
| | - Jeffrey H Kordower
- Department of Neurological Sciences and Center for Brain Repair, Rush University Medical Center, Chicago, IL 60612, USA
| | - Emmanuel Planel
- Centre de Recherche du CHU de Québec-Université Laval, Axe Neurosciences, 2705 Boulevard Laurier, Québec, QC, Canada.,Département de Psychiatrie and Neurosciences, Université Laval, Québec, QC, Canada
| | - Thomas B Freeman
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL 33606-3571, USA.,Center of Excellence for Aging and Brain Repair, University of South Florida, Tampa, FL 33606-3571, USA
| | - Francesca Cicchetti
- Centre de Recherche du CHU de Québec-Université Laval, Axe Neurosciences, 2705 Boulevard Laurier, Québec, QC, Canada.,Département de Psychiatrie and Neurosciences, Université Laval, Québec, QC, Canada
| |
Collapse
|