1
|
Saïdi F, Jolivet NY, Lemon DJ, Nakamura A, Belgrave AM, Garza AG, Veyrier FJ, Islam ST. Bacterial glycocalyx integrity drives multicellular swarm biofilm dynamism. Mol Microbiol 2021; 116:1151-1172. [PMID: 34455651 DOI: 10.1111/mmi.14803] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 12/24/2022]
Abstract
Exopolysaccharide (EPS) layers on the bacterial cell surface are key determinants of biofilm establishment and maintenance, leading to the formation of higher-order 3D structures that confer numerous survival benefits to a cell community. In addition to a specific cell-associated EPS glycocalyx, we recently revealed that the social δ-proteobacterium Myxococcus xanthus secretes a novel biosurfactant polysaccharide (BPS) to the extracellular milieu. Together, secretion of the two polymers (EPS and BPS) is required for type IV pilus (T4P)-dependent swarm expansion via spatio-specific biofilm expression profiles. Thus the synergy between EPS and BPS secretion somehow modulates the multicellular lifecycle of M. xanthus. Herein, we demonstrate that BPS secretion functionally alters the EPS glycocalyx via destabilization of the latter, fundamentally changing the characteristics of the cell surface. This impacts motility behaviors at the single-cell level and the aggregative capacity of cells in groups via cell-surface EPS fibril formation as well as T4P production, stability, and positioning. These changes modulate the structure of swarm biofilms via cell layering, likely contributing to the formation of internal swarm polysaccharide architecture. Together, these data reveal the manner by which the combined secretion of two distinct polymers induces single-cell changes that modulate swarm biofilm communities.
Collapse
Affiliation(s)
- Fares Saïdi
- Institut National de la Recherche Scientifique (INRS), Centre Armand-Frappier Santé Biotechnologie, Université du Québec, Institut Pasteur International Network, Laval, Quebec, Canada.,PROTEO, The Quebec Network for Research on Protein Function, Engineering, and Applications, Université Laval, Québec, Quebec, Canada
| | - Nicolas Y Jolivet
- Institut National de la Recherche Scientifique (INRS), Centre Armand-Frappier Santé Biotechnologie, Université du Québec, Institut Pasteur International Network, Laval, Quebec, Canada.,PROTEO, The Quebec Network for Research on Protein Function, Engineering, and Applications, Université Laval, Québec, Quebec, Canada
| | - David J Lemon
- Department of Biology, Syracuse University, Syracuse, New York, USA
| | - Arnaldo Nakamura
- Institut National de la Recherche Scientifique (INRS), Centre Armand-Frappier Santé Biotechnologie, Université du Québec, Institut Pasteur International Network, Laval, Quebec, Canada
| | - Akeisha M Belgrave
- Integrated Sciences Program, Harrisburg University of Science & Technology, Harrisburg, Pennsylvania, USA
| | - Anthony G Garza
- Department of Biology, Syracuse University, Syracuse, New York, USA
| | - Frédéric J Veyrier
- Institut National de la Recherche Scientifique (INRS), Centre Armand-Frappier Santé Biotechnologie, Université du Québec, Institut Pasteur International Network, Laval, Quebec, Canada
| | - Salim T Islam
- Institut National de la Recherche Scientifique (INRS), Centre Armand-Frappier Santé Biotechnologie, Université du Québec, Institut Pasteur International Network, Laval, Quebec, Canada.,PROTEO, The Quebec Network for Research on Protein Function, Engineering, and Applications, Université Laval, Québec, Quebec, Canada
| |
Collapse
|
2
|
Abstract
The motility mechanism of certain prokaryotes has long been a mystery, since their motion, known as gliding, involves no external appendages. The physical principles behind gliding still remain poorly understood. Using myxobacteria as an example of such organisms, we identify here the physical principles behind gliding motility and develop a theoretical model that predicts a 2-regime behavior of the gliding speed as a function of the substrate stiffness. Our theory describes the elasto-capillary-hydrodynamic interactions between the membrane of the bacteria, the slime it secretes, and the soft substrate underneath. Defining gliding as the horizontal translation under zero net force, we find the 2-regime behavior is due to 2 distinct mechanisms of motility thrust. On mildly soft substrates, the thrust arises from bacterial shape deformations creating a flow of slime that exerts a pressure along the bacterial length. This pressure in conjunction with the bacterial shape provides the necessary thrust for propulsion. On very soft substrates, however, we show that capillary effects must be considered that lead to the formation of a ridge at the slime-substrate-air interface, thereby creating a thrust in the form of a localized pressure gradient at the bacterial leading edge. To test our theory, we perform experiments with isolated cells on agar substrates of varying stiffness and find the measured gliding speeds in good agreement with the predictions from our elasto-capillary-hydrodynamic model. The mechanisms reported here serve as an important step toward an accurate theory of friction and substrate-mediated interactions between bacteria proliferating in soft media.
Collapse
|
3
|
Rivera‐Yoshida N, Hernández‐Terán A, Escalante AE, Benítez M. Laboratory biases hinder Eco‐Evo‐Devo integration: Hints from the microbial world. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2019; 334:14-24. [DOI: 10.1002/jez.b.22917] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 09/09/2019] [Accepted: 10/02/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Natsuko Rivera‐Yoshida
- Laboratorio Nacional de Ciencias de la Sostenibilidad (LANCIS), Instituto de EcologíaUniversidad Nacional Autónoma de México Mexico City Mexico
- Programa de Doctorado en Ciencias BiomédicasUniversidad Nacional Autónoma de México Mexico City Mexico
- Centro de Ciencias de la ComplejidadUniversidad Nacional Autónoma de México Mexico City Mexico
| | - Alejandra Hernández‐Terán
- Laboratorio Nacional de Ciencias de la Sostenibilidad (LANCIS), Instituto de EcologíaUniversidad Nacional Autónoma de México Mexico City Mexico
- Programa de Doctorado en Ciencias BiomédicasUniversidad Nacional Autónoma de México Mexico City Mexico
| | - Ana E. Escalante
- Laboratorio Nacional de Ciencias de la Sostenibilidad (LANCIS), Instituto de EcologíaUniversidad Nacional Autónoma de México Mexico City Mexico
| | - Mariana Benítez
- Laboratorio Nacional de Ciencias de la Sostenibilidad (LANCIS), Instituto de EcologíaUniversidad Nacional Autónoma de México Mexico City Mexico
- Centro de Ciencias de la ComplejidadUniversidad Nacional Autónoma de México Mexico City Mexico
| |
Collapse
|
4
|
Rivera-Yoshida N, Arzola AV, Arias Del Angel JA, Franci A, Travisano M, Escalante AE, Benítez M. Plastic multicellular development of Myxococcus xanthus: genotype-environment interactions in a physical gradient. ROYAL SOCIETY OPEN SCIENCE 2019; 6:181730. [PMID: 31032028 PMCID: PMC6458408 DOI: 10.1098/rsos.181730] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 02/25/2019] [Indexed: 05/25/2023]
Abstract
In order to investigate the contribution of the physical environment to variation in multicellular development of Myxococcus xanthus, phenotypes developed by different genotypes in a gradient of substrate stiffness conditions were quantitatively characterized. Statistical analysis showed that plastic phenotypes result from the genotype, the substrate conditions and the interaction between them. Also, phenotypes were expressed in two distinguishable scales, the individual and the population levels, and the interaction with the environment showed scale and trait specificity. Overall, our results highlight the constructive role of the physical context in the development of microbial multicellularity, with both ecological and evolutionary implications.
Collapse
Affiliation(s)
- Natsuko Rivera-Yoshida
- Laboratorio Nacional de Ciencias de la Sostenibilidad (LANCIS), Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, Mexico
| | - Alejandro V. Arzola
- Instituto de Física, Universidad Nacional Autónoma de México, Apdo Postal 20-364, 01000 Cd de México, Mexico
| | - Juan A. Arias Del Angel
- Laboratorio Nacional de Ciencias de la Sostenibilidad (LANCIS), Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, Mexico
| | - Alessio Franci
- Facultad de Ciencias, Universidad Nacional Autonóma de México, Mexico
| | - Michael Travisano
- Department of Ecology, Evolution and Behavior, University of Minnesota, Saint Paul, MN, USA
| | - Ana E. Escalante
- Laboratorio Nacional de Ciencias de la Sostenibilidad (LANCIS), Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Mariana Benítez
- Laboratorio Nacional de Ciencias de la Sostenibilidad (LANCIS), Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
5
|
Rivera-Yoshida N, Arias Del Angel JA, Benítez M. Microbial multicellular development: mechanical forces in action. Curr Opin Genet Dev 2018; 51:37-45. [PMID: 29885639 DOI: 10.1016/j.gde.2018.05.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 04/11/2018] [Accepted: 05/20/2018] [Indexed: 12/11/2022]
Abstract
Multicellular development occurs in diverse microbial lineages and involves the complex interaction among biochemical, physical and ecological factors. We focus on the mechanical forces that appear to be relevant for the scale and material qualities of individual cells and small cellular conglomerates. We review the effects of such forces on the development of some paradigmatic microorganisms, as well as their overall consequences in multicellular structures. Microbes exhibiting multicellular development have been considered models for the evolutionary transition to multicellularity. Therefore, we discuss how comparative, integrative and dynamic approaches to the mechanical effects involved in microbial development can provide valuable insights into some of the principles behind the evolutionary transition to multicellularity.
Collapse
Affiliation(s)
- Natsuko Rivera-Yoshida
- Laboratorio Nacional de Ciencias de la Sostenibilidad (LANCIS), Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico; Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico; Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Juan A Arias Del Angel
- Laboratorio Nacional de Ciencias de la Sostenibilidad (LANCIS), Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico; Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico; Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Mariana Benítez
- Laboratorio Nacional de Ciencias de la Sostenibilidad (LANCIS), Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico; Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| |
Collapse
|
6
|
Noirot-Gros MF, Shinde S, Larsen PE, Zerbs S, Korajczyk PJ, Kemner KM, Noirot PH. Dynamics of Aspen Roots Colonization by Pseudomonads Reveals Strain-Specific and Mycorrhizal-Specific Patterns of Biofilm Formation. Front Microbiol 2018; 9:853. [PMID: 29774013 PMCID: PMC5943511 DOI: 10.3389/fmicb.2018.00853] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 04/13/2018] [Indexed: 12/20/2022] Open
Abstract
Rhizosphere-associated Pseudomonas fluorescens are known plant growth promoting (PGP) and mycorrhizal helper bacteria (MHB) of many plants and ectomycorrhizal fungi. We investigated the spatial and temporal dynamics of colonization of mycorrhizal and non-mycorrhizal Aspen seedlings roots by the P. fluorescens strains SBW25, WH6, Pf0-1, and the P. protegens strain Pf-5. Seedlings were grown in laboratory vertical plates systems, inoculated with a fluorescently labeled Pseudomonas strain, and root colonization was monitored over a period of 5 weeks. We observed unexpected diversity of bacterial assemblies on seedling roots that changed over time and were strongly affected by root mycorrhization. P. fluorescens SBW25 and WH6 stains developed highly structured biofilms with internal void spaces forming channels. On mycorrhizal roots bacteria appeared encased in a mucilaginous substance in which they aligned side by side in parallel arrangements. The different phenotypic classes of bacterial assemblies observed for the four Pseudomonas strains were summarized in a single model describing transitions between phenotypic classes. Our findings also reveal that bacterial assembly phenotypes are driven by interactions with mucilaginous materials present at roots.
Collapse
Affiliation(s)
| | - Shalaka Shinde
- Biosciences Division, Argonne National Laboratory, Lemont, IL, United States
| | - Peter E Larsen
- Biosciences Division, Argonne National Laboratory, Lemont, IL, United States
| | - Sarah Zerbs
- Biosciences Division, Argonne National Laboratory, Lemont, IL, United States
| | - Peter J Korajczyk
- Biosciences Division, Argonne National Laboratory, Lemont, IL, United States
| | - Kenneth M Kemner
- Biosciences Division, Argonne National Laboratory, Lemont, IL, United States
| | - Philippe H Noirot
- Biosciences Division, Argonne National Laboratory, Lemont, IL, United States
| |
Collapse
|
7
|
Bacterial Surface Spreading Is More Efficient on Nematically Aligned Polysaccharide Substrates. J Bacteriol 2018; 200:JB.00610-17. [PMID: 29311278 DOI: 10.1128/jb.00610-17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 12/18/2017] [Indexed: 01/07/2023] Open
Abstract
Biofilm-forming bacteria typically deposit layers of polysaccharides on the surfaces they inhabit; hence, polysaccharides are their immediate environment on such surfaces. Previously, we showed that many biofilm-forming bacteria preferentially spread in the direction of aligned and densely packed polysaccharide fibers in compressed substrates, a behavior we referred to as polymertropism. This arrangement of polysaccharide fibers is likely to be similar to that found in the "slime" trails deposited by many biofilm-forming bacteria and would explain previous observations that bacteria tend to follow these trails of polysaccharides. Here, we show that groups of cells or flares spread more rapidly on substrates containing aligned and densely packed polysaccharide fibers. Flares also persist longer, tend to hold their trajectories parallel to the long axes of polysaccharide fibers longer, and ultimately show an increase in displacement away from their origin. On the basis of these findings and others, we propose a model for polymertropism. Namely, we suggest that the packing of the aligned polymers increases the efficiency of surface spreading in the direction of the polymer's long axes; therefore, bacteria tend to spread more rapidly in this direction. Additional work suggests that bacteria can leverage polymertropism, and presumably more efficient surface spreading, for a survival advantage. In particular, when two bacterial species were placed in close proximity and in competition with each other, the ability of one species to move rapidly and directly away from the other by utilizing the aligned polymers of compressed agar substrates led to a clear survival benefit.IMPORTANCE The directed movement of bacteria on compressed substrates was first described in the 1940s and referred to as elasticotaxis (R. Y. Stanier, J Bacteriol 44:405-412, 1942). More recently, this behavior was referred to as polymertropism, as it seems to be a response to the nematic alignment and tight packing of polymers in the substrate (D. J. Lemon, X. Yang, P. Srivastava, Y. Y. Luk, A. G. Garza, Sci Rep 7:7643, 2017, https://doi.org/10.1038/s41598-017-07486-0). The data presented here suggest that bacteria are more efficient at surface spreading when the polymers in the substrate are arranged in this manner. These data also suggest that bacteria can leverage polymertropism, and presumably more efficient surface spreading, for a survival advantage. Namely, one bacterial species was able to use its strong polymertropism response to escape from and survive competition with another species that normally outcompetes it.
Collapse
|