1
|
Su CM, Tsai CH, Chen HT, Wu YS, Yang SF, Tang CH. Melatonin Regulates Rheumatoid Synovial Fibroblasts-Related Inflammation: Implications for Pathological Skeletal Muscle Treatment. J Pineal Res 2024; 76:e13009. [PMID: 39315577 DOI: 10.1111/jpi.13009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 08/23/2024] [Accepted: 09/08/2024] [Indexed: 09/25/2024]
Abstract
Melatonin has been reported to regulate circadian rhythms and have anti-inflammatory characteristics in various inflammatory autoimmune diseases, but its effects in diseases-associated muscle atrophy remain controversial. This study is aimed to determine the evidence of melatonin in rheumatoid arthritis (RA)-related pathological muscle atrophy. We used initially bioinformatics results to show that melatonin regulated significantly the correlation between pro-inflammation and myogenesis in RA synovial fibroblasts (RASF) and myoblasts. The conditioned medium (CM) from melatonin-treated RASF was incubated in myoblasts with growth medium and differentiated medium to investigate the markers of pro-inflammation, atrophy, and myogenesis. We found that melatonin regulated RASF CM-induced pathological muscle pro-inflammation and atrophy in myoblasts and differentiated myocytes through NF-κB signaling pathways. We also showed for the first time that miR-30c-1-3p is negatively regulated by three inflammatory cytokines in human RASF, which is associated with murine-differentiated myocytes. Importantly, oral administration with melatonin in a collagen-induced arthritis (CIA) mouse model also significantly improved arthritic swelling, hind limb grip strength as well as pathological muscle atrophy. In conclusion, our study is the first to demonstrate not only the underlying mechanism whereby melatonin decreases pro-inflammation in RA-induced pathological muscle atrophy but also increases myogenesis in myoblasts and differentiated myocytes.
Collapse
MESH Headings
- Melatonin/pharmacology
- Arthritis, Rheumatoid/metabolism
- Arthritis, Rheumatoid/pathology
- Arthritis, Rheumatoid/drug therapy
- Humans
- Fibroblasts/metabolism
- Fibroblasts/drug effects
- Fibroblasts/pathology
- Animals
- Mice
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscle, Skeletal/drug effects
- Inflammation/metabolism
- Inflammation/pathology
- Synovial Membrane/metabolism
- Synovial Membrane/pathology
- Synovial Membrane/drug effects
- Arthritis, Experimental/metabolism
- Arthritis, Experimental/pathology
- Arthritis, Experimental/drug therapy
- Male
- Myoblasts/metabolism
- Myoblasts/drug effects
- Muscular Atrophy/metabolism
- Muscular Atrophy/pathology
- Muscular Atrophy/drug therapy
- Mice, Inbred DBA
Collapse
Affiliation(s)
- Chen-Ming Su
- Department of Sports Medicine, China Medical University, Taichung City, Taiwan
| | - Chun-Hao Tsai
- Department of Sports Medicine, China Medical University, Taichung City, Taiwan
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung City, Taiwan
- School of Medicine, China Medical University, Taichung City, Taiwan
| | - Hsien-Te Chen
- Department of Sports Medicine, China Medical University, Taichung City, Taiwan
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung City, Taiwan
- Spine Center, China Medical University Hospital, China Medical University, Taichung City, Taiwan
| | - Yi-Syuan Wu
- Department of Sports Medicine, China Medical University, Taichung City, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chih-Hsin Tang
- Department of Pharmacology, School of Medicine, China Medical University, Taichung City, Taiwan
- Chinese Medicine Research Center, China Medical University, Taichung City, Taiwan
- Department of Biotechnology, College of Health Science, Asia University, Taichung City, Taiwan
| |
Collapse
|
2
|
Shi Z, Zhang M, Fan H, Chen Y, Dong S, Zhou F, Wang B, Liu J, Jin J, Luo Y, Chen Q, Wang W, Zhang C, Chen Y. The marine Penicillium sp. GGF16-1-2 metabolite dicitrinone G inhibits pancreatic angiogenesis by regulating the activation of NLRP3 inflammasome. J Nat Med 2024; 78:78-90. [PMID: 37897512 DOI: 10.1007/s11418-023-01749-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/24/2023] [Indexed: 10/30/2023]
Abstract
Citrinin derivatives have been found to have various pharmacological activities, such as anti-inflammatory, anti-tumor, and antioxidant effects. Dicitrinone G (DG) was a new citrinin dimer isolated from marine-derived fungus Penicillium sp. GGF 16-1-2 which has potential activity. Here, we aim to investigate whether DG has anti-pancreatic cancer activity. In xenograft tumor model, 2 × 106 BXPC-3 cells were injected into the hind flank of NU/NU nude mice by subcutaneously for 2 weeks followed by treating with DG (0.25, 0.5, 1 mg/kg) and 5-FU (30 mg/kg) for 4 weeks. Tumor volume and weight were measured, and the expression of CD31, IL-18, NLRP3, and Caspase-1 in tumor tissue were detected. In vitro, HUVECs were treated with conditioned medium (CM) derived from BXPC-3 cells, the effects of DG on angiogenesis were detected by tube formation and western blot analysis. In vivo studies showed that the tumor growth and angiogenesis were greatly suppressed. The tumor weight inhibition rates of DG and 5-FU groups were about 42.36%, 38.94%, 43.80%, and 31.88%. Furthermore, the expression of CD31 and Caspase-1 were decreased. In vitro, CM derived from BXPC-3 cells which treated with DG could inhibit the tube formation and expression of pro-angiogenic NICD in HUVECs. Our study suggests that DG could suppress angiogenesis via the NLRP3/IL-18 pathway and may have the potential to inhibit tumor development.
Collapse
Affiliation(s)
- Zhimian Shi
- School of Pharmaceutical Sciences, Guangzhou Higher Education Mega Center, Guangzhou University of Chinese Medicine, 232, Waihuan East Road, Panyu, Guangzhou, 510000, China
- Guangdong Key Laboratory of TCM Pathogenesis and Prescriptions Realted to Heart and Spleen, Guangzhou Higher Education Mega Center, 232, Waihuan East Road, Panyu, Guangzhou, 510000, China
| | - Minyi Zhang
- School of Pharmaceutical Sciences, Guangzhou Higher Education Mega Center, Guangzhou University of Chinese Medicine, 232, Waihuan East Road, Panyu, Guangzhou, 510000, China
- Guangdong Key Laboratory of TCM Pathogenesis and Prescriptions Realted to Heart and Spleen, Guangzhou Higher Education Mega Center, 232, Waihuan East Road, Panyu, Guangzhou, 510000, China
| | - Hao Fan
- School of Pharmaceutical Sciences, Guangzhou Higher Education Mega Center, Guangzhou University of Chinese Medicine, 232, Waihuan East Road, Panyu, Guangzhou, 510000, China
| | - Yijun Chen
- School of Pharmaceutical Sciences, Guangzhou Higher Education Mega Center, Guangzhou University of Chinese Medicine, 232, Waihuan East Road, Panyu, Guangzhou, 510000, China
- Guangdong Key Laboratory of TCM Pathogenesis and Prescriptions Realted to Heart and Spleen, Guangzhou Higher Education Mega Center, 232, Waihuan East Road, Panyu, Guangzhou, 510000, China
| | - Su Dong
- Department of Pharmacy, People's Hospital of Dongxihu District, Wuhan, 430040, Hubei, China
| | - Fengguo Zhou
- School of Pharmaceutical Sciences, Guangzhou Higher Education Mega Center, Guangzhou University of Chinese Medicine, 232, Waihuan East Road, Panyu, Guangzhou, 510000, China
| | - Bin Wang
- Department of Cardiovascular Ultrasound, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Jingya Liu
- School of Pharmaceutical Sciences, Guangzhou Higher Education Mega Center, Guangzhou University of Chinese Medicine, 232, Waihuan East Road, Panyu, Guangzhou, 510000, China
| | - Jiaqi Jin
- School of Pharmaceutical Sciences, Guangzhou Higher Education Mega Center, Guangzhou University of Chinese Medicine, 232, Waihuan East Road, Panyu, Guangzhou, 510000, China
| | - Yong Luo
- School of Pharmaceutical Sciences, Guangzhou Higher Education Mega Center, Guangzhou University of Chinese Medicine, 232, Waihuan East Road, Panyu, Guangzhou, 510000, China
- Guangdong Key Laboratory of TCM Pathogenesis and Prescriptions Realted to Heart and Spleen, Guangzhou Higher Education Mega Center, 232, Waihuan East Road, Panyu, Guangzhou, 510000, China
| | - Qiuhe Chen
- School of Pharmaceutical Sciences, Guangzhou Higher Education Mega Center, Guangzhou University of Chinese Medicine, 232, Waihuan East Road, Panyu, Guangzhou, 510000, China
- Guangdong Key Laboratory of TCM Pathogenesis and Prescriptions Realted to Heart and Spleen, Guangzhou Higher Education Mega Center, 232, Waihuan East Road, Panyu, Guangzhou, 510000, China
| | - Wei Wang
- School of Pharmaceutical Sciences, Guangzhou Higher Education Mega Center, Guangzhou University of Chinese Medicine, 232, Waihuan East Road, Panyu, Guangzhou, 510000, China.
- Guangdong Key Laboratory of TCM Pathogenesis and Prescriptions Realted to Heart and Spleen, Guangzhou Higher Education Mega Center, 232, Waihuan East Road, Panyu, Guangzhou, 510000, China.
| | - Cuixian Zhang
- School of Pharmaceutical Sciences, Guangzhou Higher Education Mega Center, Guangzhou University of Chinese Medicine, 232, Waihuan East Road, Panyu, Guangzhou, 510000, China.
| | - Yang Chen
- School of Pharmaceutical Sciences, Guangzhou Higher Education Mega Center, Guangzhou University of Chinese Medicine, 232, Waihuan East Road, Panyu, Guangzhou, 510000, China.
- Guangdong Key Laboratory of TCM Pathogenesis and Prescriptions Realted to Heart and Spleen, Guangzhou Higher Education Mega Center, 232, Waihuan East Road, Panyu, Guangzhou, 510000, China.
| |
Collapse
|
3
|
Shi Y, Zhu N, Qiu Y, Tan J, Wang F, Qin L, Dai A. Resistin-like molecules: a marker, mediator and therapeutic target for multiple diseases. Cell Commun Signal 2023; 21:18. [PMID: 36691020 PMCID: PMC9869618 DOI: 10.1186/s12964-022-01032-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/27/2022] [Indexed: 01/25/2023] Open
Abstract
Resistin-like molecules (RELMs) are highly cysteine-rich proteins, including RELMα, RELMβ, Resistin, and RELMγ. However, RELMs exhibit significant differences in structure, distribution, and function. The expression of RELMs is regulated by various signaling molecules, such as IL-4, IL-13, and their receptors. In addition, RELMs can mediate numerous signaling pathways, including HMGB1/RAGE, IL-4/IL-4Rα, PI3K/Akt/mTOR signaling pathways, and so on. RELMs proteins are involved in wide range of physiological and pathological processes, including inflammatory response, cell proliferation, glucose metabolism, barrier defense, etc., and participate in the progression of numerous diseases such as lung diseases, intestinal diseases, cardiovascular diseases, and cancers. Meanwhile, RELMs can serve as biomarkers, risk predictors, and therapeutic targets for these diseases. An in-depth understanding of the role of RELMs may provide novel targets or strategies for the treatment and prevention of related diseases. Video abstract.
Collapse
Affiliation(s)
- Yaning Shi
- Laboratory of Stem Cell Regulation with Chinese Medicine and its Application, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
- Science and Technology Innovation Center, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
| | - Neng Zhu
- Department of Urology, The First Hospital of Hunan University of Chinese Medicine, Changsha, 410021, Hunan, China
| | - Yun Qiu
- Laboratory of Stem Cell Regulation with Chinese Medicine and its Application, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
| | - Junlan Tan
- Hunan Provincial Key Laboratory of Vascular Biology and Translational Medicine, Changsha, 410208, Hunan, China
| | - Feiying Wang
- Hunan Provincial Key Laboratory of Vascular Biology and Translational Medicine, Changsha, 410208, Hunan, China
| | - Li Qin
- Laboratory of Stem Cell Regulation with Chinese Medicine and its Application, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China.
- Hunan Provincial Key Laboratory of Vascular Biology and Translational Medicine, Changsha, 410208, Hunan, China.
| | - Aiguo Dai
- Hunan Provincial Key Laboratory of Vascular Biology and Translational Medicine, Changsha, 410208, Hunan, China.
- Department of Respiratory Diseases, Medical School, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China.
- Department of Respiratory Medicine, First Affiliated Hospital, Hunan University of Chinese Medicine, Changsha, 410021, Hunan, China.
| |
Collapse
|
4
|
HMGB1 Promotes In Vitro and In Vivo Skeletal Muscle Atrophy through an IL-18-Dependent Mechanism. Cells 2022; 11:cells11233936. [PMID: 36497194 PMCID: PMC9740799 DOI: 10.3390/cells11233936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/28/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Skeletal muscle atrophy occurs due to muscle wasting or reductions in protein associated with aging, injury, and inflammatory processes. High-mobility group box-1 (HMGB1) protein is passively released from necrotic cells and actively secreted by inflammatory cells, and is implicated in the pathogenesis of various inflammatory and immune diseases. HMGB1 is upregulated in muscle inflammation, and circulating levels of the proinflammatory cytokine interleukin-18 (IL-18) are upregulated in patients with sarcopenia, a muscle-wasting disease. We examined whether an association exists between HMGB1 and IL-18 signaling in skeletal muscle atrophy. HMGB1-induced increases of IL-18 levels enhanced the expression of muscle atrophy markers and inhibited myogenic marker expression in C2C12 and G7 myoblast cell lines. HMGB1-induced increases of IL-18 production in C2C12 cells involved the RAGE/p85/Akt/mTOR/c-Jun signaling pathway. HMGB1 short hairpin RNA (shRNA) treatment rescued the expression of muscle-specific differentiation markers in murine C2C12 myotubes and in mice with glycerol-induced muscle atrophy. HMGB1 and IL-18 signaling was suppressed in the mice after HMGB1 shRNA treatment. These findings suggest that the HMGB1/IL-18 axis is worth targeting for the treatment of skeletal muscle atrophy.
Collapse
|
5
|
Tsai CH, Huang PJ, Lee IT, Chen CM, Wu MH. Endothelin-1-mediated miR-let-7g-5p triggers interlukin-6 and TNF-α to cause myopathy and chronic adipose inflammation in elderly patients with diabetes mellitus. Aging (Albany NY) 2022; 14:3633-3651. [PMID: 35468098 PMCID: PMC9085227 DOI: 10.18632/aging.204034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 04/13/2022] [Indexed: 11/25/2022]
Abstract
Background: Diabetes and sarcopenia are verified as mutual relationships, which seriously affect the quality of life of the elderly. Endothelin-1 is well investigated, is elevated in patients with diabetes, and is related to muscle cellular senescence and fibrosis. However, the mechanism of ET-1 between diabetes and myopathy is still unclear. The aim of this study was to evaluate the prevalence of sarcopenia in the elderly with diabetes and to clarify its relationship with ET-1 molecular biological mechanism, progress as well as changes in muscle and fat. Methods: We recruited 157 type 2 diabetes patients over 55 years old and investigated the prevalence of sarcopenia in diabetes patients and examined the association of ET-1 alterations with HbA1c, creatinine, or AMS/ht2. Next, sought to determine how ET-1 regulates inflammation in muscle cells by western blot and qPCR assay. Using XF Seahorse Technology, we directly quantified mitochondrial bioenergetics in 3T3-L1 cells. Results: ET-1 was positively correlated with HbA1c, creatinine levels, and duration of disease, and negatively correlated with AMS/ht2. We found that ET-1 dose-dependently induces tumor necrosis factor-α (TNF-α) and interleukin (IL)-6β expression through the PI3K/AKT, and NF-κB signaling pathways in C2C12 cells. Also identified that TNF-α, IL-6β, and visfatin releases were found in co-cultured with conditioned medium of ET-1/C2C12 in 3T3-L1 cells. ET-1 also reduces the energy metabolism of fat and induces micro-environment inflammation which causes myopathy. ET-1 also suppresses miR-let-7g-5p expression in myocytes and adipocytes. Conclusion: We describe a new mechanism of ET-1 triggering chronic inflammation in patients with hyperglycemia.
Collapse
Affiliation(s)
- Chung-Huang Tsai
- Department of Family Medicine, Chung-Kang Branch, Cheng Ching Hospital, Taichung, Taiwan.,Center for General Education, Tunghai University, Taiwan.,Bachelor of Science in Senior Wellness and Sport Science, Tunghai University, Taiwan
| | - Pei-Ju Huang
- Department of Family Medicine, Changhua Christian Hospital, Changhua, Taiwan
| | - I T Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan.,School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Chien-Min Chen
- Division of Traditional Chinese Medical, Sinying Hospital, Tainan, Taiwan
| | - Min Huan Wu
- Bachelor of Science in Senior Wellness and Sport Science, Tunghai University, Taiwan.,Senior Life and Innovation Technology Center, Tunghai University, Taiwan.,Life Science Research Center, Tunghai University, Taiwan
| |
Collapse
|
6
|
Kennedy DC, Coen B, Wheatley AM, McCullagh KJA. Microvascular Experimentation in the Chick Chorioallantoic Membrane as a Model for Screening Angiogenic Agents including from Gene-Modified Cells. Int J Mol Sci 2021; 23:452. [PMID: 35008876 PMCID: PMC8745510 DOI: 10.3390/ijms23010452] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 12/29/2021] [Accepted: 12/29/2021] [Indexed: 02/07/2023] Open
Abstract
The chick chorioallantoic membrane (CAM) assay model of angiogenesis has been highlighted as a relatively quick, low cost and effective model for the study of pro-angiogenic and anti-angiogenic factors. The chick CAM is a highly vascularised extraembryonic membrane which functions for gas exchange, nutrient exchange and waste removal for the growing chick embryo. It is beneficial as it can function as a treatment screening tool, which bridges the gap between cell based in vitro studies and in vivo animal experimentation. In this review, we explore the benefits and drawbacks of the CAM assay to study microcirculation, by the investigation of each distinct stage of the CAM assay procedure, including cultivation techniques, treatment applications and methods of determining an angiogenic response using this assay. We detail the angiogenic effect of treatments, including drugs, metabolites, genes and cells used in conjunction with the CAM assay, while also highlighting the testing of genetically modified cells. We also present a detailed exploration of the advantages and limitations of different CAM analysis techniques, including visual assessment, histological and molecular analysis along with vascular casting methods and live blood flow observations.
Collapse
Affiliation(s)
| | | | - Antony M. Wheatley
- Department of Physiology, School of Medicine, Human Biology Building, National University of Ireland, H91 W5P7 Galway, Ireland; (D.C.K.); (B.C.)
| | - Karl J. A. McCullagh
- Department of Physiology, School of Medicine, Human Biology Building, National University of Ireland, H91 W5P7 Galway, Ireland; (D.C.K.); (B.C.)
| |
Collapse
|
7
|
Tsai CH, Chen CJ, Gong CL, Liu SC, Chen PC, Huang CC, Hu SL, Wang SW, Tang CH. CXCL13/CXCR5 axis facilitates endothelial progenitor cell homing and angiogenesis during rheumatoid arthritis progression. Cell Death Dis 2021; 12:846. [PMID: 34518512 PMCID: PMC8437941 DOI: 10.1038/s41419-021-04136-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 07/29/2021] [Accepted: 08/18/2021] [Indexed: 12/27/2022]
Abstract
Angiogenesis is a critical process in the formation of new capillaries and a key participant in rheumatoid arthritis (RA) pathogenesis. The chemokine (C-X-C motif) ligand 13 (CXCL13) plays important roles in several cellular functions such as infiltration, migration, and motility. We report significantly higher levels of CXCL13 expression in collagen-induced arthritis (CIA) mice compared with controls and also in synovial fluid from RA patients compared with human osteoarthritis (OA) samples. RA synovial fluid increased endothelial progenitor cell (EPC) homing and angiogenesis, which was blocked by the CXCL13 antibody. By interacting with the CXCR5 receptor, CXCL13 facilitated vascular endothelial growth factor (VEGF) expression and angiogenesis in EPC through the PLC, MEK, and AP-1 signaling pathways. Importantly, infection with CXCL13 short hairpin RNA (shRNA) mitigated EPC homing and angiogenesis, articular swelling, and cartilage erosion in ankle joints of mice with CIA. CXCL13 is therefore a novel therapeutic target for RA.
Collapse
Affiliation(s)
- Chun-Hao Tsai
- Department of Sports Medicine, College of Health Care, China Medical University, Taichung, Taiwan
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Chao-Ju Chen
- School of Medicine, China Medical University, Taichung, Taiwan
| | - Chi-Li Gong
- School of Medicine, China Medical University, Taichung, Taiwan
| | - Shan-Chi Liu
- Department of Medical Education and Research, China Medical University Beigang Hospital, Yunlin, Taiwan
| | - Po-Chun Chen
- Translational Medicine Center, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Chien-Chung Huang
- School of Medicine, China Medical University, Taichung, Taiwan
- Division of Immunology and Rheumatology, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Sung-Lin Hu
- School of Medicine, China Medical University, Taichung, Taiwan
- Department of Family Medicine, China Medical University Hsinchu Hospital, Hsinchu, Taiwan
| | - Shih-Wei Wang
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
- Institute of Biomedical Sciences, Mackay Medical College, Taipei, Taiwan
| | - Chih-Hsin Tang
- School of Medicine, China Medical University, Taichung, Taiwan.
- Chinese Medicine Research Center, China Medical University, Taichung, Taiwan.
- Department of Biotechnology, College of Health Science, Asia University, Taichung, Taiwan.
| |
Collapse
|
8
|
Lv M, Liu W. Hypoxia-Induced Mitogenic Factor: A Multifunctional Protein Involved in Health and Disease. Front Cell Dev Biol 2021; 9:691774. [PMID: 34336840 PMCID: PMC8319639 DOI: 10.3389/fcell.2021.691774] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/23/2021] [Indexed: 11/13/2022] Open
Abstract
Hypoxia-induced mitogenic factor (HIMF), also known as resistin-like molecule α (RELMα) or found in inflammatory zone 1 (FIZZ1) is a member of the RELM protein family expressed in mice. It is involved in a plethora of physiological processes, including mitogenesis, angiogenesis, inflammation, and vasoconstriction. HIMF expression can be stimulated under pathological conditions and this plays a critical role in pulmonary, cardiovascular and metabolic disorders. The present review summarizes the molecular characteristics, and the physiological and pathological roles of HIMF in normal and diseased conditions. The potential clinical significance of these findings for human is also discussed.
Collapse
Affiliation(s)
- Moyang Lv
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Wenjuan Liu
- Department of Pathophysiology, Health Science Center, Shenzhen University, Shenzhen, China
| |
Collapse
|
9
|
Pai S, Njoku DB. The Role of Hypoxia-Induced Mitogenic Factor in Organ-Specific Inflammation in the Lung and Liver: Key Concepts and Gaps in Knowledge Regarding Molecular Mechanisms of Acute or Immune-Mediated Liver Injury. Int J Mol Sci 2021; 22:ijms22052717. [PMID: 33800244 PMCID: PMC7962531 DOI: 10.3390/ijms22052717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 01/15/2023] Open
Abstract
Hypoxia-induced mitogenic factor (HIMF), which is also known as resistin-like molecule α (RELM-α), found in inflammatory zone 1 (FIZZ1), or resistin-like alpha (retlna), is a cysteine-rich secretory protein and cytokine. HIMF has been investigated in the lung as a mediator of pulmonary fibrosis, inflammation and as a marker for alternatively activated macrophages. Although these macrophages have been found to have a role in acute liver injury and acetaminophen toxicity, few studies have investigated the role of HIMF in acute or immune-mediated liver injury. The aim of this focused review is to analyze the literature and examine the effects of HIMF and its human homolog in organ-specific inflammation in the lung and liver. We followed the guidelines set by PRISMA in constructing this review. The relevant checklist items from PRISMA were included. Items related to meta-analysis were excluded because there were no randomized controlled clinical trials. We found that HIMF was increased in most models of acute liver injury and reduced damage from acetaminophen-induced liver injury. We also found strong evidence for HIMF as a marker for alternatively activated macrophages. Our overall risk of bias assessment of all studies included revealed that 80% of manuscripts demonstrated some concerns in the randomization process. We also demonstrated some concerns (54.1%) and high risk (45.9%) of bias in the selection of the reported results. The need for randomization and reduction of bias in the reported results was similarly detected in the studies that focused on HIMF and the liver. In conclusion, we propose that HIMF could be utilized as a marker for M2 macrophages in immune-mediated liver injury. However, we also detected the need for randomized clinical trials and additional experimental and human prospective studies in order to fully comprehend the role of HIMF in acute or immune-mediated liver injury.
Collapse
Affiliation(s)
- Sananda Pai
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD 21287, USA;
| | - Dolores B. Njoku
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD 21287, USA;
- Department of Pediatrics, Johns Hopkins University, Baltimore, MD 21287, USA
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21287, USA
- Correspondence:
| |
Collapse
|
10
|
Tsai CH, Liu SC, Chung WH, Wang SW, Wu MH, Tang CH. Visfatin Increases VEGF-dependent Angiogenesis of Endothelial Progenitor Cells during Osteoarthritis Progression. Cells 2020; 9:cells9051315. [PMID: 32466159 PMCID: PMC7291153 DOI: 10.3390/cells9051315] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/15/2020] [Accepted: 05/22/2020] [Indexed: 01/15/2023] Open
Abstract
Osteoarthritis (OA) pannus contains a network of neovascularization that is formed and maintained by angiogenesis, which is promoted by vascular endothelial growth factor (VEGF). Bone marrow-derived endothelial progenitor cells (EPCs) are involved in VEGF-induced vessel formation in OA. The adipokine visfatin stimulates the release of inflammatory cytokines during OA progression. In this study, we found significantly higher visfatin and VEGF serum concentrations in patients with OA compared with healthy controls. We describe how visfatin enhanced VEGF expression in human OA synovial fibroblasts (OASFs) and facilitated EPC migration and tube formation. Treatment of OASFs with PI3K and Akt inhibitors or siRNAs attenuated the effects of visfatin on VEGF synthesis and EPC angiogenesis. We also describe how miR-485-5p negatively regulated visfatin-induced promotion of VEGF expression and EPC angiogenesis. In our OA rat model, visfatin shRNA was capable of inhibiting visfatin and rescuing EPC angiogenesis and pathologic changes. We detail how visfatin affected VEGF expression and EPC angiogenesis in OASFs by inhibiting miR-485-5p synthesis through the PI3K and Akt signaling pathways.
Collapse
Affiliation(s)
- Chun-Hao Tsai
- Department of Sports Medicine, College of Health Care, China Medical University, Taichung 404, Taiwan;
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung 404, Taiwan
| | - Shan-Chi Liu
- Department of Medical Education and Research, China Medical University Beigang Hospital, Yunlin 651, Taiwan;
| | - Wen-Hui Chung
- Department of Pharmacology, School of Medicine, China Medical University, Taichung 404, Taiwan;
| | - Shih-Wei Wang
- Department of Medicine, Mackay Medical College, New Taipei City 252, Taiwan;
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Min-Huan Wu
- Physical Education Office, Tunghai University, Taichung 407, Taiwan
- Sports Recreation and Health Management Continuing Studies, Tunghai University, Taichung 807, Taiwan
- Correspondence: (M.-H.W.); (C.-H.T.)
| | - Chih-Hsin Tang
- Department of Pharmacology, School of Medicine, China Medical University, Taichung 404, Taiwan;
- Chinese Medicine Research Center, China Medical University, Taichung 404, Taiwan
- Department of Biotechnology, College of Health Science, Asia University, Taichung 41354, Taiwan
- Correspondence: (M.-H.W.); (C.-H.T.)
| |
Collapse
|
11
|
Wang YH, Kuo SJ, Liu SC, Wang SW, Tsai CH, Fong YC, Tang CH. Apelin Affects the Progression of Osteoarthritis by Regulating VEGF-Dependent Angiogenesis and miR-150-5p Expression in Human Synovial Fibroblasts. Cells 2020; 9:cells9030594. [PMID: 32131466 PMCID: PMC7140420 DOI: 10.3390/cells9030594] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 02/27/2020] [Accepted: 02/27/2020] [Indexed: 12/12/2022] Open
Abstract
Synovium-induced angiogenesis is central to osteoarthritis (OA) pathogenesis and thus a promising therapeutic target. The adipokine apelin (APLN) is involved in both OA pathogenesis and angiogenesis. We examined the role of APLN in synovium-induced angiogenesis by investigating the crosstalk between APLN and vascular endothelial growth factor (VEGF) expression in human OA synovial fibroblasts (OASFs). We found higher levels of APLN and VEGF expression in OA samples compared with normal samples. APLN-induced stimulation of VEGF expression and VEGF-dependent angiogenesis in OASFs was mitigated by FAK/Src/Akt signaling. APLN also inhibited levels of microRNA-150-5p (miR-150-5p), which represses VEGF production and angiogenesis. Analyses of an OA animal model showed that shAPLN transfection of OASFs rescued pathologic changes in OA cartilage and histology. Here, we found APLN enhances VEGF expression and angiogenesis via FAK/Src/Akt cascade and via downstream suppression of miR-150-5p expression. These findings help to clarify the pathogenesis of adipokine-induced angiogenesis in OA synovium.
Collapse
Affiliation(s)
- Yu-Han Wang
- Graduate Institute of Biomedical Science, China Medical University, Taichung 40402, Taiwan;
| | - Shu-Jui Kuo
- School of Medicine, China Medical University, Taichung 40402, Taiwan;
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung 40402, Taiwan; (C.-H.T.); (Y.-C.F.)
| | - Shan-Chi Liu
- Department of Medical Education and Research, China Medical University Beigang Hospital, Yunlin 651, Taiwan;
| | - Shih-Wei Wang
- Department of Medicine, Mackay Medical College, New Taipei City 252, Taiwan;
| | - Chun-Hao Tsai
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung 40402, Taiwan; (C.-H.T.); (Y.-C.F.)
- Department of Sports Medicine, College of Health Care, China Medical University, Taichung 40402, Taiwan
| | - Yi-Chin Fong
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung 40402, Taiwan; (C.-H.T.); (Y.-C.F.)
- Department of Sports Medicine, College of Health Care, China Medical University, Taichung 40402, Taiwan
| | - Chih-Hsin Tang
- Graduate Institute of Biomedical Science, China Medical University, Taichung 40402, Taiwan;
- School of Medicine, China Medical University, Taichung 40402, Taiwan;
- Chinese Medicine Research Center, China Medical University, Taichung 40402, Taiwan
- Department of Biotechnology, College of Health Science, Asia University, Taichung 40402, Taiwan
- Correspondence: ; Tel.: +886-4-22052121 (ext. 7726)
| |
Collapse
|
12
|
Fahey E, Doyle SL. IL-1 Family Cytokine Regulation of Vascular Permeability and Angiogenesis. Front Immunol 2019; 10:1426. [PMID: 31293586 PMCID: PMC6603210 DOI: 10.3389/fimmu.2019.01426] [Citation(s) in RCA: 160] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 06/06/2019] [Indexed: 12/21/2022] Open
Abstract
The IL-1 family of cytokines are well-known for their primary role in initiating inflammatory responses both in response to and acting as danger signals. It has long been established that IL-1 is capable of simultaneously regulating inflammation and angiogenesis, indeed one of IL-1's earliest names was haemopoeitn-1 due to its pro-angiogenic effects. Other IL-1 family cytokines are also known to have roles in mediating angiogenesis, either directly or indirectly via induction of proangiogenic factors such as VEGF. Of note, some of these family members appear to have directly opposing effects in different tissues and pathologies. Here we will review what is known about how the various IL-1 family members regulate vascular permeability and angiogenic function in a range of different tissues, and describe some of the mechanisms employed to achieve these effects.
Collapse
Affiliation(s)
- Erin Fahey
- Department of Clinical Medicine, School of Medicine, Trinity College Dublin, Dublin, Ireland.,Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Sarah L Doyle
- Department of Clinical Medicine, School of Medicine, Trinity College Dublin, Dublin, Ireland.,Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland.,Our Lady's Children's Hospital Crumlin, National Children's Research Centre, Dublin, Ireland
| |
Collapse
|
13
|
Kumar S, Wang G, Liu W, Ding W, Dong M, Zheng N, Ye H, Liu J. Hypoxia-Induced Mitogenic Factor Promotes Cardiac Hypertrophy via Calcium-Dependent and Hypoxia-Inducible Factor-1α Mechanisms. Hypertension 2018; 72:331-342. [PMID: 29891648 DOI: 10.1161/hypertensionaha.118.10845] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 01/24/2018] [Accepted: 05/08/2018] [Indexed: 12/26/2022]
Abstract
HIMF (hypoxia-induced mitogenic factor/found in inflammatory zone 1/resistin like α) is a secretory and cytokine-like protein and serves as a critical stimulator of hypoxia-induced pulmonary hypertension. With a role for HIMF in heart disease unknown, we explored the possible roles for HIMF in cardiac hypertrophy by overexpressing and knocking down HIMF in cardiomyocytes and characterizing HIMF gene (himf) knockout mice. We found that HIMF mRNA and protein levels were upregulated in phenylephrine-stimulated cardiomyocyte hypertrophy and our mouse model of transverse aortic constriction-induced cardiac hypertrophy, as well as in human hearts with dilated cardiomyopathy. Furthermore, HIMF overexpression could induce cardiomyocyte hypertrophy, as characterized by elevated protein expression of hypertrophic biomarkers (ANP [atrial natriuretic peptide] and β-MHC [myosin heavy chain-β]) and increased cell-surface area compared with controls. Conversely, HIMF knockdown prevented phenylephrine-induced cardiomyocyte hypertrophy and himf ablation in knockout mice significantly attenuated transverse aortic constriction-induced hypertrophic remodeling and cardiac dysfunction. HIMF overexpression increased the cytosolic Ca2+ concentration and activated the CaN-NFAT (calcineurin-nuclear factor of activated T cell) and MAPK (mitogen-activated protein kinase) pathways; this effect could be prevented by reducing cytosolic Ca2+ concentration with L-type Ca2+ channel blocker nifedipine or inhibiting the CaSR (Ca2+ sensing receptor) with Calhex 231. Furthermore, HIMF overexpression increased HIF-1α (hypoxia-inducible factor) expression in neonatal rat ventricular myocytes, and HIMF knockout inhibited HIF-1α upregulation in transverse aortic constriction mice. Knockdown of HIF-1α attenuated HIMF-induced cardiomyocyte hypertrophy. In conclusion, HIMF has a critical role in the development of cardiac hypertrophy, and targeting HIMF may represent a potential therapeutic strategy.
Collapse
Affiliation(s)
- Santosh Kumar
- From the Department of Pathophysiology, Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Shenzhen University Health Science Center, China (S.K., G.W., W.L., M.D., N.Z., J.L.)
| | - Gang Wang
- From the Department of Pathophysiology, Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Shenzhen University Health Science Center, China (S.K., G.W., W.L., M.D., N.Z., J.L.)
| | - Wenjuan Liu
- From the Department of Pathophysiology, Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Shenzhen University Health Science Center, China (S.K., G.W., W.L., M.D., N.Z., J.L.)
| | - Wenwen Ding
- Institute for Cancer Prevention and Treatment, School of Medicine, Jingchu University of Technology, Jingmen, China (W.D.)
| | - Ming Dong
- From the Department of Pathophysiology, Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Shenzhen University Health Science Center, China (S.K., G.W., W.L., M.D., N.Z., J.L.)
| | - Na Zheng
- From the Department of Pathophysiology, Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Shenzhen University Health Science Center, China (S.K., G.W., W.L., M.D., N.Z., J.L.)
| | - Hongyu Ye
- Department of Cardiothoracic Surgery, Zhongshan People's Hospital, China (H.Y.)
| | - Jie Liu
- From the Department of Pathophysiology, Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Shenzhen University Health Science Center, China (S.K., G.W., W.L., M.D., N.Z., J.L.)
| |
Collapse
|
14
|
Su CM, Tang CH, Chi MJ, Lin CY, Fong YC, Liu YC, Chen WC, Wang SW. Resistin facilitates VEGF-C-associated lymphangiogenesis by inhibiting miR-186 in human chondrosarcoma cells. Biochem Pharmacol 2018; 154:234-242. [PMID: 29730230 DOI: 10.1016/j.bcp.2018.05.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 05/02/2018] [Indexed: 12/16/2022]
Abstract
Chondrosarcoma is a common primary malignant tumor of the bone that can metastasize through the vascular system to other organs. A key step in the metastatic process, lymphangiogenesis, involves vascular endothelial growth factor-C (VEGF-C). However, the effects of lymphangiogenesis in chondrosarcoma metastasis remain to be clarified. Accumulating evidence shows that resistin, a cytokine secreted from adipocytes and monocytes, also promotes tumor pathogenesis. Notably, chondrosarcoma can easily metastasize. In this study, we demonstrate that resistin enhances VEGF-C expression and lymphatic endothelial cells (LECs)-associated lymphangiogenesis in human chondrosarcoma cells. We also show that resistin triggers VEGF-C-dependent lymphangiogenesis via the c-Src signaling pathway and down-regulating micro RNA (miR)-186. Overexpression of resistin in chondrosarcoma cells significantly enhanced VEGF-C production and LECs-associated lymphangiogenesis in vitro and tumor-related lymphangiogenesis in vivo. Resistin levels were positively correlated with VEGF-C-dependent lymphangiogenesis via the down-regulation of miR-186 expression in clinical samples from chondrosarcoma tissue. This study is the first to evaluate the mechanism underlying resistin-induced promotion of LECs-associated lymphangiogenesis via the upregulation of VEGF-C expression in human chondrosarcomas. We suggest that resistin may represent a molecular target in VEGF-C-associated tumor lymphangiogenesis in chondrosarcoma metastasis.
Collapse
Affiliation(s)
- Chen-Ming Su
- Department of Biomedical Sciences Laboratory, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, Zhejiang, China
| | - Chih-Hsin Tang
- Chinese Medicine Research Center, China Medical University, Taichung, Taiwan; Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan; Department of Biotechnology, College of Health Science, Asia University, Taichung, Taiwan
| | - Meng-Ju Chi
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Chih-Yang Lin
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan; Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
| | - Yi-Chin Fong
- Department of Orthopaedic Surgery, China Medical University Beigang Hospital, Yun-Lin County, Taiwan; Department of Sports Medicine, College of Health Care, China Medical University, Taichung, Taiwan
| | - Yueh-Ching Liu
- Department of Orthopaedics, MacKay Memorial Hospital, Taipei, Taiwan
| | - Wei-Cheng Chen
- Department of Orthopaedics, MacKay Memorial Hospital, Taipei, Taiwan
| | - Shih-Wei Wang
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan; Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|