1
|
Ottesen EW, Singh NN, Seo J, Singh RN. U1 snRNA interactions with deep intronic sequences regulate splicing of multiple exons of spinal muscular atrophy genes. Front Neurosci 2024; 18:1412893. [PMID: 39086841 PMCID: PMC11289892 DOI: 10.3389/fnins.2024.1412893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/02/2024] [Indexed: 08/02/2024] Open
Abstract
Introduction The U1 small nuclear RNA (snRNA) forms ribonucleoprotein particles (RNPs) such as U1 snRNP and U1-TAF15 snRNP. U1 snRNP is one of the most studied RNPs due to its critical role in pre-mRNA splicing in defining the 5' splice site (5'ss) of every exon through direct interactions with sequences at exon/intron junctions. Recent reports support the role of U1 snRNP in all steps of transcription, namely initiation, elongation, and termination. Functions of U1-TAF15 snRNP are less understood, though it associates with the transcription machinery and may modulate pre-mRNA splicing by interacting with the 5'ss and/or 5'ss-like sequences within the pre-mRNA. An anti-U1 antisense oligonucleotide (ASO) that sequesters the 5' end of U1 snRNA inhibits the functions of U1 snRNP, including transcription and splicing. However, it is not known if the inhibition of U1 snRNP influences post-transcriptional regulation of pre-mRNA splicing through deep intronic sequences. Methods We examined the effect of an anti-U1 ASO that sequesters the 5' end of U1 snRNA on transcription and splicing of all internal exons of the spinal muscular atrophy (SMA) genes, SMN1 and SMN2. Our study was enabled by the employment of a multi-exon-skipping detection assay (MESDA) that discriminates against prematurely terminated transcripts. We employed an SMN2 super minigene to determine if anti-U1 ASO differently affects splicing in the context of truncated introns. Results We observed substantial skipping of multiple internal exons of SMN1 and SMN2 triggered by anti-U1 treatment. Suggesting a role for U1 snRNP in interacting with deep intronic sequences, early exons of the SMN2 super minigene with truncated introns were resistant to anti-U1 induced skipping. Consistently, overexpression of engineered U1 snRNAs targeting the 5'ss of early SMN1 and SMN2 exons did not prevent exon skipping caused by anti-U1 treatment. Discussion Our results uncover a unique role of the U1 snRNA-associated RNPs in splicing regulation executed through deep intronic sequences. Findings are significant for developing novel therapies for SMA based on deep intronic targets.
Collapse
Affiliation(s)
| | | | | | - Ravindra N. Singh
- Department of Biomedical Sciences, Iowa State University, Ames, IA, United States
| |
Collapse
|
2
|
Cottam NC, Harrington MA, Schork PM, Sun J. No significant sex differences in incidence or phenotype for the SMNΔ7 mouse model of spinal muscular atrophy. Neuromuscul Disord 2024; 37:13-22. [PMID: 38493520 PMCID: PMC11031329 DOI: 10.1016/j.nmd.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/29/2024] [Accepted: 03/04/2024] [Indexed: 03/19/2024]
Abstract
Spinal muscular atrophy (SMA) is an autosomal recessive disease that affects 1 out of every 6,000-10,000 individuals at birth, making it the leading genetic cause of infant mortality. In recent years, reports of sex differences in SMA patients have become noticeable. The SMNΔ7 mouse model is commonly used to investigate pathologies and treatments in SMA. However, studies on sex as a contributing biological variable are few and dated. Here, we rigorously investigated the effect of sex on a series of characteristics in SMA mice of the SMNΔ7 model. Incidence and lifespan of 23 mouse litters were tracked and phenotypic assessments were performed at 2-day intervals starting at postnatal day 6 for every pup until the death of the SMA pup(s) in each litter. Brain weights were also collected post-mortem. We found that male and female SMA incidence does not differ significantly, survival periods are the same across sexes, and there was no phenotypic difference between male and female SMA pups, other than for females exhibiting lesser body weights at early ages. Overall, this study ensures that sex is not a biological variable that contributes to the incidence ratio or disease severity in the SMNΔ7 mouse model.
Collapse
Affiliation(s)
- Nicholas C Cottam
- Delaware State University, Department of Biological Sciences, 1200 N Dupont Highway, Dover, DE, USA
| | - Melissa A Harrington
- Delaware Center for Neuroscience Research, Delaware State University, Dover, DE, USA
| | - Pamela M Schork
- Delaware State University, Department of Biological Sciences, 1200 N Dupont Highway, Dover, DE, USA
| | - Jianli Sun
- Delaware State University, Department of Biological Sciences, 1200 N Dupont Highway, Dover, DE, USA; Delaware Center for Neuroscience Research, Delaware State University, Dover, DE, USA.
| |
Collapse
|
3
|
Singh NN, O'Leary CA, Eich T, Moss WN, Singh RN. Structural Context of a Critical Exon of Spinal Muscular Atrophy Gene. Front Mol Biosci 2022; 9:928581. [PMID: 35847983 PMCID: PMC9283826 DOI: 10.3389/fmolb.2022.928581] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
Humans contain two nearly identical copies of Survival Motor Neuron genes, SMN1 and SMN2. Deletion or mutation of SMN1 causes spinal muscular atrophy (SMA), one of the leading genetic diseases associated with infant mortality. SMN2 is unable to compensate for the loss of SMN1 due to predominant exon 7 skipping, leading to the production of a truncated protein. Antisense oligonucleotide and small molecule-based strategies aimed at the restoration of SMN2 exon 7 inclusion are approved therapies of SMA. Many cis-elements and transacting factors have been implicated in regulation of SMN exon 7 splicing. Also, several structural elements, including those formed by a long-distance interaction, have been implicated in the modulation of SMN exon 7 splicing. Several of these structures have been confirmed by enzymatic and chemical structure-probing methods. Additional structures formed by inter-intronic interactions have been predicted by computational algorithms. SMN genes generate a vast repertoire of circular RNAs through inter-intronic secondary structures formed by inverted Alu repeats present in large number in SMN genes. Here, we review the structural context of the exonic and intronic cis-elements that promote or prevent exon 7 recognition. We discuss how structural rearrangements triggered by single nucleotide substitutions could bring drastic changes in SMN2 exon 7 splicing. We also propose potential mechanisms by which inter-intronic structures might impact the splicing outcomes.
Collapse
Affiliation(s)
- Natalia N. Singh
- Department of Biomedical Science, Iowa State University, Ames, IA, United States
| | - Collin A. O'Leary
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, United States
| | - Taylor Eich
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, United States
| | - Walter N. Moss
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, United States
| | | |
Collapse
|
4
|
Kanda S, Moulton E, Butchbach MER. Effects of inhibitors of SLC9A-type sodium-protein exchangers on Survival Motor Neuron 2 ( SMN2) mRNA splicing and expression. Mol Pharmacol 2022; 102:92-105. [PMID: 35667685 PMCID: PMC9341265 DOI: 10.1124/molpharm.122.000529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/09/2022] [Indexed: 11/22/2022] Open
Abstract
Spinal muscular atrophy (SMA) is an autosomal recessive, pediatric-onset disorder caused by the loss of spinal motor neurons thereby leading to muscle atrophy. SMA is caused by the loss of or mutations in the survival motor neuron 1 (SMN1) gene. SMN1 is duplicated in humans to give rise to the paralogous SMN2 gene. This paralog is nearly identical except for a cytosine to thymine (C-to-T) transition within an exonic splicing enhancer (ESE) element within exon 7. As a result, the majority of SMN2 transcripts lack exon 7 (SMNΔ7) which produces a truncated and unstable SMN protein. Since SMN2 copy number is inversely related to disease severity, it is a well-established target for SMA therapeutics development. 5-(N-ethyl-N-isopropyl)amiloride (EIPA), an inhibitor of sodium/proton exchangers (NHEs), has previously been shown to increase exon 7 inclusion and SMN protein levels in SMA cells. In this study, NHE inhibitors were evaluated for their ability to modulate SMN2 expression. EIPA as well as 5-(N,N-hexamethylene)amiloride (HMA) increase exon 7 inclusion in SMN2 splicing reporter lines as well as in SMA fibroblasts. The EIPA-induced exon 7 inclusion occurs via a unique mechanism that does not involve previously identified splicing factors. Transcriptome analysis identified novel targets, including TIA1 and FABP3, for further characterization. EIPA and HMA are more selective at inhibiting the NHE5 isoform, which is expressed in fibroblasts as well as in neuronal cells. These results show that NHE5 inhibition increases SMN2 expression and may be a novel target for therapeutics development. Significance Statement This study demonstrates a molecular mechanism by which inhibitors of the sodium-protein exchanger increase the alternative splicing of SMN2 in spinal muscular atrophy cells. NHE5 selective inhibitors increase the inclusion of full-length SMN2 mRNAs by targeting TIA1 and FABP3 expression, which is distinct from other small molecule regulators of SMN2 alternative splicing. This study provides a novel means to increase full-length SMN2 expression and a novel target for therapeutics development.
Collapse
Affiliation(s)
- Sambee Kanda
- Biological Sciences, University of Delaware, United States
| | - Emily Moulton
- Biomedical Research, Nemours Children's Hospital Delaware, United States
| | | |
Collapse
|
5
|
Hu L, Mao S, Lin L, Bai G, Liu B, Mao J. Stress granules in the spinal muscular atrophy and amyotrophic lateral sclerosis: The correlation and promising therapy. Neurobiol Dis 2022; 170:105749. [PMID: 35568100 DOI: 10.1016/j.nbd.2022.105749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/27/2022] [Accepted: 05/05/2022] [Indexed: 10/18/2022] Open
Abstract
Increasing genetic and biochemical evidence has broadened our view of the pathomechanisms that lead to Spinal muscular atrophy (SMA) and Amyotrophic lateral sclerosis (ALS), two fatal neurodegenerative diseases with similar symptoms and causes. Stress granules are dynamic cytosolic storage hubs for mRNAs in response to stress exposures, that are evolutionarily conserved cytoplasmic RNA granules in somatic cells. A lot of previous studies have shown that the impaired stress granules are crucial events in SMA/ALS pathogenesis. In this review, we described the key stress granules related RNA binding proteins (SMN, TDP-43, and FUS) involved in SMA/ALS, summarized the reported mutations in these RNA binding proteins involved in SMA/ALS pathogenesis, and discussed the mechanisms through which stress granules dynamics participate in the diseases. Meanwhile, we described the applications and limitation of current therapies targeting SMA/ALS. We futher proposed the promising targets on stress granules in the future therapeutic interventions of SMA/ALS.
Collapse
Affiliation(s)
- LiDan Hu
- the Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China.
| | - Shanshan Mao
- the Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Li Lin
- the Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Guannan Bai
- the Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Bingjie Liu
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jianhua Mao
- the Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China
| |
Collapse
|
6
|
The Multifunctional Faces of T-Cell Intracellular Antigen 1 in Health and Disease. Int J Mol Sci 2022; 23:ijms23031400. [PMID: 35163320 PMCID: PMC8836218 DOI: 10.3390/ijms23031400] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/13/2022] [Accepted: 01/22/2022] [Indexed: 02/06/2023] Open
Abstract
T-cell intracellular antigen 1 (TIA1) is an RNA-binding protein that is expressed in many tissues and in the vast majority of species, although it was first discovered as a component of human cytotoxic T lymphocytes. TIA1 has a dual localization in the nucleus and cytoplasm, where it plays an important role as a regulator of gene-expression flux. As a multifunctional master modulator, TIA1 controls biological processes relevant to the physiological functioning of the organism and the development and/or progression of several human pathologies. This review summarizes our current knowledge of the molecular aspects and cellular processes involving TIA1, with relevance for human pathophysiology.
Collapse
|
7
|
Carrascoso I, Velasco BR, Izquierdo JM. Deficiency of T-Cell Intracellular Antigen 1 in Murine Embryonic Fibroblasts Is Associated with Changes in Mitochondrial Morphology and Respiration. Int J Mol Sci 2021; 22:ijms222312775. [PMID: 34884582 PMCID: PMC8657690 DOI: 10.3390/ijms222312775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/22/2021] [Accepted: 11/24/2021] [Indexed: 01/14/2023] Open
Abstract
T-cell intracellular antigen 1 (TIA1) is a multifunctional RNA-binding protein involved in regulating gene expression and splicing during development and in response to environmental stress, to maintain cell homeostasis and promote survival. Herein, we used TIA1-deficient murine embryonic fibroblasts (MEFs) to study their role in mitochondria homeostasis. We found that the loss of TIA1 was associated with changes in mitochondrial morphology, promoting the appearance of elongated mitochondria with heterogeneous cristae density and size. The proteomic patterns of TIA1-deficient MEFs were consistent with expression changes in molecular components related to mitochondrial dynamics/organization and respiration. Bioenergetics analysis illustrated that TIA1 deficiency enhances mitochondrial respiration. Overall, our findings shed light on the role of TIA1 in mitochondrial dynamics and highlight a point of crosstalk between potential pro-survival and pro-senescence pathways.
Collapse
|
8
|
Spinal muscular atrophy: Broad disease spectrum and sex-specific phenotypes. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166063. [PMID: 33412266 DOI: 10.1016/j.bbadis.2020.166063] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/14/2020] [Accepted: 12/21/2020] [Indexed: 12/17/2022]
Abstract
Spinal muscular atrophy (SMA) is one of the major genetic disorders associated with infant mortality. More than 90% of cases of SMA result from deletions of or mutations in the Survival Motor Neuron 1 (SMN1) gene. SMN2, a nearly identical copy of SMN1, does not compensate for the loss of SMN1 due to predominant skipping of exon 7. The spectrum of SMA is broad, ranging from prenatal death to infant mortality to survival into adulthood. All tissues, including brain, spinal cord, bone, skeletal muscle, heart, lung, liver, pancreas, gastrointestinal tract, kidney, spleen, ovary and testis, are directly and/or indirectly affected in SMA. Accumulating evidence on impaired mitochondrial biogenesis and defects in X chromosome-linked modifying factors, coupled with the sexual dimorphic nature of many tissues, point to sex-specific vulnerabilities in SMA. Here we review the role of sex in the pathogenesis of SMA.
Collapse
|
9
|
Singh RN, Ottesen EW, Singh NN. The First Orally Deliverable Small Molecule for the Treatment of Spinal Muscular Atrophy. Neurosci Insights 2020; 15:2633105520973985. [PMID: 33283185 PMCID: PMC7691903 DOI: 10.1177/2633105520973985] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 10/27/2020] [Indexed: 12/12/2022] Open
Abstract
Spinal muscular atrophy (SMA) is 1 of the leading causes of infant mortality. SMA
is mostly caused by low levels of Survival Motor Neuron (SMN) protein due to
deletion of or mutation in the SMN1 gene. Its nearly identical
copy, SMN2, fails to compensate for the loss of
SMN1 due to predominant skipping of exon 7. Correction of
SMN2 exon 7 splicing by an antisense oligonucleotide (ASO),
nusinersen (Spinraza™), that targets the intronic splicing silencer N1 (ISS-N1)
became the first approved therapy for SMA. Restoration of SMN levels using gene
therapy was the next. Very recently, an orally deliverable small molecule,
risdiplam (Evrysdi™), became the third approved therapy for SMA. Here we discuss
how these therapies are positioned to meet the needs of the broad phenotypic
spectrum of SMA patients.
Collapse
Affiliation(s)
- Ravindra N Singh
- Department of Biomedical Sciences, Iowa State University, Ames, IA, USA
| | - Eric W Ottesen
- Department of Biomedical Sciences, Iowa State University, Ames, IA, USA
| | - Natalia N Singh
- Department of Biomedical Sciences, Iowa State University, Ames, IA, USA
| |
Collapse
|
10
|
Singh NN, Ottesen EW, Singh RN. A survey of transcripts generated by spinal muscular atrophy genes. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2020; 1863:194562. [PMID: 32387331 PMCID: PMC7302838 DOI: 10.1016/j.bbagrm.2020.194562] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/01/2020] [Accepted: 04/13/2020] [Indexed: 02/07/2023]
Abstract
Human Survival Motor Neuron (SMN) genes code for SMN, an essential multifunctional protein. Complete loss of SMN is embryonic lethal, while low levels of SMN lead to spinal muscular atrophy (SMA), a major genetic disease of children and infants. Reduced levels of SMN are associated with the abnormal development of heart, lung, muscle, gastro-intestinal system and testis. The SMN loci have been shown to generate a vast repertoire of transcripts, including linear, back- and trans-spliced RNAs as well as antisense long noncoding RNAs. However, functions of the majority of these transcripts remain unknown. Here we review the nature of RNAs generated from the SMN loci and discuss their potential functions in cellular metabolism.
Collapse
Affiliation(s)
- Natalia N Singh
- Department of Biomedical Science, Iowa State University, Ames, IA, 50011, United States of America
| | - Eric W Ottesen
- Department of Biomedical Science, Iowa State University, Ames, IA, 50011, United States of America
| | - Ravindra N Singh
- Department of Biomedical Science, Iowa State University, Ames, IA, 50011, United States of America.
| |
Collapse
|
11
|
Singh RN, Seo J, Singh NN. RNA in spinal muscular atrophy: therapeutic implications of targeting. Expert Opin Ther Targets 2020; 24:731-743. [PMID: 32538213 DOI: 10.1080/14728222.2020.1783241] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Spinal muscular atrophy (SMA) is caused by low levels of the Survival Motor Neuron (SMN) protein due to deletions of or mutations in the SMN1 gene. Humans carry another nearly identical gene, SMN2, which mostly produces a truncated and less stable protein SMNΔ7 due to predominant skipping of exon 7. Elevation of SMN upon correction of SMN2 exon 7 splicing and gene therapy have been proven to be the effective treatment strategies for SMA. AREAS COVERED This review summarizes existing and potential SMA therapies that are based on RNA targeting.We also discuss the mechanistic basis of RNA-targeting molecules. EXPERT OPINION The discovery of intronic splicing silencer N1 (ISS-N1) was the first major step towards developing the currently approved antisense-oligonucleotide (ASO)-directed therapy (SpinrazaTM) based on the correction of exon 7 splicing of the endogenous SMN2pre-mRNA. Recently, gene therapy (Zolgensma) has become the second approved treatment for SMA. Small compounds (currently in clinical trials) capable of restoring SMN2 exon 7 inclusion further expand the class of the RNA targeting molecules for SMA therapy. Endogenous RNA targets, such as long non-coding RNAs, circular RNAs, microRNAs and ribonucleoproteins, could be potentially exploited for developing additional SMA therapies.
Collapse
Affiliation(s)
- Ravindra N Singh
- Department of Biomedical Sciences, Iowa State University , Ames, IA, USA
| | - Joonbae Seo
- Department of Biomedical Sciences, Iowa State University , Ames, IA, USA
| | - Natalia N Singh
- Department of Biomedical Sciences, Iowa State University , Ames, IA, USA
| |
Collapse
|
12
|
Rayman JB, Hijazi J, Li X, Kedersha N, Anderson PJ, Kandel ER. Genetic Perturbation of TIA1 Reveals a Physiological Role in Fear Memory. Cell Rep 2020; 26:2970-2983.e4. [PMID: 30865887 DOI: 10.1016/j.celrep.2019.02.048] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 12/18/2018] [Accepted: 02/12/2019] [Indexed: 01/05/2023] Open
Abstract
TIA1 is a prion-related RNA-binding protein whose capacity to form various types of intracellular aggregates has been implicated in neurodegenerative disease. However, its role in normal brain function is poorly understood. Here, we show that TIA1 bidirectionally modulates stress-dependent synaptic plasticity in the hippocampus, a brain region involved in fear memory and olfactory discrimination learning. At the behavioral level, conditioned odor avoidance is potentiated by TIA1 deletion, whereas overexpression of TIA1 in the ventral hippocampus inhibits both contextual fear memory and avoidance. However, the latter genetic manipulations have little impact on other hippocampus-dependent tasks. Transcriptional profiling indicates that TIA1 presides over a large network of immune system genes with modulatory roles in synaptic plasticity and long-term memory. Our results uncover a physiological and partly sex-dependent function for TIA1 in fear memory and may provide molecular insight into stress-related psychiatric conditions, such as post-traumatic stress disorder (PTSD) and anxiety.
Collapse
Affiliation(s)
- Joseph B Rayman
- Department of Neuroscience, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Joud Hijazi
- Department of Neuroscience, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Xiang Li
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Nancy Kedersha
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Paul J Anderson
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Eric R Kandel
- Department of Neuroscience, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Department of Psychiatry, College of Physicians and Surgeons of Columbia University, New York, NY 10032, USA; Howard Hughes Medical Institute at Columbia University, New York, NY 10032, USA; Kavli Institute for Brain Science, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
13
|
Rayman JB, Melas PA, Schalling M, Forsell Y, Kandel ER, Lavebratt C. Single-nucleotide polymorphism in the human TIA1 gene interacts with stressful life events to predict the development of pathological anxiety symptoms in a Swedish population. J Affect Disord 2020; 260:597-603. [PMID: 31541970 DOI: 10.1016/j.jad.2019.09.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 07/25/2019] [Accepted: 09/02/2019] [Indexed: 10/26/2022]
Abstract
BACKGROUND The TIA1 gene encodes a prion-related RNA-binding protein that regulates stress-dependent synaptic plasticity and fear memory in mice. It is unknown whether genetic variation in human TIA1 is associated with differences in stress- and fear-related behavior in people. METHODS A longitudinal, population-based survey was conducted in Sweden to collect information on demographics, socioeconomic status, exposure to stressful life events and psychiatric symptoms. DNA samples were obtained from study participants to allow genotyping of single-nucleotide polymorphisms in the human TIA1 locus. RESULTS We identified a single-nucleotide polymorphism in the human TIA1 gene that interacts with exposure to previous-year stressful life events to predict the development of pathological anxiety symptoms in a non-clinical cohort. LIMITATIONS Sample population is limited in both size and scope, and we did not perform functional analysis of allelic variants of TIA1. CONCLUSIONS TIA1 may represent a susceptibility locus for stress-dependent psychopathology. These studies support an evolutionarily conserved role of TIA1 in the mammalian brain, and may provide molecular and genetic insight into the development of stress-related psychiatric conditions such as PTSD and anxiety.
Collapse
Affiliation(s)
- Joseph B Rayman
- Department of Neuroscience, College of Physicians and Surgeons of Columbia University, New York, NY, USA; Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Philippe A Melas
- Department of Neuroscience, College of Physicians and Surgeons of Columbia University, New York, NY, USA; Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA; Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Martin Schalling
- Neurogenetics Unit, Department of Molecular Medicine and Surgery, Karolinska Institutet, Karolinska Universitetssjukhuset Solna (L8:00) 171 76 Stockholm, Sweden; Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Yvonne Forsell
- Department of Public Health Sciences, Karolinska Institutet, Stockholm, Sweden
| | - Eric R Kandel
- Department of Neuroscience, College of Physicians and Surgeons of Columbia University, New York, NY, USA; Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA; Department of Psychiatry, College of Physicians and Surgeons of Columbia University, New York, NY, USA; Howard Hughes Medical Institute at Columbia University, New York, NY, USA; Kavli Institute for Brain Science, Columbia University, New York, NY, USA
| | - Catharina Lavebratt
- Neurogenetics Unit, Department of Molecular Medicine and Surgery, Karolinska Institutet, Karolinska Universitetssjukhuset Solna (L8:00) 171 76 Stockholm, Sweden; Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
14
|
More is needed to complement the available therapies of spinal muscular atrophy. Future Med Chem 2019; 11:2873-2876. [PMID: 31668092 DOI: 10.4155/fmc-2019-0239] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
15
|
Singh NN, Singh RN. How RNA structure dictates the usage of a critical exon of spinal muscular atrophy gene. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1862:194403. [PMID: 31323435 DOI: 10.1016/j.bbagrm.2019.07.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 07/09/2019] [Indexed: 12/17/2022]
Abstract
Role of RNA structure in pre-mRNA splicing has been implicated for several critical exons associated with genetic disorders. However, much of the structural studies linked to pre-mRNA splicing regulation are limited to terminal stem-loop structures (hairpins) sequestering splice sites. In few instances, role of long-distance interactions is implicated as the major determinant of splicing regulation. With the recent surge of reports of circular RNA (circRNAs) generated by backsplicing, role of Alu-associated RNA structures formed by long-range interactions are taking central stage. Humans contain two nearly identical copies of Survival Motor Neuron (SMN) genes, SMN1 and SMN2. Deletion or mutation of SMN1 coupled with the inability of SMN2 to compensate for the loss of SMN1 due to exon 7 skipping causes spinal muscular atrophy (SMA), one of the leading genetic diseases of children. In this review, we describe how structural elements formed by both local and long-distance interactions are being exploited to modulate SMN2 exon 7 splicing as a potential therapy for SMA. We also discuss how Alu-associated secondary structure modulates generation of a vast repertoire of SMN circRNAs. This article is part of a Special Issue entitled: RNA structure and splicing regulation edited by Francisco Baralle, Ravindra Singh and Stefan Stamm.
Collapse
Affiliation(s)
- Natalia N Singh
- Department of Biomedical Science, Iowa State University, Ames, IA 50011, United States of America
| | - Ravindra N Singh
- Department of Biomedical Science, Iowa State University, Ames, IA 50011, United States of America.
| |
Collapse
|
16
|
Ottesen EW, Singh NN, Luo D, Singh RN. High-affinity RNA targets of the Survival Motor Neuron protein reveal diverse preferences for sequence and structural motifs. Nucleic Acids Res 2019; 46:10983-11001. [PMID: 30165668 PMCID: PMC6237763 DOI: 10.1093/nar/gky770] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 08/24/2018] [Indexed: 12/23/2022] Open
Abstract
The Survival Motor Neuron (SMN) protein is essential for survival of all animal cells. SMN harbors a nucleic acid-binding domain and plays an important role in RNA metabolism. However, the RNA-binding property of SMN is poorly understood. Here we employ iterative in vitro selection and chemical structure probing to identify sequence and structural motif(s) critical for RNA–SMN interactions. Our results reveal that motifs that drive RNA–SMN interactions are diverse and suggest that tight RNA–SMN interaction requires presence of multiple contact sites on the RNA molecule. We performed UV crosslinking and immunoprecipitation coupled with high-throughput sequencing (HITS-CLIP) to identify cellular RNA targets of SMN in neuronal SH-SY5Y cells. Results of HITS-CLIP identified a wide variety of targets, including mRNAs coding for ribosome biogenesis and cytoskeleton dynamics. We show critical determinants of ANXA2 mRNA for a direct SMN interaction in vitro. Our data confirms the ability of SMN to discriminate among close RNA sequences, and represent the first validation of a direct interaction of SMN with a cellular RNA target. Our findings suggest direct RNA–SMN interaction as a novel mechanism to initiate the cascade of events leading to the execution of SMN-specific functions.
Collapse
Affiliation(s)
- Eric W Ottesen
- Iowa State University, Biomedical Sciences, Ames, IA, USA
| | | | - Diou Luo
- Iowa State University, Biomedical Sciences, Ames, IA, USA
| | | |
Collapse
|
17
|
Carrascoso I, Alcalde J, Tabas-Madrid D, Oliveros JC, Izquierdo JM. Transcriptome-wide analysis links the short-term expression of the b isoforms of TIA proteins to protective proteostasis-mediated cell quiescence response. PLoS One 2018; 13:e0208526. [PMID: 30533021 PMCID: PMC6289441 DOI: 10.1371/journal.pone.0208526] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 11/19/2018] [Indexed: 12/20/2022] Open
Abstract
Control of gene expression depends on genetics and environmental factors. The T-cell intracellular antigens T-cell intracellular antigen 1 (TIA1), TIA1-like/related protein (TIAL1/TIAR) and human antigen R (HuR/ELAVL1) are RNA-binding proteins that play crucial roles in regulating gene expression in both situations. This study used massive sequencing analysis to uncover molecular and functional mechanisms resulting from the short-time expression of the b isoforms of TIA1 and TIAR, and of HuR in HEK293 cells. Our gene profiling analysis identified several hundred differentially expressed genes (DEGs) and tens of alternative splicing events associated with TIA1b, TIARb and HuR overexpression. Gene ontology analysis revealed that the controlled expression of these proteins strongly influences the patterns of DEGs and RNA variants preferentially associated with development, reproduction, cell cycle, metabolism, autophagy and apoptosis. Mechanistically, TIA1b and TIARb isoforms display both common and differential effects on the regulation of gene expression, involving systematic perturbations of cell biosynthetic machineries (splicing and translation). The transcriptome outputs were validated using functional assays of the targeted cellular processes as well as expression analysis for selected genes. Collectively, our observations suggest that early TIA1b and TIARb expression operates to connect the regulatory crossroads to protective proteostasis responses associated with a survival quiescence phenotype.
Collapse
Affiliation(s)
- Isabel Carrascoso
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid (CSIC/UAM), C/ Nicolás Cabrera, Madrid, Spain
| | - José Alcalde
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid (CSIC/UAM), C/ Nicolás Cabrera, Madrid, Spain
| | - Daniel Tabas-Madrid
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, C/ Darwin, Madrid, Spain
| | - Juan Carlos Oliveros
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, C/ Darwin, Madrid, Spain
| | - José M. Izquierdo
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid (CSIC/UAM), C/ Nicolás Cabrera, Madrid, Spain
- * E-mail:
| |
Collapse
|
18
|
A Heterologous Cell Model for Studying the Role of T-Cell Intracellular Antigen 1 in Welander Distal Myopathy. Mol Cell Biol 2018; 39:MCB.00299-18. [PMID: 30348840 DOI: 10.1128/mcb.00299-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 10/09/2018] [Indexed: 11/20/2022] Open
Abstract
Welander distal myopathy (WDM) is a muscle dystrophy characterized by adult-onset distal muscle weakness, prevalently impacting the distal long extensors of the hands and feet. WDM is an autosomal dominant disorder caused by a missense mutation (c.1362G>A; p.E384K) in the TIA1 (T-cell intracellular antigen 1) gene, which encodes an RNA-binding protein basically required for the posttranscriptional regulation of RNAs. We have developed a heterologous cell model of WDM to study the molecular and cellular events associated with mutated TIA1 expression. Specifically, we analyzed how this mutation affects three regulatory functions mediated by TIA1: (i) control of alternative SMN2 (survival motor neuron 2) splicing; (ii) formation, assembly, and disassembly of stress granules; and (iii) mitochondrial dynamics and its consequences for mitophagy, autophagy, and apoptosis. Our results show that whereas WDM-associated TIA1 expression had only a mild effect on SMN2 splicing, it led to suboptimal adaptation to environmental stress, with exacerbated stress granule formation that was accompanied by mitochondrial dysfunction and autophagy. Overall, our observations indicate that some aspects of the cell phenotype seen in muscle of patients with WDM can be recapitulated by ectopic expression of WDM-TIA1 in embryonic kidney cells, highlighting the potential of this model to investigate the pathogenesis of this degenerative disease and possible therapeutics.
Collapse
|
19
|
Walter LM, Deguise MO, Meijboom KE, Betts CA, Ahlskog N, van Westering TLE, Hazell G, McFall E, Kordala A, Hammond SM, Abendroth F, Murray LM, Shorrock HK, Prosdocimo DA, Haldar SM, Jain MK, Gillingwater TH, Claus P, Kothary R, Wood MJA, Bowerman M. Interventions Targeting Glucocorticoid-Krüppel-like Factor 15-Branched-Chain Amino Acid Signaling Improve Disease Phenotypes in Spinal Muscular Atrophy Mice. EBioMedicine 2018; 31:226-242. [PMID: 29735415 PMCID: PMC6013932 DOI: 10.1016/j.ebiom.2018.04.024] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 04/15/2018] [Accepted: 04/26/2018] [Indexed: 01/01/2023] Open
Abstract
The circadian glucocorticoid-Krüppel-like factor 15-branched-chain amino acid (GC-KLF15-BCAA) signaling pathway is a key regulatory axis in muscle, whose imbalance has wide-reaching effects on metabolic homeostasis. Spinal muscular atrophy (SMA) is a neuromuscular disorder also characterized by intrinsic muscle pathologies, metabolic abnormalities and disrupted sleep patterns, which can influence or be influenced by circadian regulatory networks that control behavioral and metabolic rhythms. We therefore set out to investigate the contribution of the GC-KLF15-BCAA pathway in SMA pathophysiology of Taiwanese Smn−/−;SMN2 and Smn2B/− mouse models. We thus uncover substantial dysregulation of GC-KLF15-BCAA diurnal rhythmicity in serum, skeletal muscle and metabolic tissues of SMA mice. Importantly, modulating the components of the GC-KLF15-BCAA pathway via pharmacological (prednisolone), genetic (muscle-specific Klf15 overexpression) and dietary (BCAA supplementation) interventions significantly improves disease phenotypes in SMA mice. Our study highlights the GC-KLF15-BCAA pathway as a contributor to SMA pathogenesis and provides several treatment avenues to alleviate peripheral manifestations of the disease. The therapeutic potential of targeting metabolic perturbations by diet and commercially available drugs could have a broader implementation across other neuromuscular and metabolic disorders characterized by altered GC-KLF15-BCAA signaling. SMA is a neuromuscular disease characterized by motoneuron loss, muscle abnormalities and metabolic perturbations. The regulatory GC-KLF15-BCAA pathway is dysregulated in serum and skeletal muscle of SMA mice during disease progression. Modulating GC-KLF15-BCAA signaling by pharmacological, dietary and genetic interventions improves phenotype of SMA mice.
Spinal muscular atrophy (SMA) is a devastating and debilitating childhood genetic disease. Although nerve cells are mainly affected, muscle is also severely impacted. The normal communication between the glucocorticoid (GC) hormone, the protein KLF15 and the dietary branched-chain amino acids (BCAAs) maintains muscle and whole-body health. In this study, we identified an abnormal activity of GC-KLF15- BCAA in blood and muscle of SMA mice. Importantly, targeting GC-KLF15-BCAA activity with an existing drug or a specific diet improved disease progression in SMA mice. Our research uncovers GCs, KLF15 and BCAAs as therapeutic targets to ameliorate SMA muscle and whole-body health.
Collapse
Affiliation(s)
- Lisa M Walter
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Hannover, Germany; Center of Systems Neuroscience, Hannover, Germany
| | - Marc-Olivier Deguise
- Ottawa Hospital Research Institute, Regenerative Medicine Program, Ottawa, ON, Canada; Department of Medicine and Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Katharina E Meijboom
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Corinne A Betts
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Nina Ahlskog
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Tirsa L E van Westering
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Gareth Hazell
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Emily McFall
- Ottawa Hospital Research Institute, Regenerative Medicine Program, Ottawa, ON, Canada; Department of Medicine and Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Anna Kordala
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Suzan M Hammond
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Frank Abendroth
- Medical Research Council, Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Lyndsay M Murray
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, United Kingdom; Centre for Integrative Physiology, University of Edinburgh, Edinburgh, United Kingdom
| | - Hannah K Shorrock
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, United Kingdom; Centre for Integrative Physiology, University of Edinburgh, Edinburgh, United Kingdom
| | - Domenick A Prosdocimo
- Case Cardiovascular Research Institute, Case Western Reserve University School of Medicine, University Hospitals Case Medical Center, Cleveland, OH, USA
| | - Saptarsi M Haldar
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA, USA; Department of Medicine, Division of Cardiology University of California, San Francisco, CA, USA
| | - Mukesh K Jain
- Case Cardiovascular Research Institute, Case Western Reserve University School of Medicine, University Hospitals Case Medical Center, Cleveland, OH, USA
| | - Thomas H Gillingwater
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, United Kingdom; Centre for Integrative Physiology, University of Edinburgh, Edinburgh, United Kingdom
| | - Peter Claus
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Hannover, Germany; Center of Systems Neuroscience, Hannover, Germany
| | - Rashmi Kothary
- Ottawa Hospital Research Institute, Regenerative Medicine Program, Ottawa, ON, Canada; Department of Medicine and Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Matthew J A Wood
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Melissa Bowerman
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
20
|
Singh RN, Singh NN. Mechanism of Splicing Regulation of Spinal Muscular Atrophy Genes. ADVANCES IN NEUROBIOLOGY 2018; 20:31-61. [PMID: 29916015 DOI: 10.1007/978-3-319-89689-2_2] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Spinal muscular atrophy (SMA) is one of the major genetic disorders associated with infant mortality. More than 90% cases of SMA result from deletions or mutations of Survival Motor Neuron 1 (SMN1) gene. SMN2, a nearly identical copy of SMN1, does not compensate for the loss of SMN1 due to predominant skipping of exon 7. However, correction of SMN2 exon 7 splicing has proven to confer therapeutic benefits in SMA patients. The only approved drug for SMA is an antisense oligonucleotide (Spinraza™/Nusinersen), which corrects SMN2 exon 7 splicing by blocking intronic splicing silencer N1 (ISS-N1) located immediately downstream of exon 7. ISS-N1 is a complex regulatory element encompassing overlapping negative motifs and sequestering a cryptic splice site. More than 40 protein factors have been implicated in the regulation of SMN exon 7 splicing. There is evidence to support that multiple exons of SMN are alternatively spliced during oxidative stress, which is associated with a growing number of pathological conditions. Here, we provide the most up to date account of the mechanism of splicing regulation of the SMN genes.
Collapse
Affiliation(s)
- Ravindra N Singh
- Department of Biomedical Sciences, Iowa State University, Ames, IA, USA.
| | - Natalia N Singh
- Department of Biomedical Sciences, Iowa State University, Ames, IA, USA
| |
Collapse
|
21
|
Yuan Z, Jiao B, Hou L, Xiao T, Liu X, Wang J, Xu J, Zhou L, Yan X, Tang B, Shen L. Mutation analysis of the TIA1 gene in Chinese patients with amyotrophic lateral sclerosis and frontotemporal dementia. Neurobiol Aging 2017; 64:160.e9-160.e12. [PMID: 29370934 DOI: 10.1016/j.neurobiolaging.2017.12.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 12/18/2017] [Indexed: 11/27/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the progressive loss of motor neurons in the brain and spinal cord. Frontotemporal dementia (FTD) is a group of dementia syndromes characterized by the progressive deterioration of behaviors, executive dysfunction, and verbal impairment. Increasing evidence indicates that these 2 diseases share a common genetic etiology and pathophysiological mechanism. Recently, rare mutations in the low-complexity domain of the RNA-binding protein T-cell-restricted intracellular antigen-1 (TIA1) gene were identified in Caucasian ALS and ALS-FTD patients. However, no comprehensive mutation analysis of the TIA1 gene has been performed in Chinese patients with ALS and FTD. In this study, we screened the low-complexity domain of TIA1 in a cohort of 241 ALS and 51 FTD patients in mainland China. As a result, 2 novel missense mutations (p.P352L and p.I300T) were identified in 2 sporadic patients with ALS, while no mutation was found in FTD cases. To the best of our knowledge, this report presented the first mutation analysis of the TIA1 gene in patients with ALS and FTD in Chinese population. Our findings broaden the known mutational spectrum in patients with ALS and further confirm TIA1 as a novel causative gene of ALS.
Collapse
Affiliation(s)
- Zhenhua Yuan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Bin Jiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China; Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Lihua Hou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Tingting Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xixi Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Junling Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China; Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Jun Xu
- Department of Neurology, Brain Center, Neurological Institute, Northern Jiangsu Province Hospital, Yangzhou, China
| | - Lin Zhou
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China; Department of Geriatrics Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xinxiang Yan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China; Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China; Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China; Parkinson's Disease Center of Beijing Institute for Brain Disorders, Beijing, China; Collaborative Innovation Center for Brain Science, Shanghai, China; Collaborative Innovation Center for Genetics and Development, Shanghai, China
| | - Lu Shen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China; Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China.
| |
Collapse
|
22
|
Singh NN, Del Rio-Malewski JB, Luo D, Ottesen EW, Howell MD, Singh RN. Activation of a cryptic 5' splice site reverses the impact of pathogenic splice site mutations in the spinal muscular atrophy gene. Nucleic Acids Res 2017; 45:12214-12240. [PMID: 28981879 PMCID: PMC5716214 DOI: 10.1093/nar/gkx824] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 09/06/2017] [Indexed: 01/08/2023] Open
Abstract
Spinal muscular atrophy (SMA) is caused by deletions or mutations of the Survival Motor Neuron 1 (SMN1) gene coupled with predominant skipping of SMN2 exon 7. The only approved SMA treatment is an antisense oligonucleotide that targets the intronic splicing silencer N1 (ISS-N1), located downstream of the 5' splice site (5'ss) of exon 7. Here, we describe a novel approach to exon 7 splicing modulation through activation of a cryptic 5'ss (Cr1). We discovered the activation of Cr1 in transcripts derived from SMN1 that carries a pathogenic G-to-C mutation at the first position (G1C) of intron 7. We show that Cr1-activating engineered U1 snRNAs (eU1s) have the unique ability to reprogram pre-mRNA splicing and restore exon 7 inclusion in SMN1 carrying a broad spectrum of pathogenic mutations at both the 3'ss and 5'ss of the exon 7. Employing a splicing-coupled translation reporter, we demonstrate that mRNAs generated by an eU1-induced activation of Cr1 produce full-length SMN. Our findings underscore a wider role for U1 snRNP in splicing regulation and reveal a novel approach for the restoration of SMN exon 7 inclusion for a potential therapy of SMA.
Collapse
Affiliation(s)
- Natalia N Singh
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | - José Bruno Del Rio-Malewski
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA.,Interdepartmental Genetics and Genomics Program, Iowa State University, Ames, IA 50011, USA
| | - Diou Luo
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | - Eric W Ottesen
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | - Matthew D Howell
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | - Ravindra N Singh
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA.,Interdepartmental Genetics and Genomics Program, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
23
|
Tosolini AP, Sleigh JN. Motor Neuron Gene Therapy: Lessons from Spinal Muscular Atrophy for Amyotrophic Lateral Sclerosis. Front Mol Neurosci 2017; 10:405. [PMID: 29270111 PMCID: PMC5725447 DOI: 10.3389/fnmol.2017.00405] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 11/21/2017] [Indexed: 12/11/2022] Open
Abstract
Spinal muscular atrophy (SMA) and amyotrophic lateral sclerosis (ALS) are severe nervous system diseases characterized by the degeneration of lower motor neurons. They share a number of additional pathological, cellular, and genetic parallels suggesting that mechanistic and clinical insights into one disorder may have value for the other. While there are currently no clinical ALS gene therapies, the splice-switching antisense oligonucleotide, nusinersen, was recently approved for SMA. This milestone was achieved through extensive pre-clinical research and patient trials, which together have spawned fundamental insights into motor neuron gene therapy. We have thus tried to distil key information garnered from SMA research, in the hope that it may stimulate a more directed approach to ALS gene therapy. Not only must the type of therapeutic (e.g., antisense oligonucleotide vs. viral vector) be sensibly selected, but considerable thought must be applied to the where, which, what, and when in order to enhance treatment benefit: to where (cell types and tissues) must the drug be delivered and how can this be best achieved? Which perturbed pathways must be corrected and can they be concurrently targeted? What dosing regime and concentration should be used? When should medication be administered? These questions are intuitive, but central to identifying and optimizing a successful gene therapy. Providing definitive solutions to these quandaries will be difficult, but clear thinking about therapeutic testing is necessary if we are to have the best chance of developing viable ALS gene therapies and improving upon early generation SMA treatments.
Collapse
Affiliation(s)
- Andrew P Tosolini
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, London, United Kingdom
| | - James N Sleigh
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, London, United Kingdom
| |
Collapse
|
24
|
Ottesen EW, Seo J, Singh NN, Singh RN. A Multilayered Control of the Human Survival Motor Neuron Gene Expression by Alu Elements. Front Microbiol 2017; 8:2252. [PMID: 29187847 PMCID: PMC5694776 DOI: 10.3389/fmicb.2017.02252] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 10/31/2017] [Indexed: 12/12/2022] Open
Abstract
Humans carry two nearly identical copies of Survival Motor Neuron gene: SMN1 and SMN2. Mutations or deletions of SMN1, which codes for SMN, cause spinal muscular atrophy (SMA), a leading genetic disease associated with infant mortality. Aberrant expression or localization of SMN has been also implicated in other pathological conditions, including male infertility, inclusion body myositis, amyotrophic lateral sclerosis and osteoarthritis. SMN2 fails to compensate for the loss of SMN1 due to skipping of exon 7, leading to the production of SMNΔ7, an unstable protein. In addition, SMNΔ7 is less functional due to the lack of a critical C-terminus of the full-length SMN, a multifunctional protein. Alu elements are specific to primates and are generally found within protein coding genes. About 41% of the human SMN gene including promoter region is occupied by more than 60 Alu-like sequences. Here we discuss how such an abundance of Alu-like sequences may contribute toward SMA pathogenesis. We describe the likely impact of Alu elements on expression of SMN. We have recently identified a novel exon 6B, created by exonization of an Alu-element located within SMN intron 6. Irrespective of the exon 7 inclusion or skipping, transcripts harboring exon 6B code for the same SMN6B protein that has altered C-terminus compared to the full-length SMN. We have demonstrated that SMN6B is more stable than SMNΔ7 and likely functions similarly to the full-length SMN. We discuss the possible mechanism(s) of regulation of SMN exon 6B splicing and potential consequences of the generation of exon 6B-containing transcripts.
Collapse
Affiliation(s)
- Eric W Ottesen
- Department of Biomedical Sciences, Iowa State University, Ames, IA, United States
| | - Joonbae Seo
- Department of Biomedical Sciences, Iowa State University, Ames, IA, United States
| | - Natalia N Singh
- Department of Biomedical Sciences, Iowa State University, Ames, IA, United States
| | - Ravindra N Singh
- Department of Biomedical Sciences, Iowa State University, Ames, IA, United States
| |
Collapse
|