1
|
Rodríguez-Cano MM, González-Gómez MJ, Monsalve EM, Díaz-Guerra MJM, Kassem M, Laborda J, Nueda ML, Baladrón V. DLK1 and DLK2, two non-canonical ligands of NOTCH receptors, differentially modulate the osteogenic differentiation of mesenchymal C3H10T1/2 cells. Biol Res 2024; 57:77. [PMID: 39473022 PMCID: PMC11523663 DOI: 10.1186/s40659-024-00561-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 10/25/2024] [Indexed: 11/02/2024] Open
Abstract
BACKGROUND C3H10T1/2 is a mesenchymal cell line capable of differentiating into osteoblasts, adipocytes and chondrocytes. The differentiation of these cells into osteoblasts is modulated by various transcription factors, such as RUNX2. Additionally, several interconnected signaling pathways, including the NOTCH pathway, play a crucial role in modulating their differentiation into mature bone cells. We have investigated the roles of DLK1 and DLK2, two non-canonical inhibitory ligands of NOTCH receptors, in the osteogenic differentiation of C3H10T1/2 cells. RESULTS Our results corroborate existing evidence that DLK1 acts as an inhibitor of osteogenesis. In contrast, we demonstrate for the first time that DLK2 enhances this differentiation process. Additionally, our data suggest that NOTCH2, 3 and 4 receptors may promote osteogenesis, as indicated by their increased expression during this process, whereas NOTCH1 expression, which decreases during cell differentiation, might inhibit osteogenesis. Moreover, treatment with DAPT, a NOTCH signaling inhibitor, impeded osteogenic differentiation. We have confirmed the increase in ERK1/2 MAPK and p38 MAPK phosphorylation in C3H10T1/2 cells induced to differentiate to osteoblasts. Our new findings reveal increased ERK1/2 MAPK phosphorylation in differentiated C3H10T1/2 cells with a decrease in DLK1 expression or an overexpression of DLK2, which is coincident with the behavior of those transfectants where we have detected an increase in osteogenic differentiation. Additionally, p38 MAPK phosphorylation increases in differentiated C3H10T1/2 cells with reduced DLK1 levels. CONCLUSIONS Our results suggest that DLK1 may inhibit osteogenesis, while DLK2 may promote it, by modulating NOTCH signaling and the phosphorylation of ERK1/2 and p38 MAPK pathways. Given the established inhibitory effect of DLK proteins on NOTCH signaling, these new insights could pave the way for developing future therapeutic strategies aimed at treating bone diseases.
Collapse
Affiliation(s)
- María-Milagros Rodríguez-Cano
- Biochemistry and Molecular Biology Branch, Department of Inorganic, Organic Chemistry and Biochemistry, Pharmacy School/IB-UCLM/Biomedicine Unit, University of Castilla-La Mancha/CSIC, Albacete, Spain
| | - María-Julia González-Gómez
- Biochemistry and Molecular Biology Branch, Department of Inorganic, Organic Chemistry and Biochemistry, ETSIAMB/IB-UCLM/Biomedicine Unit, University of Castilla-La Mancha/CSIC, Albacete, Spain
| | - Eva-María Monsalve
- Biochemistry and Molecular Biology Branch, Department of Inorganic, Organic Chemistry and Biochemistry, Medical School/IB-UCLM/Biomedicine Unit, University of Castilla-La Mancha/CSIC, Albacete, Spain
| | - María-José M Díaz-Guerra
- Biochemistry and Molecular Biology Branch, Department of Inorganic, Organic Chemistry and Biochemistry, Medical School/IB-UCLM/Biomedicine Unit, University of Castilla-La Mancha/CSIC, Albacete, Spain
| | - Moustapha Kassem
- Molecular Endocrinology Unit (KMEB), Department of Endocrinology and Metabolism, University Hospital of Odense and Danish Institute for Advanced Study, University of Southern Denmark, Odense, Denmark
| | - Jorge Laborda
- Biochemistry and Molecular Biology Branch, Department of Inorganic, Organic Chemistry and Biochemistry, Pharmacy School/IB-UCLM/Biomedicine Unit, University of Castilla-La Mancha/CSIC, Albacete, Spain
| | - María-Luisa Nueda
- Biochemistry and Molecular Biology Branch, Department of Inorganic, Organic Chemistry and Biochemistry, Pharmacy School/IB-UCLM/Biomedicine Unit, University of Castilla-La Mancha/CSIC, Albacete, Spain.
| | - Victoriano Baladrón
- Biochemistry and Molecular Biology Branch, Department of Inorganic, Organic Chemistry and Biochemistry, Medical School/IB-UCLM/Biomedicine Unit, University of Castilla-La Mancha/CSIC, Albacete, Spain.
| |
Collapse
|
2
|
Zhang H, Zhou L, Wang H, Gu W, Li Z, Sun J, Wei X, Zheng Y. Tenascin-C-EGFR activation induces functional human satellite cell proliferation and promotes wound-healing of skeletal muscles via oleanic acid. Dev Biol 2023; 504:86-97. [PMID: 37758009 DOI: 10.1016/j.ydbio.2023.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/26/2023] [Accepted: 09/24/2023] [Indexed: 09/29/2023]
Abstract
Human satellite cells (HuSCs) have been deemed to be the potential cure to treat muscular atrophy diseases such as Duchenne muscular dystrophy. However, the clinical trials of HuSCs were restricted to the inadequacy of donors because of that freshly isolated HuSCs quickly lost the Pax7 expression and myogenesis capacity in vivo after a few days of culture. Here we found that oleanic acid, a kind of triterpenoid endowed with diverse biological functions with treatment potential, could efficiently promote HuSCs proliferation. The HuSCs cultured in the medium supplement with oleanic acid could maintain a high expression level of Pax7 and retain the ability to differentiate into myotubes as well as facilitate muscle regeneration in injured muscles of recipient mice. We further revealed that Tenascin-C acts as the core mechanism to activate the EGFR signaling pathway followed by HuSCs proliferation. Taken together, our data provide an efficient method to expand functional HuSCs and a novel mechanism that controls HuSCs proliferation, which sheds light on the HuSCs-based therapy to treat muscle diseases.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Orthopedics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Shi's Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Institute of Traumatology and Orthopedics, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200025, China
| | - Lin Zhou
- Department of Orthopedics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Shi's Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Institute of Traumatology and Orthopedics, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200025, China
| | - Huihao Wang
- Shi's Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Institute of Traumatology and Orthopedics, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200025, China
| | - Wei Gu
- Department of Orthopedics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Shi's Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Institute of Traumatology and Orthopedics, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200025, China
| | - Zhiqiang Li
- Department of Orthopedics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Shi's Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Institute of Traumatology and Orthopedics, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200025, China
| | - Jun Sun
- Department of Orthopedics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Shi's Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Institute of Traumatology and Orthopedics, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200025, China
| | - Xiaoen Wei
- Department of Orthopedics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Shi's Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Institute of Traumatology and Orthopedics, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200025, China.
| | - Yuxin Zheng
- Department of Orthopedics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Shi's Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Institute of Traumatology and Orthopedics, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200025, China.
| |
Collapse
|
3
|
Li C, Tian L, Wang Y, Luo H, Zeng J, Su P, Chen S, Liao Z, Guo W, He X, Chen S, Xu C. M13, an anthraquinone compound isolated from Morinda officinalis promotes the osteogenic differentiation of MSCs by targeting Wnt/β-catenin signaling. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 108:154542. [PMID: 36410102 DOI: 10.1016/j.phymed.2022.154542] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/24/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Morinda officinalis (MO) is a herb used in Traditional Chinese Medicine (TCM) for the treatment of osteoporosis. M13, a MO-based anthraquinone compound is known to suppress osteoclast activity. However, whether M13 promotes MSCs osteogenic differentiation and its potential mechanism remains unknown. PURPOSE To examine the influence of M13 on MSCs proliferation and osteogenic differentiation and elucidate the underlying mechanism. METHODS/STUDY DESIGNS The effect of M13 exposure on MSCs proliferation was assessed via CCK8 assay, clone formation assay, immunofluorescence, RT-qPCR, and Western blot. The M13-mediated osteogenesis in vitro and ex vivo were evaluated via ALP and Alizarin red S staining, osteogenesis-associated gene (Runx2, Col1a1 and Opn) expression, and fetal limb explants culture. Molecular docking was employed for target signal pathway screening. The potential signaling mechanisms of M13-promoted MSCs osteogenic differentiation were analyzed by introducing XAV939 (Wnt/β-catenin signaling inhibitor). RESULTS M13 induced certain obvious positive effects on MSCs proliferation and osteogenic differentiation. Treatment with M13 enhanced MSCs viability and clone numbers. Meanwhile, M13 promoted osteogenic gene expression, enhanced ALP intensity and Alizarin red S staining in MSCs. In terms of mechanism, M13 strongly interacted with the docking site of the WNT signaling complex, thereby activating the Wnt/β-catenin pathway. Furthermore, the M13-mediated osteogenic effect was partially inhibited by XAV939 both in vitro and ex vivo, which confirmed that the Wnt/β-catenin axis is a critical regulator of M13-induced osteogenic differentiation of MSCs. CONCLUSION Our study elucidated for the first time that M13 significantly promoted osteogenic differentiation of MSCs via stimulation of the Wnt/β-catenin pathway in vitro and ex vivo.Our findings offered new additional evidence to support the MO or M13-based therapy of osteoporosis.
Collapse
Affiliation(s)
- Chuan Li
- Research Center for Translational Medicine, First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510006, China
| | - Liru Tian
- Research Center for Translational Medicine, First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510006, China
| | - Yihai Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Engineering Research Center for Lead Compounds & Drug Discovery, Guangzhou 510006, China
| | - Huan Luo
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Engineering Research Center for Lead Compounds & Drug Discovery, Guangzhou 510006, China
| | - Jia Zeng
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Engineering Research Center for Lead Compounds & Drug Discovery, Guangzhou 510006, China
| | - Peiqiang Su
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Department of Spine Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Shulin Chen
- Research Center for Translational Medicine, First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhiheng Liao
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Department of Spine Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Weimin Guo
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Department of Spine Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Xiangjiu He
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Engineering Research Center for Lead Compounds & Drug Discovery, Guangzhou 510006, China.
| | - Shuqing Chen
- Department of Traditional Chinese Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510006, China.
| | - Caixia Xu
- Research Center for Translational Medicine, First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
4
|
Mioc M, Milan A, Malița D, Mioc A, Prodea A, Racoviceanu R, Ghiulai R, Cristea A, Căruntu F, Șoica C. Recent Advances Regarding the Molecular Mechanisms of Triterpenic Acids: A Review (Part I). Int J Mol Sci 2022; 23:ijms23147740. [PMID: 35887090 PMCID: PMC9322890 DOI: 10.3390/ijms23147740] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/11/2022] [Accepted: 07/11/2022] [Indexed: 02/01/2023] Open
Abstract
Triterpenic acids are phytocompounds with a widespread range of biological activities that have been the subject of numerous in vitro and in vivo studies. However, their underlying mechanisms of action in various pathologies are not completely elucidated. The current review aims to summarize the most recent literature, published in the last five years, regarding the mechanism of action of three triterpenic acids (asiatic acid, oleanolic acid, and ursolic acid), corelated with different biological activities such as anticancer, anti-inflammatory, antidiabetic, cardioprotective, neuroprotective, hepatoprotective, and antimicrobial. All three discussed compounds share several mechanisms of action, such as the targeted modulation of the PI3K/AKT, Nrf2, NF-kB, EMT, and JAK/STAT3 signaling pathways, while other mechanisms that proved to only be specific for a part of the triterpenic acids discussed, such as the modulation of Notch, Hippo, and MALAT1/miR-206/PTGS1 signaling pathway, were highlighted as well. This paper stands as the first part in our literature study on the topic, which will be followed by a second part focusing on other triterpenic acids of therapeutic value.
Collapse
Affiliation(s)
- Marius Mioc
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania; (M.M.); (A.M.); (A.P.); (R.R.); (R.G.); (A.C.); (C.Ș.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania
| | - Andreea Milan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania; (M.M.); (A.M.); (A.P.); (R.R.); (R.G.); (A.C.); (C.Ș.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania
| | - Daniel Malița
- Department of Radiology, “Victor Babes” University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania
- Correspondence: (D.M.); (A.M.); Tel.: +40-256-494-604 (D.M. & A.M.)
| | - Alexandra Mioc
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania
- Department of Anatomy, Physiology, Pathophysiology, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania
- Correspondence: (D.M.); (A.M.); Tel.: +40-256-494-604 (D.M. & A.M.)
| | - Alexandra Prodea
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania; (M.M.); (A.M.); (A.P.); (R.R.); (R.G.); (A.C.); (C.Ș.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania
| | - Roxana Racoviceanu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania; (M.M.); (A.M.); (A.P.); (R.R.); (R.G.); (A.C.); (C.Ș.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania
| | - Roxana Ghiulai
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania; (M.M.); (A.M.); (A.P.); (R.R.); (R.G.); (A.C.); (C.Ș.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania
| | - Andreea Cristea
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania; (M.M.); (A.M.); (A.P.); (R.R.); (R.G.); (A.C.); (C.Ș.)
| | - Florina Căruntu
- Department of Medical Semiology II, Faculty of Medicine, “Victor Babeş” University of Medicine and Pharmacy Timisoara, 2 Eftimie Murgu Street, 300041 Timisoara, Romania;
| | - Codruța Șoica
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania; (M.M.); (A.M.); (A.P.); (R.R.); (R.G.); (A.C.); (C.Ș.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania
| |
Collapse
|
5
|
Fatima A, Malick TS, Khan I, Ishaque A, Salim A. Effect of glycyrrhizic acid and 18β-glycyrrhetinic acid on the differentiation of human umbilical cord-mesenchymal stem cells into hepatocytes. World J Stem Cells 2021; 13:1580-1594. [PMID: 34786159 PMCID: PMC8567450 DOI: 10.4252/wjsc.v13.i10.1580] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/25/2021] [Accepted: 09/19/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND End-stage liver disease is a global health complication with high prevalence and limited treatment options. Cell-based therapies using mesenchymal stem cells (MSCs) emerged as an alternative approach to support hepatic regeneration. In vitro preconditioning strategies have been employed to strengthen the regenerative and differentiation potential of MSCs towards hepatic lineage. Chemical compounds of the triterpene class; glycyrrhizic acid (GA) and 18β-glycyrrhetinic acid (GT) possess diverse therapeutic properties including hepato-protection and anti-fibrosis characteristics. They are capable of modulating several signaling pathways that are crucial in hepatic regeneration. Preconditioning with hepato-protective triterpenes may stimulate MSC fate transition towards hepatocytes.
AIM To explore the effect of GA and GT on hepatic differentiation of human umbilical cord-MSCs (hUC-MSCs).
METHODS hUC-MSCs were isolated and characterized phenotypically by flow cytometry and immunocytochemistry for the expression of MSC-associated surface molecules. Isolated cells were treated with GA, GT, and their combination for 24 h and then analyzed at three time points; day 7, 14, and 21. qRT-PCR was performed for the expression of hepatic genes. Expression of hepatic proteins was analyzed by immunocytochemistry at day 21. Periodic acid Schiff staining was performed to determine the functional ability of treated cells.
RESULTS The fusiform-shaped morphology of MSCs in the treatment groups in comparison with the untreated control, eventually progressed towards the polygonal morphology of hepatocytes with the passage of time. The temporal transcriptional profile of preconditioned MSCs displayed significant expression of hepatic genes with increasing time of differentiation. Preconditioned cells showed positive expression of hepatocyte-specific proteins. The results were further corroborated by positive periodic acid Schiff staining, indicating the presence of glycogen in their cytoplasm. Moreover, bi-nucleated cells, which is the typical feature of hepatocytes, were also seen in the preconditioned cells.
CONCLUSION Preconditioning with glycyrrhizic acid, 18β-glycyrrhetinic acid and their combination, successfully differentiates hUC-MSCs into hepatic-like cells. These MSCs may serve as a better therapeutic option for degenerative liver diseases in future.
Collapse
Affiliation(s)
- Abiha Fatima
- Stem Cell Laboratory, Dr. Panjwani Center for Molecular Medicine and Drug Research, ICCBS, University of Karachi, Karachi 75270, Sindh, Pakistan
| | - Tuba Shakil Malick
- Stem Cell Laboratory, Dr. Panjwani Center for Molecular Medicine and Drug Research, ICCBS, University of Karachi, Karachi 75270, Sindh, Pakistan
| | - Irfan Khan
- Stem Cell Laboratory, Dr. Panjwani Center for Molecular Medicine and Drug Research, ICCBS, University of Karachi, Karachi 75270, Sindh, Pakistan
| | - Aisha Ishaque
- Stem Cell Laboratory, Dr. Panjwani Center for Molecular Medicine and Drug Research, ICCBS, University of Karachi, Karachi 75270, Sindh, Pakistan
| | - Asmat Salim
- Stem Cell Laboratory, Dr. Panjwani Center for Molecular Medicine and Drug Research, ICCBS, University of Karachi, Karachi 75270, Sindh, Pakistan
| |
Collapse
|
6
|
Wang S, Ma J, Zeng Y, Zhou G, Wang Y, Zhou W, Sun X, Wu M. Icariin, an Up-and-Coming Bioactive Compound Against Neurological Diseases: Network Pharmacology-Based Study and Literature Review. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:3619-3641. [PMID: 34447243 PMCID: PMC8384151 DOI: 10.2147/dddt.s310686] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/25/2021] [Indexed: 12/12/2022]
Abstract
Icariin is a biologically active substance in Epimedii herba that is used for the treatment of neurologic disorders. However, a comprehensive analysis of the molecular mechanisms of icariin is lacking. In this review, we present a brief history of the use of icariin for medicinal purposes; describe the active chemical components of Epimedii herba; and examine the evidence from experimental studies that have uncovered molecular targets of icariin in different diseases. We also constructed a protein–protein interaction network and carried out Gene Ontology and Kyoto Encyclopedia of Genes and Genomes functional enrichment analyses to predict the therapeutic actions of icariin in nervous system diseases including Alzheimer disease, Parkinson disease, ischemic stroke, depressive disorder, multiple sclerosis, glioblastoma, and hereditary spastic paraplegias. The results of our analyses can guide future studies on the application of icariin to the treatment of neurologic disorders.
Collapse
Affiliation(s)
- Shuangqiu Wang
- Department of Neurology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu, People's Republic of China.,Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, 210046, People's Republic of China.,State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, 210046, Jiangsu, People's Republic of China
| | - Jiarui Ma
- Provincial Key Laboratory of Drug Target and Drug for Degenerative Disease, School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210046, Jiangsu, People's Republic of China
| | - Yanqi Zeng
- First Clinical Medical School, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210046, Jiangsu, People's Republic of China
| | - Guowei Zhou
- Department of General Surgery, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu, People's Republic of China
| | - Yuxuan Wang
- Department of Neurology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu, People's Republic of China.,Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, 210046, People's Republic of China.,State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, 210046, Jiangsu, People's Republic of China
| | - Wenjuan Zhou
- First Clinical Medical School, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210046, Jiangsu, People's Republic of China
| | - Xiaohe Sun
- First Clinical Medical School, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210046, Jiangsu, People's Republic of China
| | - Minghua Wu
- Department of Neurology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu, People's Republic of China.,First Clinical Medical School, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210046, Jiangsu, People's Republic of China
| |
Collapse
|
7
|
Cashman JR. Small Molecule Regulation of Stem Cells that Generate Bone, Chondrocyte, and Cardiac Cells. Curr Top Med Chem 2020; 20:2344-2361. [PMID: 32819246 DOI: 10.2174/1568026620666200820143912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/20/2020] [Accepted: 08/13/2020] [Indexed: 11/22/2022]
Abstract
Embryonic stem cells (ESCs) are stem cells (SCs) that can self-renew and differentiate into a myriad of cell types. The process of developing stemness is determined by signaling molecules that drive stem cells to a specific lineage. For example, ESCs can differentiate into mature cells (e.g., cardiomyocytes) and mature cardiomyocytes can be characterized for cell beating, action potential, and ion channel function. A goal of this Perspective is to show how small molecules can be used to differentiate ESCs into cardiomyocytes and how this can reveal novel aspects of SC biology. This approach can also lead to the discovery of new molecules of use in cardiovascular disease. Human induced pluripotent stem cells (hiPSCs) afford the ability to produce unlimited numbers of normal human cells. The creation of patient-specific hiPSCs provides an opportunity to study cell models of human disease. The second goal is to show that small molecules can stimulate hiPSC commitment to cardiomyocytes. How iPSCs can be used in an approach to discover new molecules of use in cardiovascular disease will also be shown in this study. Adult SCs, including mesenchymal stem cells (MSCs), can likewise participate in self-renewal and multilineage differentiation. MSCs are capable of differentiating into osteoblasts, adipocytes or chondrocytes. A third goal of this Perspective is to describe differentiation of MSCs into chondrogenic and osteogenic lineages. Small molecules can stimulate MSCs to specific cell fate both in vitro and in vivo. In this Perspective, some recent examples of applying small molecules for osteogenic and chondrogenic cell fate determination are summarized. Underlying molecular mechanisms and signaling pathways involved are described. Small molecule-based modulation of stem cells shows insight into cell regulation and potential approaches to therapeutic strategies for MSC-related diseases.
Collapse
Affiliation(s)
- John R Cashman
- Human BioMolecular Research Institute, 5310 Eastgate Mall, San Diego, CA 92121, United States
| |
Collapse
|
8
|
Wang YQ, Wang NX, Luo Y, Yu CY, Xiao JH. Ganoderal A effectively induces osteogenic differentiation of human amniotic mesenchymal stem cells via cross-talk between Wnt/β-catenin and BMP/SMAD signaling pathways. Biomed Pharmacother 2019; 123:109807. [PMID: 31896066 DOI: 10.1016/j.biopha.2019.109807] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/12/2019] [Accepted: 12/19/2019] [Indexed: 02/06/2023] Open
Abstract
Osteogenic inducers play central roles in effective stem cell-based treatment of bone defects/losses. However, the current routine osteogenic inducer is a cocktail comprising three components that must be improved due to low induction efficiency and side effects. Therefore, there is an urgent need to develop safer and more effective osteoinducers. Herein, we demonstrated the osteogenic effect of Ganoderal A (GD-A), a tetracyclic triterpenoid compound from Ganoderma lucidum. GD-A showed no cytotoxicity toward human amniotic mesenchymal stem cells (hAMSCs) at doses of 0.001-10 μM; furthermore, 0.01 μM GD-A significantly induced the generation of osteoblast-specific markers, such as alkaline phosphatase, and calcium deposition in hAMSCs. At molecular levels, GD-A promoted the expression of multiple osteoblast differentiation markers, such as RUNX2, OSX, OPN, ALP, OCN, and COL1α1. Both Wnt/β-catenin and BMP/SMAD signaling were shown as active during hAMSC osteodifferentiation. Furthermore, specific blocking of both signals by KYA1797K and SB431542 significantly inhibited alkaline phosphatase secretion and RUNX2 and ALP expression when used alone or in combination. Meanwhile, both signals were also blocked. These findings suggest that GD-A induces hAMSC differentiation into osteoblasts through signaling cross-talk between Wnt/β-catenin and BMP/SMAD. Taken together, GD-A is a safe, effective, and novel osteoinducer and might be used for stem cell-based therapy for bone defects/losses.
Collapse
Affiliation(s)
- Yi-Qing Wang
- Zunyi Municiptal Key Laboratory of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, China
| | - Nuo-Xin Wang
- Zunyi Municiptal Key Laboratory of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, China; Center for Translational Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, China
| | - Yi Luo
- Zunyi Municiptal Key Laboratory of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, China; Center for Translational Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, China
| | - Chang-Yin Yu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, China.
| | - Jian-Hui Xiao
- Zunyi Municiptal Key Laboratory of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, China; Center for Translational Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, China.
| |
Collapse
|
9
|
Casado-Díaz A, Dorado G, Quesada-Gómez JM. Influence of olive oil and its components on mesenchymal stem cell biology. World J Stem Cells 2019; 11:1045-1064. [PMID: 31875868 PMCID: PMC6904865 DOI: 10.4252/wjsc.v11.i12.1045] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 08/29/2019] [Accepted: 11/04/2019] [Indexed: 02/06/2023] Open
Abstract
Extra virgin olive oil is characterized by its high content of unsaturated fatty acid residues in triglycerides, mainly oleic acid, and the presence of bioactive and antioxidant compounds. Its consumption is associated with lower risk of suffering chronic diseases and unwanted processes linked to aging, due to the antioxidant capacity and capability of its components to modulate cellular signaling pathways. Consumption of olive oil can alter the physiology of mesenchymal stem cells (MSCs). This may explain part of the healthy effects of olive oil consumption, such as prevention of unwanted aging processes. To date, there are no specific studies on the action of olive oil on MSCs, but effects of many components of such food on cell viability and differentiation have been evaluated. The objective of this article is to review existing literature on how different compounds of extra virgin olive oil, including residues of fatty acids, vitamins, squalene, triterpenes, pigments and phenols, affect MSC maintenance and differentiation, in order to provide a better understanding of the healthy effects of this food. Interestingly, most studies have shown a positive effect of these compounds on MSCs. The collective findings support the hypothesis that at least part of the beneficial effects of extra virgin olive oil consumption on health may be mediated by its effects on MSCs.
Collapse
Affiliation(s)
- Antonio Casado-Díaz
- CIBER de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, Córdoba 14004, Spain
| | - Gabriel Dorado
- Departement Bioquímica y Biología Molecular, Campus Rabanales C6-1-E17, Campus de Excelencia Internacional Agroalimentario (ceiA3), Universidad de Córdoba, CIBERFES, Córdoba 14071, Spain
| | - José Manuel Quesada-Gómez
- Unidad de Gestión Clínica de Endocrinología y Nutrición, CIBER de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, Córdoba 14004, Spain.
| |
Collapse
|
10
|
The naturally derived small compound Osthole inhibits osteoclastogenesis to prevent ovariectomy-induced bone loss in mice. Menopause 2019; 25:1459-1469. [PMID: 29944638 DOI: 10.1097/gme.0000000000001150] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE This study was to determine the bone protective effects and underlying mechanisms of Osthole (OT) in ovariectomized (OVX) mice. We found that the inhibitory effects of OT on receptor activator of nuclear factor kappa-B ligand (RANKL)-activated osteoclastogenesis are responsible for its bone protective effects in OVX mice. METHODS Eight-week-old mice were ovariectomized and OT (10 mg/kg/d) was intraperitoneally administrated to OVX mice 7 days after the surgery and were sacrificed at the end of the 3 months. Osteoclasts were generated from primary bone marrow macrophages (BMMs) to investigate the inhibitory effects of OT. The activity of RANKL-activated signaling was simultaneously analyzed in vitro and in vivo using immunohistochemistry, Western blot, and PCR assays. RESULTS OT dose dependently inhibited RANKL-mediated osteoclastogenesis in BMM cultures. OT administration attenuated bone loss (mg Ha/cm: 894.68 ± 33.56 vs 748.08 ± 19.51, P < 0.05) in OVX mice. OT inhibits osteoclastogenesis (Oc.N/per view area: 72 ± 4.3 vs 0.8 ± 0.4, P < 0.05) and bone resorption activity (bone resorbed percentages %, 48.56 ± 7.25 vs 3.25 ± 1.37, P < 0.05) from BMMs. Mechanistically, OT inhibited the expressions of nuclear factor of activated T-cells c1 (NFATc1) and c-Fos. Moreover, OT suppressed the expression of RANKL-induced osteoclast marker genes, including matrix metalloproteinase 9 (MMP9), Cathepsin K (Ctsk), tartrate-resistant acid phosphatase (TRAP), and carbonic anhydrase II (Car2). CONCLUSIONS OT inhibits RANKL-mediated osteoclastogenesis and prevents bone loss in OVX mice. Our findings revealed that OT is a potential new drug for treating postmenopausal osteoporosis.
Collapse
|
11
|
Zhao D, Shu B, Wang C, Zhao Y, Cheng W, Sha N, Li C, Wang Q, Lu S, Wang Y. Oleanolic acid exerts inhibitory effects on the late stage of osteoclastogenesis and prevents bone loss in osteoprotegerin knockout mice. J Cell Biochem 2019; 121:152-164. [PMID: 31318102 DOI: 10.1002/jcb.28994] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 04/02/2019] [Accepted: 04/08/2019] [Indexed: 12/12/2022]
Abstract
Postmenopausal women undergo rapid bone loss, which caused by the accelerated osteoclastic bone resorption. Receptor activator of nuclear factor kappa-B ligand (RANKL) plays critical and essential roles on varied stages of osteoclastogenesis. Oleanolic acid (OA), a naturally derived small compound, has been found suppress osteoclastogenesis in early stage of bone marrow macrophages (BMMs). However, whether OA also regulates the late stage of osteoclastogenesis remains unclear. Here, the regulatory effect of OA on the late stage of osteoclastogenesis was investigated in vitro using RANKL-pretreated BMMs and in vivo using osteoprotegerin (OPG) knockout mice. Our in vitro studies demonstrate that OA inhibits the late stage of osteoclastogenesis from RANKL-pretreated BMMs. For in vivo animal investigation, OA attenuates the bone loss phenotypes in OPG-knockout mice by decreasing the densities of osteoclast, which are in consistent with the finding with in vitro osteoclastogenesis. Mechanistic investigations found that OA largely inhibit the activity of c-Fos and Nuclear factor of activated T-cells c1 (NFATc1) with RANKL-pretreated BMMs and OPG-knockout mice. Furthermore, OA suppresses the activities of osteoclast genes, such as Tartrate resistant acid phosphatase (TRAP), CathepsinK (Ctsk), and Matrix metalloproteinase 9 (MMP9). Taken together these findings, they have not only defined an inhibitory effect of OA in the late stage of osteoclastogenesis but have also gained new molecular mechanisms underlying the process of osteoclast formation.
Collapse
Affiliation(s)
- Dongfeng Zhao
- Longhua Hospital, University of Traditional Chinese Medicine at Shanghai, Shanghai, China.,Pathology, University of Alabama at Birmingham, Birmingham, Alabama.,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China
| | - Bing Shu
- Longhua Hospital, University of Traditional Chinese Medicine at Shanghai, Shanghai, China.,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China
| | - Chenglong Wang
- Longhua Hospital, University of Traditional Chinese Medicine at Shanghai, Shanghai, China.,Central Laboratory of Research, Longhua Hospital, Shanghai, China
| | - Yongjian Zhao
- Longhua Hospital, University of Traditional Chinese Medicine at Shanghai, Shanghai, China.,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China
| | - Weidong Cheng
- Henan Luoyang Orthopedic Hospital, Zhengzhou, Henan, China
| | - Nannan Sha
- Longhua Hospital, University of Traditional Chinese Medicine at Shanghai, Shanghai, China.,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China
| | - Chenguang Li
- Longhua Hospital, University of Traditional Chinese Medicine at Shanghai, Shanghai, China.,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China
| | - Qiang Wang
- Longhua Hospital, University of Traditional Chinese Medicine at Shanghai, Shanghai, China.,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China
| | - Sheng Lu
- Longhua Hospital, University of Traditional Chinese Medicine at Shanghai, Shanghai, China.,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China
| | - Yongjun Wang
- Longhua Hospital, University of Traditional Chinese Medicine at Shanghai, Shanghai, China.,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China
| |
Collapse
|
12
|
Inhibition of the Notch1 Pathway Promotes the Effects of Nucleus Pulposus Cell-Derived Exosomes on the Differentiation of Mesenchymal Stem Cells into Nucleus Pulposus-Like Cells in Rats. Stem Cells Int 2019; 2019:8404168. [PMID: 31249601 PMCID: PMC6526523 DOI: 10.1155/2019/8404168] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 02/17/2019] [Accepted: 03/19/2019] [Indexed: 12/15/2022] Open
Abstract
Stem cell therapies for intervertebral disc degeneration have been demonstrated as a promising strategy. Previous studies have shown that human nucleus pulposus cell- (NPC-) derived exosomes can induce the differentiation of mesenchymal stem cells (MSCs) into NP-like cells in vitro. However, the mechanism of MSC differentiation into NP-like cells with the induction of NPC exosomes is still unclear. Here, we verified the induction effects of NPC exosomes on the differentiation of MSCs into NP-like cells. In addition, the Notch1 pathway was downregulated in this process. Then, DAPT and soluble Jagged1 (SJAG) were applied to inhibit or enhance the expression of the Notch1 pathway, respectively, resulting in the upregulation or downregulation of collagen II, aggrecan, and Sox9 in MSCs. Knocking down of Notch1 protein facilitated the effects of NPC exosomes on the differentiation of MSCs into NP-like cells. NPC exosomes were more effective than an indirect coculture system in terms of the differentiation of MSCs into NP-like cells. Inhibition of NPC exosome secretion with Rab27a siRNA prevented the induction effects of an indirect coculture system on the differentiation of MSCs into NP-like cells. Transwell migration assays revealed that NPC exosomes could promote the migration of MSCs. Taken together, the Notch1 pathway was negatively associated with the differentiation of MSCs into NP-like cells with the treatments of NPC exosomes. Inhibition of the Notch1 pathway facilitates NPC exosome-induced differentiation of MSCs into NP-like cells in vitro. NPC exosomes play a key role in the differentiation of MSCs into NP-like cells in an indirect coculture system of NPCs and MSCs.
Collapse
|
13
|
Cao S, Tian XL, Yu WX, Zhou LP, Dong XL, Favus MJ, Wong MS. Oleanolic Acid and Ursolic Acid Improve Bone Properties and Calcium Balance and Modulate Vitamin D Metabolism in Aged Female Rats. Front Pharmacol 2018; 9:1435. [PMID: 30564129 PMCID: PMC6288304 DOI: 10.3389/fphar.2018.01435] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 11/19/2018] [Indexed: 11/25/2022] Open
Abstract
Oleanolic acid (OA) and ursolic acid (UA) are the major chemical constituents in Fructus Ligustri Lucidi (FLL), a kidney-tonifying Chinese herb that is previously shown to improve bone properties and enhance calcium balance in aged female rats. The present study was designed to study if OA and UA act as the active ingredients in FLL to exert the positive effects on bone and mineral metabolism in aged rats. Aged (13-month-old) Sprague-Dawley female rats were randomly assigned to four groups with oral administration of drug or vehicle treatment for 12 weeks: medium calcium diet (MCD, 0.6% calcium), high calcium diet (HCD, 1.2% calcium), MCD + FLL (700 mg/kg/day), MCD + OA (23.6 mg/kg/day) + UA (8.6 mg/kg/day). A group of mature (3-month-old) female rats fed with MCD was included as positive control. The results demonstrated that FLL and OA+UA increased bone mineral density and improved microarchitectural properties of aged female rats. The osteoprotective effects of FLL and OA+UA might be, at least in part, associated with their actions on enhancing calcium balance and suppressing age-induced secondary hyperparathyroidism in aged female rats. FLL and OA+UA also significantly induced renal CYP27B1 protein expression and OA+UA treatment decreased CYP24A1 mRNA and protein expressions in aged female rats. In addition, FLL and OA+UA significantly increased the promoter activity, mRNA and protein expressions of renal CYP27B1 in vitro in human proximal tubule HKC-8 cells. The present findings suggest that OA+UA can be regarded as the active ingredients of FLL and might be a potential drug candidate for prevention and treatment of osteoporosis.
Collapse
Affiliation(s)
- Sisi Cao
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Xue-Lian Tian
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China
| | - Wen-Xuan Yu
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Li-Ping Zhou
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Xiao-Li Dong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong.,Shenzhen Key Laboratory of Food Biological Safety Control, The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China
| | - Murray J Favus
- Section of Endocrinology, Department of Medicine, The University of Chicago, Chicago, IL, United States
| | - Man-Sau Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong.,State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China.,Shenzhen Key Laboratory of Food Biological Safety Control, The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China
| |
Collapse
|
14
|
Cao S, Wastney ME, Lachcik PJ, Xiao HH, Weaver CM, Wong MS. Both Oleanolic Acid and a Mixture of Oleanolic and Ursolic Acids Mimic the Effects of Fructus ligustri lucidi on Bone Properties and Circulating 1,25-Dihydroxycholecalciferol in Ovariectomized Rats. J Nutr 2018; 148:1895-1902. [PMID: 30398660 DOI: 10.1093/jn/nxy242] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 08/31/2018] [Indexed: 12/13/2022] Open
Abstract
Background Oleanolic acid (OA) and ursolic acid (UA) are major chemical constituents found in Fructus ligustri lucidi (FLL), a Chinese herb previously shown to increase bone properties and modulate calcium-vitamin D metabolism in rats. OA and UA have been reported to exert osteoprotective effects in vitro. Objective The present study was designed to determine whether OA or OA + UA mimicked the effects of FLL on bone and calcium homeostasis using ovariectomized rats. Methods Three-month-old ovariectomized Sprague-Dawley rats were stabilized for 2 mo and randomly assigned to 4 groups offered the same amount (15-17 g/d) of a control diet or experimental diets containing FLL (18.8 g/kg), OA (0.67 g/kg), or OA (0.67 g/kg) + UA (0.22 g/kg) for 6 wk. Serum was obtained for measurement of 1,25-dihydroxycholecalciferol [1,25(OH)2D3] and bones were collected for micro-CT analysis. Calcium balance was measured at weeks 1 and 6. A calcium kinetic study using 45Ca was conducted at week 6 and modeled using WinSAAM software. Results Compared with the control group, rats fed the FLL-, OA-, and OA + UA-enriched diets had better bone properties and 51%, 31%, and 27% higher serum 1,25(OH)2D3 concentrations at week 6, respectively. These variables did not differ between the treatments. Calcium balance was not affected by diet at either week 1 or week 6. Kinetic modeling predicted that FLL and OA + UA diet-fed rats had 9% and 15% less endogenous excretion of calcium, respectively, compared with the control group. All 3 treatments resulted in a higher calcium mass of compartment 3 because of changes in transfer rate between compartments 2 and 3, and were positively associated with the serum 1,25(OH)2D3 concentration (R2 = 0.28; P < 0.01). Conclusion Similar to FLL, OA and OA + UA increase bone properties, serum 1,25(OH)2D3 concentration, and calcium use in ovariectomized rats, suggesting their potential role in management of osteoporosis.
Collapse
Affiliation(s)
- Sisi Cao
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Meryl E Wastney
- Department of Nutrition Science, Purdue University, West Lafayette, IN
| | - Pamela J Lachcik
- Department of Nutrition Science, Purdue University, West Lafayette, IN
| | - Hui-Hui Xiao
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China
| | - Connie M Weaver
- Department of Nutrition Science, Purdue University, West Lafayette, IN
| | - Man-Sau Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China
| |
Collapse
|
15
|
Sun J, Luo Z, Wang G, Wang Y, Wang Y, Olmedo M, Morandi MM, Barton S, Kevil CG, Shu B, Shang X, Dong Y. Notch ligand Jagged1 promotes mesenchymal stromal cell-based cartilage repair. Exp Mol Med 2018; 50:1-10. [PMID: 30242147 PMCID: PMC6155067 DOI: 10.1038/s12276-018-0151-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 05/17/2018] [Accepted: 06/07/2018] [Indexed: 01/09/2023] Open
Abstract
Placenta-derived mesenchymal stromal cells (PMSCs) provide a promising cell source for tissue regeneration. However, rapid induction of PMSC chondrogenic differentiation during therapeutic transplantation remains extremely challenging. Here we undertook a study to determine if Notch inhibition by soluble Jagged1 (JAG1) peptides could be utilized to accelerate PMSC-induced cartilage regeneration in a mouse post-traumatic osteoarthritis (PTOA) model. Our results showed that treatment of PMSCs with soluble JAG1 significantly enhanced chondrogenesis in culture as shown by increased alcian blue staining and decreased Notch target Hes1 expression when compared to those in lgG-treated control cells. Importantly, significantly enhanced cartilage formation and decreased joint inflammation were observed when JAG1-treated PMSCs were injected into mouse PTOA knee joints. Finally, in vivo cell tracing showed that more JAG1-treated PMSCs remained in knee joint tissues and that JAG1-treated PMSCs exhibited greater PMSC chondrogenic differentiation than lgG-treated control PMSCs at 4 weeks after injection. These data indicate that transient Notch inhibition by soluble JAG1 could be used to enhance PMSC survival and chondrogenic differentiation, thereby increasing the therapeutic potential of PMSCs for cartilage regeneration. Stem cells derived from placental tissue may help in treating damaged joints, thanks to an improved method for encouraging them to form cartilage. Placenta-derived stem cells are readily available, as the placenta is usually discarded after birth. These stem cells can easily be grown into cartilage tissue in a laboratory, but not when transplanted. Researchers led by Yufeng Dong (Louisiana State University Health Sciences Center, Shreveport, USA) and Xifu Shang (Anhui Provincial Hospital, Hefei, China) treated stem cells with a naturally occurring protein, JAG1, which blocks the signal that prevents them from forming cartilage. They found that JAG1 increased the stem cells’ capacity for cartilage formation. When JAG1-stimulated stem cells were injected into a mouse model of joint disease, cartilage formation was improved, and joint inflammation was reduced.
Collapse
Affiliation(s)
- Junkui Sun
- Department of Orthopaedics, the First Affiliated Hospital, Zhengzhou University, Henan, 450001, China.,Department of Orthopaedics, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Zhengliang Luo
- Department of Orthopedic Surgery, Anhui Provincial Hospital, 17 Lujiang Rd, Hefei, China
| | - Guangxi Wang
- Department of Orthopaedics, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Yuping Wang
- Department of Obstetrics and Gynecology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Yisheng Wang
- Department of Orthopaedics, the First Affiliated Hospital, Zhengzhou University, Henan, 450001, China
| | - Margaret Olmedo
- Department of Orthopaedics, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Massimo Max Morandi
- Department of Orthopaedics, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Shane Barton
- Department of Orthopaedics, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Christopher G Kevil
- Department of Pathology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Bing Shu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xifu Shang
- Department of Orthopedic Surgery, Anhui Provincial Hospital, 17 Lujiang Rd, Hefei, China.
| | - Yufeng Dong
- Department of Orthopaedics, Louisiana State University Health Sciences Center, Shreveport, LA, USA.
| |
Collapse
|
16
|
Zhao D, Li X, Zhao Y, Qiao P, Tang D, Chen Y, Xue C, Li C, Liu S, Wang J, Lu S, Shi Q, Zhang Y, Dong Y, Wang Y, Shu B, Feng X. Oleanolic acid exerts bone protective effects in ovariectomized mice by inhibiting osteoclastogenesis. J Pharmacol Sci 2018; 137:76-85. [PMID: 29703642 DOI: 10.1016/j.jphs.2018.03.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 03/24/2018] [Accepted: 03/29/2018] [Indexed: 02/07/2023] Open
Abstract
Postmenopausal osteoporosis (POP) is quite prevalent and many new drugs are under development to obtain better therapeutic outcomes. Oleanolic acid (OA) has been reported to prevent bone loss in ovariectomized (OVX) rats by stimulating osteoblastogenesis. One previous study has demonstrated that acetate of OA suppressed lipopolysaccharides (LPS)-induced bone loss in mice. However, the role of OA in the receptor activator of nuclear factor kappa-B ligand (RANKL)-mediated osteoclastogenesis is still not elucidated. Here we show that OA dose-dependently inhibits RANKL-mediated osteoclastogenesis and the formation of functional osteoclasts without impairing the viability and osteoclastic potential in bone marrow macrophages (BMMs). Moreover, OA administration attenuates bone loss in OVX mice by inhibiting osteoclast's densities. Mechanistically, OA does not affect RANKL-induced activation of the NF-кB, JNK, p38, ERK and Akt pathways, but inhibits the expression of the nuclear factor of activated T-cells c1(NFATc1) and c-Fos. Moreover, OA significantly suppresses the expression of RANKL-activated osteoclast genes encoding matrix metalloproteinase 9 (MMP9), Cathepsin K(Ctsk), tartrate-resistant acid phosphatase (TRAP) and carbonic anhydrase II (Car2). This work has elucidated the molecular mechanism of OA in RANKL-mediated osteoclastogenesis and revealed the promising potential of OA to be further developed as a new drug to prevent and treat POP.
Collapse
Affiliation(s)
- Dongfeng Zhao
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China; Spine Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, 200032, China; Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Xiaofeng Li
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China; Spine Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Yongjian Zhao
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China; Spine Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, 200032, China
| | - Ping Qiao
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Dezhi Tang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China; Spine Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, 200032, China
| | - Yan Chen
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China; Spine Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Chunchun Xue
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China; Spine Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Chenguang Li
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China; Spine Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, 200032, China
| | - Shufen Liu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China; Spine Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, 200032, China
| | - Jing Wang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China; Spine Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, 200032, China
| | - Sheng Lu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China; Spine Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, 200032, China
| | - Qi Shi
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China; Spine Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, 200032, China
| | - Yan Zhang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China; Spine Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, 200032, China
| | - Yufeng Dong
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China; Department of Orthopedics, Louisiana State University Health Sciences Center, Shreveport, LA, 71103, USA
| | - Yongjun Wang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China; Spine Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China; School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, 200032, China; Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Bing Shu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China; Spine Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, 200032, China.
| | - Xu Feng
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China; Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| |
Collapse
|
17
|
Xu Y, Shu B, Tian Y, Wang G, Wang Y, Wang J, Dong Y. Oleanolic acid induces osteosarcoma cell apoptosis by inhibition of Notch signaling. Mol Carcinog 2018; 57:896-902. [PMID: 29566282 DOI: 10.1002/mc.22810] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 02/17/2018] [Accepted: 03/20/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Ying Xu
- Department of Anesthesiology; Shengjing Hospital; China Medical University; Shenyang P.R. China
| | - Bing Shu
- Longhua Hospital and Spine Disease Research Institute; Shanghai University of Traditional Chinese Medicine; Shanghai P.R. China
| | - Ye Tian
- Department of Orthopaedic Surgery; Shengjing Hospital; China Medical University; Shenyang P.R. China
| | - Guangxi Wang
- Department of Orthopaedic Surgery; Louisiana State University Health Sciences Center; Shreveport Lousiana
| | - Yongjun Wang
- Longhua Hospital and Spine Disease Research Institute; Shanghai University of Traditional Chinese Medicine; Shanghai P.R. China
| | - Jinwu Wang
- Department of Orthopaedic Surgery; Shanghai Ninth people's Hospital; Shanghai P.R. China
| | - Yufeng Dong
- Longhua Hospital and Spine Disease Research Institute; Shanghai University of Traditional Chinese Medicine; Shanghai P.R. China
- Department of Orthopaedic Surgery; Louisiana State University Health Sciences Center; Shreveport Lousiana
| |
Collapse
|
18
|
Oleanolic Acid Exerts Osteoprotective Effects and Modulates Vitamin D Metabolism. Nutrients 2018; 10:nu10020247. [PMID: 29470404 PMCID: PMC5852823 DOI: 10.3390/nu10020247] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 02/10/2018] [Accepted: 02/12/2018] [Indexed: 12/13/2022] Open
Abstract
Oleanolic acid (OA) is a triterpenoid with reported bone anti-resorption activities. The present study aimed to characterize its bone protective effects in vivo and to study its effects on vitamin D metabolism, both in vivo and in vitro. OA significantly increased bone mineral density, improved micro-architectural properties, reduced urinary Ca excretion, increased 1,25(OH)2D3 and renal CYP27B1 mRNA expression in mature C57BL/6 ovariectomised (OVX) mice. OA also improved bone properties, Ca balance, and exerted modulatory effects on renal CYP27B1 and CYP24A1 expressions in aged normal female Sprague–Dawley rats. In addition, OA significantly increased renal CYP27B1 mRNA and promoter activity, and suppressed CYP24A1 mRNA and protein expressions in human proximal tubule HKC-8 cells. OA exerted bone protective effects in mature OVX mice and aged female rats. This action on bone might be, at least in part, associated with its effects on Ca and vitamin D metabolism. The present findings suggest that OA is a potential drug candidate for the management of postmenopausal osteoporosis.
Collapse
|
19
|
Sha NN, Zhao YJ, Zhao DF, Mok DKW, Shi Q, Wang YJ, Zhang Y. Effect of the water fraction isolated from Fructus Ligustri Lucidi extract on bone metabolismviaantagonizing a calcium-sensing receptor in experimental type 1 diabetic rats. Food Funct 2017; 8:4703-4712. [PMID: 29165475 DOI: 10.1039/c7fo01259d] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Osteoprotective effects of FLL water fraction by potentially regulating vitamin D metabolism and calcium transporters as well as CaSR.
Collapse
Affiliation(s)
- Nan-Nan Sha
- Spine Disease Research Institute
- Longhua Hospital
- Shanghai University of Traditional Chinese Medicine
- Shanghai 200032
- China
| | - Yong-Jian Zhao
- Spine Disease Research Institute
- Longhua Hospital
- Shanghai University of Traditional Chinese Medicine
- Shanghai 200032
- China
| | - Dong-Feng Zhao
- Spine Disease Research Institute
- Longhua Hospital
- Shanghai University of Traditional Chinese Medicine
- Shanghai 200032
- China
| | - Daniel Kam-Wah Mok
- Department of Applied Biology and Chemical Technology
- The Hong Kong Polytechnic University
- Kowloon
- China
| | - Qi Shi
- Spine Disease Research Institute
- Longhua Hospital
- Shanghai University of Traditional Chinese Medicine
- Shanghai 200032
- China
| | - Yong-Jun Wang
- Spine Disease Research Institute
- Longhua Hospital
- Shanghai University of Traditional Chinese Medicine
- Shanghai 200032
- China
| | - Yan Zhang
- Spine Disease Research Institute
- Longhua Hospital
- Shanghai University of Traditional Chinese Medicine
- Shanghai 200032
- China
| |
Collapse
|