1
|
Xu L, Gurung B, Gu C, Wang S, Gu T. A New Convenient Method to Assess Antibiotic Resistance and Antimicrobial Efficacy against Pathogenic Clostridioides difficile Biofilms. Antibiotics (Basel) 2024; 13:728. [PMID: 39200028 PMCID: PMC11350819 DOI: 10.3390/antibiotics13080728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 09/01/2024] Open
Abstract
Clostridioides difficile is a widely distributed anaerobic pathogen. C. difficile infection is a serious problem in healthcare. Its biofilms have been found to exhibit biocorrosivity, albeit very little, but sufficient for it to correlate with biofilm growth/health. This work demonstrated the use of a disposable electrochemical biofilm test kit using two solid-state electrodes (a 304 stainless steel working electrode, and a graphite counter electrode, which also served as the reference electrode) in a 10 mL serum vial. It was found that the C. difficile 630∆erm Adp-4 mutant had a minimum inhibitory concentration (MIC) for vancomycin twice that of the 630∆erm wild type strain in biofilm prevention (2 ppm vs. 1 ppm by mass) on 304 stainless steel. Glutaraldehyde, a commonly used hospital disinfectant, was found ineffective at 2% (w/w) for the prevention of C. difficile 630∆erm wild type biofilm formation, while tetrakis(hydroxymethyl)phosphonium sulfate (THPS) disinfectant was very effective at 100 ppm for both biofilm prevention and biofilm killing. These antimicrobial efficacy data were consistent with sessile cell count and biofilm imaging results. Furthermore, the test kit provided additional transient biocide treatment information. It showed that vancomycin killed C. difficile 630∆erm wild type biofilms in 2 d, while THPS only required minutes.
Collapse
Affiliation(s)
- Lingjun Xu
- Department of Chemical & Biomolecular Engineering, Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA
| | - Bijay Gurung
- Department of Biomedical Sciences, Ohio University Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45071, USA
| | - Chris Gu
- Department of Biomedical Sciences, Ohio University Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45071, USA
| | - Shaohua Wang
- Department of Biomedical Sciences, Ohio University Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45071, USA
- Infectious and Tropical Disease Institute, Ohio University, Athens, OH 45071, USA
| | - Tingyue Gu
- Department of Chemical & Biomolecular Engineering, Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA
| |
Collapse
|
2
|
Vargas-Lizarazo AY, Ali MA, Mazumder NA, Kohli GM, Zaborska M, Sons T, Garnett M, Senanayake IM, Goodson BM, Vargas-Muñiz JM, Pond A, Jensik PJ, Olson ME, Hamilton-Brehm SD, Kohli P. Electrically polarized nanoscale surfaces generate reactive oxygenated and chlorinated species for deactivation of microorganisms. SCIENCE ADVANCES 2024; 10:eado5555. [PMID: 39093965 PMCID: PMC11636998 DOI: 10.1126/sciadv.ado5555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 06/27/2024] [Indexed: 08/04/2024]
Abstract
Because of the decreasing supply of new antibiotics, recent outbreaks of infectious diseases, and the emergence of antibiotic-resistant microorganisms, it is imperative to develop new effective strategies for deactivating a broad spectrum of microorganisms and viruses. We have implemented electrically polarized nanoscale metallic (ENM) coatings that deactivate a wide range of microorganisms including Gram-negative and Gram-positive bacteria with greater than 6-log reduction in less than 10 minutes of treatment. The electrically polarized devices were also effective in deactivating lentivirus and Candida albicans. The key to the high deactivation effectiveness of ENM devices is electrochemical production of micromolar cuprous ions, which mediated reduction of oxygen to hydrogen peroxide. Formation of highly damaging species, hydroxyl radicals and hypochlorous acid, from hydrogen peroxide contributed to antimicrobial properties of the ENM devices. The electric polarization of nanoscale coatings represents an unconventional tool for deactivating a broad spectrum of microorganisms through in situ production of reactive oxygenated and chlorinated species.
Collapse
Affiliation(s)
- Annie Y. Vargas-Lizarazo
- School of Chemical and Biomolecular Sciences, Southern Illinois University, Carbondale, IL 62901, USA
| | - M. Aswad Ali
- School of Chemical and Biomolecular Sciences, Southern Illinois University, Carbondale, IL 62901, USA
| | - Nehal A. Mazumder
- School of Chemical and Biomolecular Sciences, Southern Illinois University, Carbondale, IL 62901, USA
| | | | - Miroslava Zaborska
- School of Chemical and Biomolecular Sciences, Southern Illinois University, Carbondale, IL 62901, USA
| | - Tyler Sons
- Department of Microbiology, Southern Illinois University, Carbondale, IL 62901, USA
| | - Michelle Garnett
- Department of Microbiology, Southern Illinois University, Carbondale, IL 62901, USA
| | - Ishani M. Senanayake
- School of Chemical and Biomolecular Sciences, Southern Illinois University, Carbondale, IL 62901, USA
| | - Boyd M. Goodson
- School of Chemical and Biomolecular Sciences, Southern Illinois University, Carbondale, IL 62901, USA
| | - José M. Vargas-Muñiz
- Department of Microbiology, Southern Illinois University, Carbondale, IL 62901, USA
| | - Amber Pond
- Department of Anatomy, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | - Philip J. Jensik
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | - Michael E. Olson
- Department of Medical Microbiology, Immunology and Cell Biology, School of Medicine, Southern Illinois University, Springfield, IL 62702, USA
| | | | - Punit Kohli
- School of Chemical and Biomolecular Sciences, Southern Illinois University, Carbondale, IL 62901, USA
- Integrated Microscopy and Graphics Expertise (IMAGE) Center, Southern Illinois University, Carbondale, IL 62901, USA
| |
Collapse
|
3
|
Xu L, Ivanova SA, Gu T. Mitigation of galvanized steel biocorrosion by Pseudomonas aeruginosa biofilm using a biocide enhanced by trehalase. Bioelectrochemistry 2023; 154:108508. [PMID: 37451042 DOI: 10.1016/j.bioelechem.2023.108508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/02/2023] [Accepted: 07/08/2023] [Indexed: 07/18/2023]
Abstract
Pseudomonas aeruginosa is a facultative bacterium that is pathogenic. It is ubiquitous in the environment including air handling systems. It causes microbiologically influenced corrosion (MIC) aerobically and anaerobically. In this work, P. aeruginosa was grown as a nitrate reducing bacterium (NRB) in Luria-Bertani medium with KNO3 at 37 °C. Trehalase, an enzyme which plays a crucial role in biofilm formation was found to enhance the treatment of P. aeruginosa biofilm and its MIC against galvanized steel by tetrakis-hydroxymethyl phosphonium sulfate (THPS) green biocide. After a 7-d incubation, 30 ppm (w/w) trehalase reduced sessile cell count by 0.8-log, and it also reduced galvanized steel weight loss by 14%, compared to 2.3-log and 39%, respectively for the 30 ppm THPS treatment. The combination of 30 ppm THPS + 30 ppm trehalase reduced sessile cell count further by 0.1-log and weight loss by 13% compared to using THPS alone. Electrochemical corrosion measurements supported weight loss results. The injection of 20 ppm riboflavin into a 3-d P. aeruginosa broth failed to accelerate the corrosion rate, suggesting that nitrate reducing P. aeruginosa MIC of galvanized steel did not belong to extracellular electron transfer-MIC, because Zn was hydrolyzed after the microbe damaged the passive film.
Collapse
Affiliation(s)
- Lingjun Xu
- Department of Chemical & Biomolecular Engineering, Institute for Corrosion and Multiphase Technology, Ohio University, Athens 45701, USA
| | | | - Tingyue Gu
- Department of Chemical & Biomolecular Engineering, Institute for Corrosion and Multiphase Technology, Ohio University, Athens 45701, USA.
| |
Collapse
|
4
|
Patel SR, Chaki SH, Giri RK, Khimani AJ, Vaidya YH, Thakor P, Thakkar AB, Deshpande MP. Pristine, Ni- and Zn-Doped CuSe Nanoparticles: An Antimicrobial, Antioxidant, and Cytotoxicity Study. ACS APPLIED BIO MATERIALS 2023. [PMID: 37289638 DOI: 10.1021/acsabm.3c00090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The strategy of chemical coprecipitation is implemented to synthesize nanoparticles of pristine CuSe, 5 and 10% Ni-doped CuSe, and 5 and 10% Zn-doped CuSe. All of the nanoparticles are found to be near stoichiometric by the evaluation of X-ray energy using electron dispersion spectra, and the elemental mapping shows uniform distribution. By X-ray diffraction examination, all of the nanoparticles are identified as being single-phase and having a hexagonal lattice structure. Field emission microscopy with electrons in both scanning and transmission modes affirmed the spherical configuration of the nanoparticles. The crystalline nature of the nanoparticles is confirmed by the presence of spot patterns observed in the selected area electron diffraction patterns. The observed d value matches well with the d value of the CuSe hexagonal (102) plane. Findings from dynamic light scattering reveal the size distribution of nanoparticles. The nanoparticle's stability is investigated by ζ potential measurements. Pristine and Ni-doped CuSe nanoparticles exhibit ζ potential values in the preliminary stability band of ±10 to ±30 mV, while Zn-doped nanoparticles feature moderate stability levels of ±30 to ±40 mV. The potent antimicrobial effects of synthesized nanoparticles are studied against Staphylococcus aureus, Pseudomonas aeruginosa, Proteus vulgaris, Enterobacter aerogenes, and Escherichia coli bacteria. The 2,2-diphenyl-1-picrylhydrazyl scavenging test is used to investigate the nanoparticle's antioxidant activities. The results showed the highest activity for control (Vitamin C) with an IC50 value of 43.6 μg/mL, while the lowest for Ni-doped CuSe nanoparticles with an IC50 value of 106.2 μg/mL. Brine shrimps are utilized for in vivo cytotoxicity evaluation of the synthesized nanoparticles, which demonstrates that 10% Ni- and 10% Zn-doped CuSe nanoparticles are more damaging on brine shrimp instead on other nanoparticles with a 100% mortality rate. The lung cancer cell line of human (A549) is used to investigate in vitro cytotoxicity. The results indicate that pristine CuSe nanoparticles are more effective in the context of cytotoxicity against the A549 cell lines, possessing an IC50 of 488 μg/mL. The particulars of the outcomes are explained in depth.
Collapse
Affiliation(s)
- Sefali R Patel
- P. G. Department of Physics, Sardar Patel University, Vallabh Vidyanagar 388120, Gujarat, India
| | - Sunil H Chaki
- P. G. Department of Physics, Sardar Patel University, Vallabh Vidyanagar 388120, Gujarat, India
- Department of Applied & Interdisciplinary Sciences, CISST, Sardar Patel University, Vallabh Vidyanagar 388120, Gujarat, India
| | - Ranjan Kr Giri
- P. G. Department of Physics, Sardar Patel University, Vallabh Vidyanagar 388120, Gujarat, India
| | - Ankurkumar J Khimani
- Department of Physics, Shri A. N. Patel P. G. Institute of Science and Research, Anand 388001, Gujarat, India
| | - Yati H Vaidya
- Department of Microbiology, Shri A. N. Patel P. G. Institute of Science and Research, Anand 388001, Gujarat, India
| | - Parth Thakor
- B. D. Patel Institute of Paramedical Sciences, Charotar University of Science and Technology, CHARUSAT Campus, Changa 388421, Gujarat, India
| | - Anjali B Thakkar
- Department of Applied & Interdisciplinary Sciences, CISST, Sardar Patel University, Vallabh Vidyanagar 388120, Gujarat, India
- P. G. Department of Biosciences, Sardar Patel University, Satellite Campus, Bakrol-Vadtal Road, Bakrol 388315, Gujarat, India
| | - Milind P Deshpande
- P. G. Department of Physics, Sardar Patel University, Vallabh Vidyanagar 388120, Gujarat, India
| |
Collapse
|
5
|
Liu J, Xiao Y, Wang Y, Qin X, Tan S, Wang W, Lou L, Wu Z, Aihaiti A, Ma C, Liu YG. The Inhibition Effect and Mechanism of Nano Magnesium Peroxide Against Spoilage Fungi Emerging in Hami Melon. FOOD BIOPROCESS TECH 2023. [DOI: 10.1007/s11947-023-03052-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
6
|
Sharma P, Kumari R, Yadav M, Lal R. Evaluation of TiO 2 Nanoparticles Physicochemical Parameters Associated with their Antimicrobial Applications. Indian J Microbiol 2022; 62:338-350. [PMID: 35974921 PMCID: PMC9375816 DOI: 10.1007/s12088-022-01018-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 03/22/2022] [Indexed: 11/05/2022] Open
Abstract
Titanium dioxide nanoparticles (TiO2NPs) usage is increasing in everyday consumer products, hence, assessing their toxic impacts on living organisms and environment is essential. Various studies have revealed the significant role of TiO2NPs physicochemical properties on their toxicity. However, TiO2NPs are still poorly characterized with respect to their physicochemical properties, and environmental factors influencing their toxicity are either ignored or are too complex to be assessed under laboratory conditions. The outcomes of these studies are diverse and inconsistent due to lack of standard protocols. TiO2NPs toxicity also differs for in vivo and in vitro systems, which must also be considered during standardization of protocols to maintain uniformity and reproducibility of results. This review critically evaluates impact of different physicochemical parameters of TiO2NPs and other experimental conditions, employed in different laboratories in determining their toxicity towards bacteria. These important observations may be helpful in evaluation of environmental risks posed by these nanoparticles and this can further assist regulatory bodies in policymaking.
Collapse
Affiliation(s)
- Poonam Sharma
- Department of Zoology, Gargi College, University of Delhi, New Delhi, 110049 India
| | - Rekha Kumari
- Molecular Microbiology and Bioinformatics Laboratory, Department of Zoology, University of Delhi, Miranda House, Delhi, 110007 India
| | - Meena Yadav
- Department of Zoology, Maitreyi College, University of Delhi, New Delhi, India
| | - Rup Lal
- The Energy and Resources Institute, IHC Complex, Lodhi Road, New Delhi, 110003 India
| |
Collapse
|
7
|
Multidrug-Resistant Bacterial Pathogens and Public Health: The Antimicrobial Effect of Cyanobacterial-Biosynthesized Silver Nanoparticles. Antibiotics (Basel) 2022; 11:antibiotics11081003. [PMID: 35892392 PMCID: PMC9330853 DOI: 10.3390/antibiotics11081003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 12/10/2022] Open
Abstract
Background: Cyanobacteria are considered as green nano-factories. Manipulation of the size of biogenic silver nanoparticles is needed to produce particles that suit the different applications such as the use as antibacterial agents. The present study attempts to manipulate the size of biosynthesized silver nanoparticles produced by cyanobacteria and to test the different-sized nanoparticles against pathogenic clinical bacteria. Methods: Cyanothece-like. coccoid unicellular cyanobacterium was tested for its ability to biosynthesize nanosilver particles of different sizes. A stock solution of silver nitrate was prepared from which three different concentrations were added to cyanobacterial culture. UV-visible spectroscopy and FTIR were conducted to characterize the silver nanoparticles produced in the cell free filtrate. Dynamic Light Scattering (DLS) was performed to determine the size of the nanoparticles produced at each concentration. The antimicrobial bioassays were conducted on broad host methicillin-resistant Staphylococcus aureus (MRSA), and Streptococcus sp., was conducted to detect the nanoparticle size that was most efficient as an antimicrobial agent. Results. The UV-Visible spectra showed excellent congruence of the plasmon peak characteristic of nanosilver at 450 nm for all three different concentrations, varying peak heights were recorded according to the concentration used. The FTIR of the three solutions revealed the absence of characteristic functional groups in the solution. All three concentrations showed spectra at 1636 and 2050–2290 nm indicating uniformity of composition. Moreover, DLS analysis revealed that the silver nanoparticles produced with lowest concentration of precursor AgNO3 had smallest size followed by those resulting from the higher precursor concentration. The nanoparticles resulting from highest concentration of precursor AgNO3 were the biggest in size and tending to agglomerate when their size was above 100 nm. The three types of differently-sized silver nanoparticles were used against two bacterial pathogenic strains with broad host range; MRSA-(Methicillin-resistant Staphylococcus aureus) and Streptococcus sp. The three types of nanoparticles showed antimicrobial effects with the smallest nanoparticles being the most efficient in inhibiting bacterial growth. Discussion: Nanosilver particles biosynthesized by Cyanothece-like cyanobacterium can serve as antibacterial agent against pathogens including multi-drug resistant strains. The most appropriate nanoparticle size for efficient antimicrobial activity had to be identified. Hence, size-manipulation experiment was conducted to find the most effective size of nanosilver particles. This size manipulation was achieved by controlling the amount of starting precursor. Excessive precursor material resulted in the agglomeration of the silver nanoparticles to a size greater than 100 nm. Thereby decreasing their ability to penetrate into the inner vicinity of microbial cells and consequently decreasing their antibacterial potency. Conclusion: Antibacterial nanosilver particles can be biosynthesized and their size manipulated by green synthesis. The use of biogenic nanosilver particles as small as possible is recommended to obtain effective antibacterial agents.
Collapse
|
8
|
Marquez R, Zwilling J, Zambrano F, Tolosa L, Marquez ME, Venditti R, Jameel H, Gonzalez R. Nanoparticles and essential oils with antiviral activity on packaging and surfaces: An overview of their selection and application. J SURFACTANTS DETERG 2022. [DOI: 10.1002/jsde.12609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ronald Marquez
- Tissue Pack Innovation Lab, Department of Forest Biomaterials North Carolina State University Raleigh North Carolina USA
| | - Jacob Zwilling
- Tissue Pack Innovation Lab, Department of Forest Biomaterials North Carolina State University Raleigh North Carolina USA
| | - Franklin Zambrano
- Tissue Pack Innovation Lab, Department of Forest Biomaterials North Carolina State University Raleigh North Carolina USA
| | - Laura Tolosa
- School of Chemical Engineering Universidad de Los Andes Mérida Venezuela
| | - Maria E. Marquez
- Laboratory of Parasite Enzymology, Department of Biology Universidad de Los Andes Mérida Venezuela
| | - Richard Venditti
- Tissue Pack Innovation Lab, Department of Forest Biomaterials North Carolina State University Raleigh North Carolina USA
| | - Hasan Jameel
- Tissue Pack Innovation Lab, Department of Forest Biomaterials North Carolina State University Raleigh North Carolina USA
| | - Ronalds Gonzalez
- Tissue Pack Innovation Lab, Department of Forest Biomaterials North Carolina State University Raleigh North Carolina USA
| |
Collapse
|
9
|
Zhang S, Lu J, Wang Y, Verstraete W, Yuan Z, Guo J. Insights of metallic nanoparticles and ions in accelerating the bacterial uptake of antibiotic resistance genes. JOURNAL OF HAZARDOUS MATERIALS 2022; 421:126728. [PMID: 34339990 DOI: 10.1016/j.jhazmat.2021.126728] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 07/21/2021] [Accepted: 07/21/2021] [Indexed: 06/13/2023]
Abstract
The increasing release of nanomaterials has attracted significant concerns for human and environmental health. Similarly, the dissemination of antimicrobial resistance (AMR) is a global health crisis affecting approximately 700,000 people a year. However, a knowledge gap persists between the spread of AMR and nanomaterials. This study aims to fill this gap by investigating whether and how nanomaterials could directly facilitate the dissemination of AMR through horizontal gene transfer. Our results show that commonly-used nanoparticles (NPs) (Ag, CuO and ZnO NPs) and their ion forms (Ag+, Cu2+ and Zn2+) at realistic concentrations within aquatic environments can significantly promote the transformation of extracellular antibiotic resistance genes in Acinetobacter baylyi ADP1 by a factor of 11.0-folds, which is comparable to the effects of antibiotics. The enhanced transformation by Ag NPs/Ag+ and CuO NPs/Cu2+ was primarily associated with the overproduction of reactive oxygen species and cell membrane damage. ZnO NPs/Zn2+ might increase the natural transformation rate by stimulating the stress response and ATP synthesis. All tested NPs/ions resulted in upregulating the competence and SOS response-associated genes. These findings highlight a new concern that nanomaterials can speed up the spread of AMR, which should not be ignored when assessing the holistic risk of nanomaterials.
Collapse
Affiliation(s)
- Shuai Zhang
- Advanced Water Management Centre (AWMC), The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia; Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science &Technology, Nanjing 210044, China
| | - Ji Lu
- Advanced Water Management Centre (AWMC), The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Yue Wang
- Advanced Water Management Centre (AWMC), The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Willy Verstraete
- Center for Microbial Ecology and Technology, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Zhiguo Yuan
- Advanced Water Management Centre (AWMC), The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Jianhua Guo
- Advanced Water Management Centre (AWMC), The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia.
| |
Collapse
|
10
|
Mba IE, Nweze EI. Nanoparticles as therapeutic options for treating multidrug-resistant bacteria: research progress, challenges, and prospects. World J Microbiol Biotechnol 2021. [PMID: 34046779 DOI: 10.1007/s11274-021-03070-x/tables/5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2023]
Abstract
Resistance to antimicrobial agents has been alarming in recent years and poses a huge public health threat globally according to the WHO. The increase in morbidity and mortality resulting from microbial infections has been attributed to the emergence of multidrug-resistant microbes. Associated with the increase in multidrug resistance is the lack of new and effective antimicrobials. This has led to global initiatives to identify novel and more effective antimicrobial agents in addition to discovering novel and effective drug delivery and targeting methods. The use of nanoparticles as novel biomaterials to fully achieve this feat is currently gaining global attention. Nanoparticles could become an indispensable viable therapeutic option for treating drug-resistant infections. Of all the nanoparticles, the metals and metal oxide nanoparticles appear to offer the most promise and have attracted tremendous interest from many researchers. Moreover, the use of nanomaterials in photothermal therapy has received considerable attention over the years. This review provides current insight on antimicrobial resistance as well as the mechanisms of nanoparticle antibacterial activity. It offers an in-depth review of all the recent findings in the use of nanomaterials as agents against multi-resistant pathogenic bacteria. Also, nanomaterials that can respond to light stimuli (photothermal therapy) to kill microbes and facilitate enhanced drug delivery and release are discussed. Moreover, the synergistic interactions of nanoparticles with antibiotics and other nanomaterials, microbial adaptation strategies to nanoparticles, current challenges, and future prospects were extensively discussed.
Collapse
Affiliation(s)
- Ifeanyi E Mba
- Department of Microbiology, University of Nigeria, Nsukka, Nigeria
| | - Emeka I Nweze
- Department of Microbiology, University of Nigeria, Nsukka, Nigeria.
| |
Collapse
|
11
|
Mba IE, Nweze EI. Nanoparticles as therapeutic options for treating multidrug-resistant bacteria: research progress, challenges, and prospects. World J Microbiol Biotechnol 2021; 37:108. [PMID: 34046779 PMCID: PMC8159659 DOI: 10.1007/s11274-021-03070-x] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 05/16/2021] [Indexed: 11/17/2022]
Abstract
Resistance to antimicrobial agents has been alarming in recent years and poses a huge public health threat globally according to the WHO. The increase in morbidity and mortality resulting from microbial infections has been attributed to the emergence of multidrug-resistant microbes. Associated with the increase in multidrug resistance is the lack of new and effective antimicrobials. This has led to global initiatives to identify novel and more effective antimicrobial agents in addition to discovering novel and effective drug delivery and targeting methods. The use of nanoparticles as novel biomaterials to fully achieve this feat is currently gaining global attention. Nanoparticles could become an indispensable viable therapeutic option for treating drug-resistant infections. Of all the nanoparticles, the metals and metal oxide nanoparticles appear to offer the most promise and have attracted tremendous interest from many researchers. Moreover, the use of nanomaterials in photothermal therapy has received considerable attention over the years. This review provides current insight on antimicrobial resistance as well as the mechanisms of nanoparticle antibacterial activity. It offers an in-depth review of all the recent findings in the use of nanomaterials as agents against multi-resistant pathogenic bacteria. Also, nanomaterials that can respond to light stimuli (photothermal therapy) to kill microbes and facilitate enhanced drug delivery and release are discussed. Moreover, the synergistic interactions of nanoparticles with antibiotics and other nanomaterials, microbial adaptation strategies to nanoparticles, current challenges, and future prospects were extensively discussed.
Collapse
Affiliation(s)
- Ifeanyi E Mba
- Department of Microbiology, University of Nigeria, Nsukka, Nigeria
| | - Emeka I Nweze
- Department of Microbiology, University of Nigeria, Nsukka, Nigeria.
| |
Collapse
|
12
|
Domingo G, Villa F, Vannini C, Garuglieri E, Onelli E, Bracale M, Cappitelli F. Label-Free Proteomic Approach to Study the Non-lethal Effects of Silver Nanoparticles on a Gut Bacterium. Front Microbiol 2019; 10:2709. [PMID: 31866956 PMCID: PMC6906586 DOI: 10.3389/fmicb.2019.02709] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 11/08/2019] [Indexed: 01/14/2023] Open
Abstract
Among all the food-related nanoparticles consumed every day, silver nanoparticles (AgNPs) have become one of the most commonly utilized because of their antimicrobial properties. Despite their common use, the effects of sublethal concentrations of AgNPs, especially on gut biofilms, have been poorly investigated. To address this issue, we investigated in vitro the proteomic response of a monospecies Escherichia coli gut biofilm to chronic and acute exposures in sublethal concentrations of AgNPs. We used a new gel- and label-free proteomic approach based on shotgun nanoflow liquid chromatography-tandem mass spectrometry. This approach allows a quantification of the whole proteome at a dynamic range that is higher than the traditional proteomic investigation. To assess all different possible exposure scenarios, we compared the biofilm proteome of four treatments: (i) untreated cells for the control treatment, (ii) cells treated with 1 μg/ml AgNPs for 24 h for the acute treatment, (iii) cells grown with 1 μg/ml AgNPs for 96 h for the chronic treatment, and (iv) cells grown in the presence of 1 μg/ml AgNPs for 72 h and then further treated for 24 h with 10 μg/ml AgNPs for the chronic + acute treatment. Among the 1,917 proteins identified, 212 were significantly differentially expressed proteins. Several pathways were altered including biofilm formation, bacterial adhesion, stress response to reactive oxygen species, and glucose utilization.
Collapse
Affiliation(s)
- Guido Domingo
- Department of Biotechnology and Life Sciences, Università degli Studi dell'Insubria, Varese, Italy
| | - Federica Villa
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Milan, Italy
| | - Candida Vannini
- Department of Biotechnology and Life Sciences, Università degli Studi dell'Insubria, Varese, Italy
| | - Elisa Garuglieri
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Milan, Italy
| | - Elisabetta Onelli
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Marcella Bracale
- Department of Biotechnology and Life Sciences, Università degli Studi dell'Insubria, Varese, Italy
| | - Francesca Cappitelli
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
13
|
Niño-Martínez N, Salas Orozco MF, Martínez-Castañón GA, Torres Méndez F, Ruiz F. Molecular Mechanisms of Bacterial Resistance to Metal and Metal Oxide Nanoparticles. Int J Mol Sci 2019; 20:E2808. [PMID: 31181755 PMCID: PMC6600416 DOI: 10.3390/ijms20112808] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 06/04/2019] [Accepted: 06/06/2019] [Indexed: 02/07/2023] Open
Abstract
The increase in bacterial resistance to one or several antibiotics has become a global health problem. Recently, nanomaterials have become a tool against multidrug-resistant bacteria. The metal and metal oxide nanoparticles are one of the most studied nanomaterials against multidrug-resistant bacteria. Several in vitro studies report that metal nanoparticles have antimicrobial properties against a broad spectrum of bacterial species. However, until recently, the bacterial resistance mechanisms to the bactericidal action of the nanoparticles had not been investigated. Some of the recently reported resistance mechanisms include electrostatic repulsion, ion efflux pumps, expression of extracellular matrices, and the adaptation of biofilms and mutations. The objective of this review is to summarize the recent findings regarding the mechanisms used by bacteria to counteract the antimicrobial effects of nanoparticles.
Collapse
Affiliation(s)
- Nereyda Niño-Martínez
- Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, San Luis Potosí Cp 78210, Mexico.
| | - Marco Felipe Salas Orozco
- Facultad de Estomatología, Universidad Autónoma de San Luis Potosí, San Luis Potosí Cp 78210, Mexico.
| | | | - Fernando Torres Méndez
- Facultad de Estomatología, Universidad Autónoma de San Luis Potosí, San Luis Potosí Cp 78210, Mexico.
| | - Facundo Ruiz
- Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, San Luis Potosí Cp 78210, Mexico.
| |
Collapse
|
14
|
Zhang X, Jiang X, Croley TR, Boudreau MD, He W, Cai J, Li P, Yin JJ. Ferroxidase-like and antibacterial activity of PtCu alloy nanoparticles. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS 2019; 37:99-115. [PMID: 31099294 DOI: 10.1080/10590501.2019.1602991] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Many metal nanoparticles are reported to have intrinsic enzyme-like activities and offer great potential in chemical and biomedical applications. In this study, PtCu alloy nanoparticles (NPs), synthesized through hydrothermal treatment of Cu2+ and Pt2+ in an aqueous solution, were evaluated for ferroxidase-like and antibacterial activity. Electron spin resonance (ESR) spectroscopy and colorimetric methods were used to demonstrate that PtCu NPs exhibited strong ferroxidase-like activity in a weakly acidic environment and that this activity was not affected by the presence of most other ions, except silver. Based on the color reaction of salicylic acid in the presence of Fe3+, we tested the ferroxidase-like activity of PtCu NPs to specifically detect Fe2+ in a solution of an oral iron supplement and compared these results with data acquired from atomic absorption spectroscopy and the phenanthroline colorimetric method. The results showed that the newly developed PtCu NPs detection method was equivalent to or better than the other two methods used for Fe2+ detection. The antibacterial experiments showed that PtCu NPs have strong antibacterial activity against Staphylococcus aureus and Escherichia coli. Herein, we demonstrate that the peroxidase-like activity of PtCu NPs can catalyze H2O2 and generate hydroxyl radicals, which may elucidate the antibacterial activity of the PtCu NPs against S. aureus and E. coli. These results showed that PtCu NPs exhibited both ferroxidase- and peroxidase-like activity and that they may serve as convenient and efficient NPs for the detection of Fe2+ and for antibacterial applications.
Collapse
Affiliation(s)
- Xiaowei Zhang
- a Food and Bioengineering College , Xuchang University , Xuchang , P. R. China
- c Division of Analytical Chemistry, Office of Regulatory Science, Center for Food Safety and Applied Nutrition , U.S. Food and Drug Administration , College Park , MD , USA
| | - Xiumei Jiang
- c Division of Analytical Chemistry, Office of Regulatory Science, Center for Food Safety and Applied Nutrition , U.S. Food and Drug Administration , College Park , MD , USA
| | - Timothy R Croley
- c Division of Analytical Chemistry, Office of Regulatory Science, Center for Food Safety and Applied Nutrition , U.S. Food and Drug Administration , College Park , MD , USA
| | - Mary D Boudreau
- d National Center for Toxicological Research , U.S. Food and Drug Administration , Jefferson , AR , USA
| | - Weiwei He
- b Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, College of Advanced Materials and Energy , Institute of Surface Micro and Nano Materials, Xuchang University , Xuchang , P. R. China
| | - Junhui Cai
- b Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, College of Advanced Materials and Energy , Institute of Surface Micro and Nano Materials, Xuchang University , Xuchang , P. R. China
| | - Peirui Li
- a Food and Bioengineering College , Xuchang University , Xuchang , P. R. China
| | - Jun-Jie Yin
- c Division of Analytical Chemistry, Office of Regulatory Science, Center for Food Safety and Applied Nutrition , U.S. Food and Drug Administration , College Park , MD , USA
| |
Collapse
|
15
|
Chen Z, Gao SH, Jin M, Sun S, Lu J, Yang P, Bond PL, Yuan Z, Guo J. Physiological and transcriptomic analyses reveal CuO nanoparticle inhibition of anabolic and catabolic activities of sulfate-reducing bacterium. ENVIRONMENT INTERNATIONAL 2019; 125:65-74. [PMID: 30710801 DOI: 10.1016/j.envint.2019.01.058] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 01/21/2019] [Accepted: 01/22/2019] [Indexed: 06/09/2023]
Abstract
The widespread use of CuO nanoparticles (NPs) results in their continuous release into the environment, which could pose risks to public health and to microbial ecosystems. Following consumption, NPs will initially enter into sewer systems and interact with and potentially influence sewer microbial communities. An understanding of the response of microbes in sewers, particularly sulfate-reducing bacteria (SRB), to the CuO NPs induced stress is important as hydrogen sulfide produced by SRB can cause sewer corrosion and odour emissions. In this study, we elucidated how the anabolic and catabolic processes of a model SRB, Desulfovibrio vulgaris Hidenborough (D. vulgaris), respond to CuO NPs. Physiological analyses indicated that the exposure of the culture to CuO NPs at elevated concentrations (>50 mg/L) inhibited both its anabolic and catabolic activities, as revealed by lowered cell proliferation and sulfate reduction rate. The antibacterial effects of CuO NPs were mainly attributed to the overproduction of reactive oxygen species. Transcriptomic analysis indicated that genes encoding for flagellar assembly and some genes involved in electron transfer and respiration were down-regulated, while genes for the ferric uptake regulator (Fur) were up-regulated. Moreover, the CuO NPs exposure significantly up-regulated genes involved in protein synthesis and ATP synthesis. These results suggest that CuO NPs inhibited energy conversion, cell mobility, and iron starvation to D. vulgaris. Meanwhile, D. vulgaris attempted to respond to the stress of CuO NPs by increasing protein and ATP synthesis. These findings offer new insights into the bacterial-nanoparticles interaction at the transcriptional level, and advance our understanding of impacts of CuO NPs on SRB in the environment.
Collapse
Affiliation(s)
- Zhaoyu Chen
- Advanced Water Management Centre, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia; Department of Environmental Science & Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Shu-Hong Gao
- Advanced Water Management Centre, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Min Jin
- Advanced Water Management Centre, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Shengjie Sun
- Advanced Water Management Centre, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Ji Lu
- Advanced Water Management Centre, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Ping Yang
- Department of Environmental Science & Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Philip L Bond
- Advanced Water Management Centre, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Zhiguo Yuan
- Advanced Water Management Centre, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Jianhua Guo
- Advanced Water Management Centre, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia.
| |
Collapse
|
16
|
Liao S, Zhang Y, Pan X, Zhu F, Jiang C, Liu Q, Cheng Z, Dai G, Wu G, Wang L, Chen L. Antibacterial activity and mechanism of silver nanoparticles against multidrug-resistant Pseudomonas aeruginosa. Int J Nanomedicine 2019; 14:1469-1487. [PMID: 30880959 PMCID: PMC6396885 DOI: 10.2147/ijn.s191340] [Citation(s) in RCA: 243] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The threat of drug-resistant Pseudomonas aeruginosa requires great efforts to develop highly effective and safe bactericide. OBJECTIVE This study aimed to investigate the antibacterial activity and mechanism of silver nanoparticles (AgNPs) against multidrug-resistant P. aeruginosa. METHODS The antimicrobial effect of AgNPs on clinical isolates of resistant P. aeruginosa was assessed by minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC). In multidrug-resistant P. aeruginosa, the alterations of morphology and structure were observed by the transmission electron microscopy (TEM); the differentially expressed proteins were analyzed by quantitative proteomics; the production of reactive oxygen species (ROS) was assayed by H2DCF-DA staining; the activity of superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) was chemically measured and the apoptosis-like effect was determined by flow cytometry. RESULTS Antimicrobial tests revealed that AgNPs had highly bactericidal effect on the drug-resistant or multidrug-resistant P. aeruginosa with the MIC range of 1.406-5.625 µg/mL and the MBC range of 2.813-5.625 µg/mL. TEM showed that AgNPs could enter the multidrug-resistant bacteria and impair their morphology and structure. The proteomics quantified that, in the AgNP-treated bacteria, the levels of SOD, CAT, and POD, such as alkyl hydroperoxide reductase and organic hydroperoxide resistance protein, were obviously high, as well as the significant upregulation of low oxygen regulatory oxidases, including cbb3-type cytochrome c oxidase subunit P2, N2, and O2. Further results confirmed the excessive production of ROS. The antioxidants, reduced glutathione and ascorbic acid, partially antagonized the antibacterial action of AgNPs. The apoptosis-like rate of AgNP-treated bacteria was remarkably higher than that of the untreated bacteria (P<0.01). CONCLUSION This study proved that AgNPs could play antimicrobial roles on the multidrug-resistant P. aeruginosa in a concentration- and time-dependent manner. The main mechanism involves the disequilibrium of oxidation and antioxidation processes and the failure to eliminate the excessive ROS.
Collapse
Affiliation(s)
- Shijing Liao
- Department of Medical Microbiology, School of Basic Medical Sciences, Central South University, Changsha 410013, China,
| | - Yapeng Zhang
- Department of Medical Microbiology, School of Basic Medical Sciences, Central South University, Changsha 410013, China,
| | - Xuanhe Pan
- Department of Medical Microbiology, School of Basic Medical Sciences, Central South University, Changsha 410013, China,
| | - Feizhou Zhu
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha 410013, China
| | - Congyuan Jiang
- Hunan Anson Biotechnology Co., Ltd., Changsha 410008, China
| | - Qianqian Liu
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha 410013, China
| | - Zhongyi Cheng
- Jingjie PTM BioLab Co., Ltd., Hangzhou Economic and Technological Development Area, Hangzhou 310018, China
| | - Gan Dai
- Department of Medical Microbiology, School of Basic Medical Sciences, Central South University, Changsha 410013, China,
| | - Guojun Wu
- Department of Medical Microbiology, School of Basic Medical Sciences, Central South University, Changsha 410013, China,
| | - Linqian Wang
- Department of Clinical Laboratory, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, China,
| | - Liyu Chen
- Department of Medical Microbiology, School of Basic Medical Sciences, Central South University, Changsha 410013, China,
| |
Collapse
|
17
|
Lewis RW, Bertsch PM, McNear DH. Nanotoxicity of engineered nanomaterials (ENMs) to environmentally relevant beneficial soil bacteria - a critical review. Nanotoxicology 2019; 13:392-428. [PMID: 30760121 DOI: 10.1080/17435390.2018.1530391] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Deposition of engineered nanomaterials (ENMs) in various environmental compartments is projected to continue rising exponentially. Terrestrial environments are expected to be the largest repository for environmentally released ENMs. Because ENMs are enriched in biosolids during wastewater treatment, agriculturally applied biosolids facilitate ENM exposure of key soil micro-organisms, such as plant growth-promoting rhizobacteria (PGPR). The ecological ramifications of increasing levels of ENM exposure of terrestrial micro-organisms are not clearly understood, but a growing body of research has investigated the toxicity of ENMs to various soil bacteria using a myriad of toxicity end-points and experimental procedures. This review explores what is known regarding ENM toxicity to important soil bacteria, with a focus on ENMs which are expected to accumulate in terrestrial ecosystems at the highest concentrations and pose the greatest potential threat to soil micro-organisms having potential indirect detrimental effects on plant growth. Knowledge gaps in the fundamental understanding of nanotoxicity to bacteria are identified, including the role of physicochemical properties of ENMs in toxicity responses, particularly in agriculturally relevant micro-organisms. Strategies for improving the impact of future research through the implementation of in-depth ENM characterization and use of necessary experimental controls are proposed. The future of nanotoxicological research employing microbial ecoreceptors is also explored, highlighting the need for continued research utilizing bacterial isolates while concurrently expanding efforts to study ENM-bacteria interactions in more complex environmentally relevant media, e.g. soil. Additionally, the particular importance of future work to extensively examine nanotoxicity in the context of bacterial ecosystem function, especially of plant growth-promoting agents, is proposed.
Collapse
Affiliation(s)
- Ricky W Lewis
- a Rhizosphere Science Laboratory, Department of Plant and Soil Sciences , University of Kentucky , Lexington , KY , USA
| | - Paul M Bertsch
- a Rhizosphere Science Laboratory, Department of Plant and Soil Sciences , University of Kentucky , Lexington , KY , USA.,b CSIRO Land and Water , Ecosciences Precinct , Brisbane , Australia.,c Center for the Environmental Implications of Nanotechnology (CEINT) , Duke University , Durham , NC , USA
| | - David H McNear
- a Rhizosphere Science Laboratory, Department of Plant and Soil Sciences , University of Kentucky , Lexington , KY , USA
| |
Collapse
|
18
|
Chen S, Li X, Wang Y, Zeng J, Ye C, Li X, Guo L, Zhang S, Yu X. Induction of Escherichia coli into a VBNC state through chlorination/chloramination and differences in characteristics of the bacterium between states. WATER RESEARCH 2018; 142:279-288. [PMID: 29890476 DOI: 10.1016/j.watres.2018.05.055] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 05/22/2018] [Accepted: 05/29/2018] [Indexed: 05/22/2023]
Abstract
Many pathogens can enter into a viable but nonculturable (VBNC) state in response to harsh environmental stresses. Bacteria in this state can retain certain features of viable cells, such as cellular integrity, metabolic activity, or virulence and may present health risks associated with drinking water. In this study, we investigated the ability of chlorination and chloramination, which are widely used methods to disinfect drinking water, to induce Escherichia coli into a VBNC state. After treatment with chlorine and chloramine at concentrations of 1, 2, 3, and 4 mg/L, the counts of culturable E. coli cells decreased from 106 CFU/mL to 0 CFU/mL at 5-60 min post treatment. Meanwhile, viable cell counts were still approximately 103-105 cells/mL. These viable E. coli cells may be induced into a VBNC state by chlorination and chloramination. Scanning electron microscopy and laser confocal microscopy showed that some bacteria maintained cellular integrity, but the average length of VBNC cells was less than that of culturable cells. Respiratory activity of VBNC cells decreased approximately 50% relative to that of culturable cells. We also used heavy water (D2O) combined with Raman microspectroscopy to show that E. coli in a VBNC state retained metabolic activity involving water (e.g. condensation reactions) at the single-cell level. Furthermore, soxR, gadA, and katG genes remained highly expressed, suggesting that VBNC cells were physiologically active. Finally, resuscitation of VBNC cells induced by chlorine in Luria-Bertani (LB) broth was identified by calculating the generation time. Results of this study will facilitate a better understanding of the health risks associated with VBNC bacteria and the development of more effective strategies for drinking water disinfection.
Collapse
Affiliation(s)
- Sheng Chen
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xi Li
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yahong Wang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jie Zeng
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Chengsong Ye
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China
| | - Xianping Li
- College of Environment & Ecology, Xiamen University, Xiamen 361021, PR China
| | - Lizheng Guo
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Shenghua Zhang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China.
| | - Xin Yu
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China.
| |
Collapse
|
19
|
Syafiuddin A, Salmiati S, Jonbi J, Fulazzaky MA. Application of the kinetic and isotherm models for better understanding of the behaviors of silver nanoparticles adsorption onto different adsorbents. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 218:59-70. [PMID: 29665487 DOI: 10.1016/j.jenvman.2018.03.066] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 03/12/2018] [Accepted: 03/14/2018] [Indexed: 06/08/2023]
Abstract
It is the first time to do investigation the reliability and validity of thirty kinetic and isotherm models for describing the behaviors of adsorption of silver nanoparticles (AgNPs) onto different adsorbents. The purpose of this study is therefore to assess the most reliable models for the adsorption of AgNPs onto feasibility of an adsorbent. The fifteen kinetic models and fifteen isotherm models were used to test secondary data of AgNPs adsorption collected from the various data sources. The rankings of arithmetic mean were estimated based on the six statistical analysis methods of using a dedicated software of the MATLAB Optimization Toolbox with a least square curve fitting function. The use of fractal-like mixed 1, 2-order model for describing the adsorption kinetics and that of Fritz-Schlunder and Baudu models for describing the adsorption isotherms can be recommended as the most reliable models for AgNPs adsorption onto the natural and synthetic adsorbent materials. The application of thirty models have been identified for the adsorption of AgNPs to clarify the usefulness of both groups of the kinetic and isotherm equations in the rank order of the levels of accuracy, and this significantly contributes to understandability and usability of the proper models and makes to knowledge beyond the existing literatures.
Collapse
Affiliation(s)
- Achmad Syafiuddin
- Department of Environmental Engineering, Faculty of Civil Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor Bahru, Malaysia
| | - Salmiati Salmiati
- Department of Environmental Engineering, Faculty of Civil Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor Bahru, Malaysia; Centre for Environmental Sustainability and Water Security, Research Institute for Sustainable Environment, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor Bahru, Malaysia
| | - Jonbi Jonbi
- Faculty of Civil Engineering, Pancasila University, Jalan Kenseng Sawah, Jakarta 12640, Indonesia
| | - Mohamad Ali Fulazzaky
- Faculty of Civil Engineering, Pancasila University, Jalan Kenseng Sawah, Jakarta 12640, Indonesia; Islamic Science Research Network, University of Muhammadiyah Prof Dr Hamka, Jalan Limau No. 2, Jakarta, 12130, Indonesia; Directorate General of Water Resources, Ministry of Public Works and Housing, Jalan Pattimura No. 20, Jakarta, 12110, Indonesia.
| |
Collapse
|
20
|
Yuan L, Richardson CJ, Ho M, Willis CW, Colman BP, Wiesner MR. Stress Responses of Aquatic Plants to Silver Nanoparticles. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:2558-2565. [PMID: 29381864 DOI: 10.1021/acs.est.7b05837] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Silver nanoparticles (AgNPs) are increasingly used in consumer products, biotechnology, and medicine, and are released into aquatic ecosystems through wastewater discharge. This study investigated the phytotoxicity of AgNPs to aquatic plants, Egeria densa and Juncus effusus by measuring physiologic and enzymatic responses to AgNP exposure under three release scenarios: two chronic (8.7 mg, weekly) exposures to either zerovalent AgNPs or sulfidized silver nanoparticles; and a pulsed (450 mg, one-time) exposure to zerovalent AgNPs. Plant enzymatic and biochemical stress responses were assessed using superoxide dismutase (SOD) and peroxidase (POD) activity, malondialdehyde (MDA) concentrations and chlorophyll content as markers of defense and phytotoxicity, respectively. The high initial pulse treatment resulted in rapid changes in physiological characteristics and silver concentration in plant tissue at the beginning of each AgNPs exposure (6 h, 36 h, and 9 days), while continuous AgNP and sulfidized AgNP chronic treatments gave delayed responses. Both E. densa and J. effusus enhanced their tolerance to AgNPs toxicity by increasing POD and SOD activities to scavenge free radicals but at different growth phases. Chlorophyll did not change. After AgNPs exposure, MDA, an index of membrane damage, was higher in submerged E. densa than emergent J. effusus, which suggested that engineered nanoparticles exerted more stress to submerged macrophytes.
Collapse
Affiliation(s)
- Lin Yuan
- State Key Laboratory of Estuarine and Coastal Research , East China Normal University , Shanghai , 200062 , China
- Duke University Wetland Center , Nicholas School of the Environment , Durham , North Carolina 27708 , United States
| | - Curtis J Richardson
- Duke University Wetland Center , Nicholas School of the Environment , Durham , North Carolina 27708 , United States
- Center for the Environmental Implications of Nanotechnology , Duke University , Durham , North Carolina 27708 , United States
| | - Mengchi Ho
- Duke University Wetland Center , Nicholas School of the Environment , Durham , North Carolina 27708 , United States
| | - C Wesley Willis
- Duke University Wetland Center , Nicholas School of the Environment , Durham , North Carolina 27708 , United States
| | - Benjamin P Colman
- Center for the Environmental Implications of Nanotechnology , Duke University , Durham , North Carolina 27708 , United States
- Department of Biology , Duke University , Durham , North Carolina 27708 , United States
| | - Mark R Wiesner
- Center for the Environmental Implications of Nanotechnology , Duke University , Durham , North Carolina 27708 , United States
- Civil and Environmental Engineering Department , Duke University , Durham , North Carolina 27708 , United States
| |
Collapse
|