1
|
Tian S, Jiang Y, Lai Y, Wang S, Liu X, Wang Y. New Mitogenomes of the Green Lacewing Tribe Ankylopterygini (Neuroptera: Chrysopidae: Chrysopinae) and Phylogenetic Implications of Chrysopidae. INSECTS 2023; 14:878. [PMID: 37999077 PMCID: PMC10672194 DOI: 10.3390/insects14110878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 11/25/2023]
Abstract
Chrysopidae (green lacewings) are a cosmopolitan and species-rich family of Neuroptera, with remarkable significance of biological control against various agricultural and forestry pests. However, the phylogenetic position of Chrysopidae in Neuroptera and the internal relationships within the family remain equivocal among previous studies based on different types of data and sampling. Here we sequenced the mitochondrial genomes (mitogenomes) of two species of the genus Ankylopteryx in the chrysopine tribe Ankylopterygini for the first time. The characteristics of these mitogenomes were analyzed in comparison with other green lacewing mitogenomes published to date. In the phylogeny herein reconstructed based on mitogenomes, Chrysopinae were recovered as the sister group to Apochrysinae + Nothochrysinae. Within the subfamily of Chrysopinae, Nothancylini were recovered as the sister group to (Leucochrysini + Belonopterygini) + (Ankylopterygini + Chrysopini). The divergence time estimation suggested an Early Cretaceous initial divergence within the extant Chrysopidae. Within Chrysopinae, the four tribes except Nothancylini diverged around mid-Cretaceous.
Collapse
Affiliation(s)
- Shuo Tian
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, China; (S.T.); (Y.J.); (S.W.)
| | - Yunlan Jiang
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, China; (S.T.); (Y.J.); (S.W.)
| | - Yan Lai
- Department of Entomology, China Agricultural University, Beijing 100193, China;
| | - Shutong Wang
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, China; (S.T.); (Y.J.); (S.W.)
| | - Xingyue Liu
- Department of Entomology, China Agricultural University, Beijing 100193, China;
| | - Yuyu Wang
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, China; (S.T.); (Y.J.); (S.W.)
| |
Collapse
|
2
|
Breitkreuz LCV, Garzón-Orduña IJ, Winterton SL, Engel MS. Phylogeny of Chrysopidae (Neuroptera), with emphasis on morphological trait evolution. Zool J Linn Soc 2021. [DOI: 10.1093/zoolinnean/zlab024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
We present a phylogeny of Chrysopidae inferred from combining molecular and morphological data. Apochrysinae were recovered as sister to the rest of the family (Nothochrysinae and Chrysopinae). The monogeneric tribe Nothancylini is confirmed as sister to the remaining Chrysopinae. The other four tribes are grouped in two clades: Belonopterygini + Leucochrysini and Ankylopterygini + Chrysopini. The Nineta-group is herein transferred from Chrysopini to Ankylopterygini. Within the diverse and species-rich Chrysopini we recognize five genus-group clades: Chrysopa, Chrysoperla, Chrysopodes, Eremochrysa and Meleoma generic groups. The mapping of characters, such as the parameres, the tignum, the im cell or the tibial spurs, on the phylogeny provides insights into the evolution of these traits in the family. In addition, we propose the following taxonomic changes to the classification of the family: the inclusion of Chrysopidia, Nineta and Tumeochrysa in the tribe Ankylopterygini, and the synonymization of Furcochrysa with Chrysopa.
Collapse
Affiliation(s)
- Laura C V Breitkreuz
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Invalidenstraße 43, 10115, Berlin, Germany
| | - Ivonne J Garzón-Orduña
- Colección Nacional de Insectos, Instituto de Biología, Universidad Autónoma de México, México, Mexico
| | - Shaun L Winterton
- California State Collection of Arthropods, California Department of Food & Agriculture, 3294 Meadowview Rd. Sacramento, 95832-1148, California, USA
| | - Michael S Engel
- Department of Ecology & Evolutionary Biology, University of Kansas, Lawrence, Kansas, USA
| |
Collapse
|
3
|
Low-Coverage Whole Genomes Reveal the Higher Phylogeny of Green Lacewings. INSECTS 2021; 12:insects12100857. [PMID: 34680626 PMCID: PMC8539002 DOI: 10.3390/insects12100857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/10/2021] [Accepted: 09/14/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary Green lacewings (Chrysopidae) are one of the most commonly observed natural predators belonging to Neuroptera. They are widely distributed all over the world. The relationships among the three subfamilies of Chrysopidae have been controversial for a long time. We newly sequenced and analyzed the low-coverage genomes of five species (Apochrysa matsumurae, Chrysopa pallens, Chrysoperla furcifera, Italochrysa pardalina, Nothochrysa sinica), representing all three subfamilies, in order to reconstruct the higher phylogeny within this family. Our results suggested that Chrysopinae are a monophyletic sister group to the branch Apochrysinae + Nothochrysinae, and that Chrysopinae diverged from Apochrysinae + Nothochrysinae during the Early Cretaceous period (144–151 Ma), while Aporchrysinae diverged from Nothochrysinae around 117–133 Ma. Abstract Green lacewings are one of the largest families within Neuroptera and are widely distributed all over the world. Many species within this group are important natural predators that are widely used for the biological control of pests in agricultural ecosystems. Several proposed phylogenetic relationships among the three subfamilies of Chrysopidae have been extensively debated. To further understand the higher phylogeny as well as the evolutionary history of Chrysopidae, we newly sequenced and analyzed the low-coverage genomes of 5 species (Apochrysa matsumurae, Chrysopa pallens, Chrysoperla furcifera, Italochrysa pardalina, Nothochrysa sinica), representing 3 subfamilies of Chrysopidae. There are 2213 orthologs selected to reconstruct the phylogenetic tree. Phylogenetic reconstruction was performed using both concatenation and coalescent-based approaches, based on different data matrices. All the results suggested that Chrysopinae were a monophyletic sister group to the branch Apochrysinae + Nothochrysinae. These results were completely supported, except by the concatenation analyses of the nt data matrix, which suggested that Apochrysinae were a sister group to Chrysopinae + Nothchrysinae. The different topology from the nt data matrix may have been caused by the limited sampling of Chrysopidae. The divergence time showed that Chrysopinae diverged from Apochrysinae + Nothochrysinae during the Early Cretaceous period (144–151 Ma), while Aporchrysinae diverged from Nothochrysinae around 117–133 Ma. These results will improve our understanding of the higher phylogeny of Chrysopidae and lay a foundation for the utilization of natural predators.
Collapse
|
4
|
Zhang R, Ma Y, Fan F, Geng S, Wang Y, Liu X. The complete mitochondrial genome of Nothochrysa sinica (Neuroptera: Chrysopidae: Nothochrysinae) with a phylogenetic analysis of Chrysopoidea. Mitochondrial DNA B Resour 2021; 6:1632-1633. [PMID: 34027078 PMCID: PMC8128176 DOI: 10.1080/23802359.2021.1926361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The complete mitochondrial (mt) genome of Nothochrysa sinica Yang (Neuroptera: Chrysopidae: Nothochrysinae) is reported in this work. It represents the first complete mt genome of the subfamily Nothochrysinae. The whole mt genome is 16,166 bp long and contains 13 protein-coding genes (PCGs), 22 transfer RNA genes (tRNAs), 2 ribosomal RNA genes (rRNAs), and an AT-rich region. Most PCGs used the typical ATN as initiation codons. The AT-rich region is 1,271 bp long with 90.24% of A + T. The results show that N. sinica is closely related to N. californica. Chrysopidae was demonstrated monophyletic being the sister group to Hemerobiidae. Within Chrysopidae, the sister-group relationship between Nothochrysinae and Apochrysinae was supported and together being the sister group to Chrysopinae.
Collapse
Affiliation(s)
- Ruyue Zhang
- College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Yunlong Ma
- Department of Entomology, China Agricultural University, Beijing, China
| | - Fan Fan
- College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Shuo Geng
- College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Yuyu Wang
- College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Xingyue Liu
- Department of Entomology, China Agricultural University, Beijing, China
| |
Collapse
|
5
|
Su T, He B, Li K, Liang A. Comparative analysis of the mitochondrial genomes of oriental spittlebug trible Cosmoscartini: insights into the relationships among closely related taxa. BMC Genomics 2018; 19:961. [PMID: 30587118 PMCID: PMC6307326 DOI: 10.1186/s12864-018-5365-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 12/12/2018] [Indexed: 11/29/2022] Open
Abstract
Background Cosmoscartini (Hemiptera: Cercopoidea: Cercopidae) is a large and brightly colored Old World tropical tribe, currently containing over 310 phytophagous species (including some economically important pests of eucalyptus in China) in approximately 17 genera. However, very limited information of Cosmoscartini is available except for some scattered taxonomic studies. Even less is known about its phylogenetic relationship, especially among closely related genera or species. In this study, the detailed comparative genomic and phylogenetic analyses were performed on nine newly sequenced mitochondrial genomes (mitogenomes) of Cosmoscartini, with the purpose of exploring the taxonomic status of the previously defined genus Okiscarta and some closely related species within the genus Cosmoscarta. Results Mitogenomes of Cosmoscartini display similar genomic characters in terms of gene arrangement, nucleotide composition, codon usage and overlapping regions. However, there are also many differences in intergenic spacers, mismatches of tRNAs, and the control region. Additionally, the secondary structures of rRNAs within Cercopidae are inferred for the first time. Based on comparative genomic (especially for the substitution pattern of tRNA secondary structure) and phylogenetic analyses, the representative species of Okiscarta uchidae possesses similar structures with other Cosmoscarta species and is placed consistently in Cosmoscarta. Although Cosmoscarta bimacula is difficult to be distinguished from Cosmoscarta bispecularis by traditional morphological methods, evidence from mitogenomes highly support the relationships of (C. bimacula + Cosmoscarta rubroscutellata) + (C. bispecularis + Cosmoscarta sp.). Conclusions This study presents mitogenomes of nine Cosmoscartini species and represents the first detailed comparative genomic and phylogenetic analyses within Cercopidae. It is indicated that knowledge of mitogenomes can be effectively used to resolve phylogenetic relationships at low taxonomic levels. Sequencing more mitogenomes at various taxonomic levels will also improve our understanding of mitogenomic evolution and phylogeny in Cercopidae. Electronic supplementary material The online version of this article (10.1186/s12864-018-5365-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tianjuan Su
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bo He
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Kui Li
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Aiping Liang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China. .,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
6
|
Gao XY, Cai YY, Yu DN, Storey KB, Zhang JY. Characteristics of the complete mitochondrial genome of Suhpalacsa longialata (Neuroptera, Ascalaphidae) and its phylogenetic implications. PeerJ 2018; 6:e5914. [PMID: 30479895 PMCID: PMC6240338 DOI: 10.7717/peerj.5914] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 10/10/2018] [Indexed: 12/05/2022] Open
Abstract
The owlflies (Family Ascalaphidae) belong to the Neuroptera but are often mistaken as dragonflies because of morphological characters. To date, only three mitochondrial genomes of Ascalaphidae, namely Libelloides macaronius; Ascaloptynx appendiculatus; Ascalohybris subjacens, are published in GenBank, meaning that they are greatly under-represented in comparison with the 430 described species reported in this family. In this study, we sequenced and described the complete mitochondrial genome of Suhpalacsa longialata (Neuroptera, Ascalaphidae). The total length of the S. longialata mitogenome was 15,911 bp, which is the longest known to date among the available family members of Ascalaphidae. However, the size of each gene was similar to the other three Ascalaphidae species. The S. longialata mitogenome included a transposition of tRNACys and tRNATrp genes and formed an unusual gene arrangement tRNACys-tRNATrp-tRNATyr (CWY). It is likely that the transposition occurred by a duplication of both genes followed by random loss of partial duplicated genes. The nucleotide composition of the S. longialata mitogenome was as follows: A = 41.0%, T = 33.8%, C = 15.5%, G = 9.7%. Both Bayesian inference and ML analyses strongly supported S. longialata as a sister clade to (Ascalohybris subjacens + L. macaronius), and indicated that Ascalaphidae is not monophyletic.
Collapse
Affiliation(s)
- Xin-Yan Gao
- College of Chemistry and Life Science, Zhejiang Normal University, Jinhua, Zhejiang, China
| | - Yin-Yin Cai
- College of Chemistry and Life Science, Zhejiang Normal University, Jinhua, Zhejiang, China
| | - Dan-Na Yu
- College of Chemistry and Life Science, Zhejiang Normal University, Jinhua, Zhejiang, China
- Key Lab of Wildlife Biotechnology, Conservation and Utilization of Zhejiang Province, Zhejiang Normal University, Jinhua, Zhejiang, China
| | | | - Jia-Yong Zhang
- College of Chemistry and Life Science, Zhejiang Normal University, Jinhua, Zhejiang, China
- Key Lab of Wildlife Biotechnology, Conservation and Utilization of Zhejiang Province, Zhejiang Normal University, Jinhua, Zhejiang, China
| |
Collapse
|
7
|
Liu X, Shi G, Xia F, Lu X, Wang B, Engel MS. Liverwort Mimesis in a Cretaceous Lacewing Larva. Curr Biol 2018; 28:1475-1481.e1. [PMID: 29706517 DOI: 10.1016/j.cub.2018.03.060] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 03/16/2018] [Accepted: 03/23/2018] [Indexed: 11/16/2022]
Abstract
Camouflage and mimicry are staples among predator-prey interactions, and evolutionary novelties in behavior, anatomy, and physiology that permit such mimesis are rife throughout the biological world [1, 2]. These specializations allow for prey to better evade capture or permit predators to more easily approach their prey, or in some cases, the mimesis can serve both purposes. Despite the importance of mimesis and camouflage in predator-avoidance or hunting strategies, the long-term history of these traits is often obscured by an insufficient fossil record. Here, we report the discovery of Upper Cretaceous (approximately 100 million years old) green lacewing larvae (Chrysopoidea), preserved in amber from northern Myanmar, anatomically modified to mimic coeval liverworts. Chrysopidae are a diverse lineage of lacewings whose larvae usually camouflage themselves with a uniquely constructed packet of exogenous debris, conveying greater stealth upon them as they hunt prey such as aphids as well as evade their own predators [3, 4]. However, no lacewing larvae today mimic their surroundings. While the anatomy of Phyllochrysa huangi gen. et sp. nov. allowed it to avoid detection, the lack of setae or other anatomical elements for entangling debris as camouflage means its sole defense was its mimicry, and it could have been a stealthy hunter like living and other fossil Chrysopoidea or been an ambush predator aided by its disguise. The present fossils demonstrate a hitherto unknown life-history strategy among these "wolf in sheep's clothing" predators, one that apparently evolved from a camouflaging ancestor but did not persist within the lineage.
Collapse
Affiliation(s)
- Xingyue Liu
- Department of Entomology, China Agricultural University, Beijing 100193, China.
| | - Gongle Shi
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, 39 East Beijing Road, Nanjing 210008, China
| | - Fangyuan Xia
- Lingpoge Amber Museum, Nanjiao Bieshu 394, Shanghai 201108, China
| | - Xiumei Lu
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Bo Wang
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, 39 East Beijing Road, Nanjing 210008, China.
| | - Michael S Engel
- Division of Entomology, Natural History Museum, 1501 Crestline Drive, Suite 140, University of Kansas, Lawrence, KS 66045, USA; Department of Ecology & Evolutionary Biology, University of Kansas, Lawrence, KS 66045, USA; Division of Invertebrate Zoology, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024-5192, USA.
| |
Collapse
|