1
|
Bryant AS, Akimori D, Stoltzfus JDC, Hallem EA. A standard workflow for community-driven manual curation of Strongyloides genome annotations. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220443. [PMID: 38008112 PMCID: PMC10676816 DOI: 10.1098/rstb.2022.0443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 07/18/2023] [Indexed: 11/28/2023] Open
Abstract
Advances in the functional genomics and bioinformatics toolkits for Strongyloides species have positioned these species as genetically tractable model systems for gastrointestinal parasitic nematodes. As community interest in mechanistic studies of Strongyloides species continues to grow, publicly accessible reference genomes and associated genome annotations are critical resources for researchers. Genome annotations for multiple Strongyloides species are broadly available via the WormBase and WormBase ParaSite online repositories. However, a recent phylogenetic analysis of the receptor-type guanylate cyclase (rGC) gene family in two Strongyloides species highlights the potential for errors in a large percentage of current Strongyloides gene models. Here, we present three examples of gene annotation updates within the Strongyloides rGC gene family; each example illustrates a type of error that may occur frequently within the annotation data for Strongyloides genomes. We also extend our analysis to 405 previously curated Strongyloides genes to confirm that gene model errors are found at high rates across gene families. Finally, we introduce a standard manual curation workflow for assessing gene annotation quality and generating corrections, and we discuss how it may be used to facilitate community-driven curation of parasitic nematode biodata. This article is part of the Theo Murphy meeting issue 'Strongyloides: omics to worm-free populations'.
Collapse
Affiliation(s)
- Astra S. Bryant
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
| | - Damia Akimori
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
- Molecular Biology Interdepartmental PhD Program, University of California, Los Angeles, CA 90095, USA
| | | | - Elissa A. Hallem
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
2
|
Zhou H, Yuan W, Lei W, Zhou T, Qin P, Zhang B, Hu M. Domain definition and preliminary functional exploration of the endonuclease NOBP-1 in Strongyloides stercoralis. Parasit Vectors 2023; 16:399. [PMID: 37924155 PMCID: PMC10623843 DOI: 10.1186/s13071-023-05940-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/22/2023] [Indexed: 11/06/2023] Open
Abstract
BACKGROUND Ribosome biogenesis is the process of assembling ribosome complexes that regulate cell proliferation and differentiation with potential regulatory effects on development. Many factors regulate ribosome biological processes. Nin one binding protein (Nob1) has received widespread attention as key genes regulating ribosome biogenesis-the 3' end of the 20S rRNA is cleaved by Nob1 at cleavage site D to form 18S rRNA, generating translationally capable 40S subunit. As a ribosome biogenesis factor, Nob1 may regulate the development of organisms, but almost nothing is known about the function of Nob1 for any parasitic nematode. We explored the functional role of NOBP-1 (the homologous gene of Nob1) encoding gene from a parasitic nematode-Strongyloides stercoralis. METHODS The full-length cDNA, gDNA and promoter region of Ss-nobp-1 was identified using protein BLAST in WormBase ParaSite according to the Caenorhabditis elegans NOBP-1 sequence to analyze the gene structure. RNA sequencing (RNA-seq) data in wormbase were retrieved and analyzed to assess the transcript abundance of Ss-nobp-1 in seven developmental stages of S. stercoralis. The standard method for gonadal microinjection of constructs was carried out to determine the anatomic expression patterns of Ss-nobp-1. The interaction between Ss-NOBP-1 and partner of NOBP-1 (Ss-PNO-1) was assessed by yeast two-hybridization and bimolecular fluorescence complementarity (BiFC) experiments. RESULTS The NOBP-1 encoding gene Ss-nopb-1 from the zoonotic parasite S. stercoralis has been isolated and characterized. The genomic DNA representing Ss-nobp-1 includes a 1599-bp coding region and encodes a protein comprising 403 amino acids (aa), which contains conserved PIN domain and zinc ribbon domain. RNA-seq analysis revealed that Ss-nobp-1 transcripts are present throughout the seven developmental stages in S. stercoralis and have higher transcription levels in iL3, L3 and P Female. Ss-nobp-1 is expressed mainly in the intestine of transgenic S. stercoralis larvae, and there is a direct interaction between Ss-NOBP-1 and Ss-PNO-1. CONCLUSIONS Collectively, Ss-NOBP-1 has a potential role in embryo formation and the infective process, and findings from this study provide a sound foundation for investigating its function during the development of parasitic nematode.
Collapse
Affiliation(s)
- Huan Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, China.
| | - Wang Yuan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Weiqiang Lei
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- College of Animal Science and Technology, Jinling Institute of Technology, Nanjing, 210038, China
| | - Taoxun Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Peixi Qin
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Biying Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Min Hu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
3
|
Zhou H, Zhou T, Zhang B, Lei W, Yuan W, Shan J, Zhang Y, Gupta N, Hu M. RIOK-2 protein is essential for egg hatching in a common parasitic nematode. Int J Parasitol 2020; 50:595-602. [PMID: 32592810 DOI: 10.1016/j.ijpara.2020.05.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/01/2020] [Accepted: 05/07/2020] [Indexed: 11/18/2022]
Abstract
The atypical protein kinase RIOK-2 is a non-ribosomal factor essential for ribosome maturation in yeast and human cells; however, little is known about its physiological role in pathogens. Our earlier work examined the expression profile of a RIOK-2 gene (Ss-riok-2) in Strongyloides stercoralis - a prevalent nematode parasite of dogs and humans. Herein, we demonstrate that Ss-RIOK-2 encodes a catalytically active kinase, distributed primarily in the cytoplasm of intestinal and hypodermal cells in transgenic larvae. Its expression oscillates as the free-living L1s develop into infective L3s. Overexpression of a catalytically impaired Ss-RIOK-2-D228A mutant delayed the development of transgenic larvae, while ectopic expression of another dominant negative isoform with a mutation in the ATP-binding site (K123A) abrogated the process of egg hatching, which could be rescued by co-expressing a wild-type Ss-RIOK-2 but not by its Ss-RIOK-1 ortholog. Collectively, our findings show a critical and specific role of Ss-RIOK-2 during the development of a pathogenic roundworm, which can be exploited to develop anti-infectives.
Collapse
Affiliation(s)
- Huan Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Taoxun Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Biying Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Weiqiang Lei
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Wang Yuan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Jianan Shan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Ying Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Nishith Gupta
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China; Department of Molecular Parasitology, Faculty of Life Sciences, Humboldt University, Berlin, Germany
| | - Min Hu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China.
| |
Collapse
|
4
|
Di W, Gasser RB, He L, Li F, Liu X, Zhou C, Zhou Y, Fang R, Zhao J, Hu M. A serine/threonine-specific protein kinase of Haemonchus contortus with a role in the development. FASEB J 2019; 34:2075-2086. [PMID: 31907982 DOI: 10.1096/fj.201900888rr] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 11/05/2019] [Accepted: 11/09/2019] [Indexed: 11/11/2022]
Abstract
In the free-living nematode Caenorhabditis elegans, the serine/threonine-specific protein kinase, AKT, is known to play a key role in dauer formation, life-span, and stress-resistance through the insulin-like signaling pathway. Although the structure and function of AKT-coding genes of C. elegans are understood, this is not the case for homologous genes in parasitic nematodes. In the present study, we explored a C. elegans akt-1 gene homolog in the parasitic nematode Haemonchus contortus, investigated its transcript isoforms (Hc-akt-1a and Hc-akt-1b), and studied expression and function using both homologous and heterologous functional genomic tools. In C. elegans, we showed that the predicted promoter of Hc-akt-1 drives substantial expression in ASJ neurons of the N2 (wild-type) strain. In H. contortus (Haecon-5 stain), RNAi (soaking) led to a significantly decreased transcript abundance for both Hc-akt-1a and Hc-akt-1b, and reduced larval development in larval stages in vitro. Chemical inhibition was also shown to block larval development. Taken together, the evidence from this study points to a key functional role for Hc-akt-1 in H. contortus.
Collapse
Affiliation(s)
- Wenda Di
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Development of Veterinary Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Robin B Gasser
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Development of Veterinary Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Faculty of Veterinary and Agricultural Sciences, Department of Veterinary Biosciences, The University of Melbourne, Parkville, VIC, Australia
| | - Li He
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Development of Veterinary Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Fangfang Li
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Development of Veterinary Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xiaofang Liu
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Development of Veterinary Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Caixian Zhou
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Development of Veterinary Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yanqin Zhou
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Development of Veterinary Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Rui Fang
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Development of Veterinary Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Junlong Zhao
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Development of Veterinary Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Min Hu
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Development of Veterinary Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
5
|
Abstract
Purpose of Review This paper constitutes an update of recent studies on the general biology, molecular genetics, and cellular biology of Strongyloides spp. and related parasitic nematodes. Recent Findings Increasingly, human strongyloidiasis is considered the most neglected of neglected tropical diseases. Despite this, the last 5 years has seen remarkable advances in the molecular biology of Strongyloides spp. Genome sequences for S. stercoralis, S. ratti, S. venezuelensis, S. papillosus, and the related parasite Parastrongyloides trichosuri were created, annotated, and analyzed. These genomic resources, along with a practical transgenesis platform for Strongyloides spp., aided a major achievement, the advent of targeted mutagenesis via CRISPR/Cas9 in S. stercoralis and S. ratti. The genome sequences have also enabled significant molecular epidemiologic and phylogenetic findings on human strongyloidiasis, including the first genetic evidence of zoonotic transmission of S. stercoralis between dogs and humans. Studies of molecular signaling pathways identified the nuclear receptor Ss-DAF-12 as one that can be manipulated in the parasite by exogenous application of its steroid ligands. The chemotherapeutic implications of this were unscored by a study in which a Ss-DAF-12 ligand suppressed autoinfection by S. stercoralis in a new murine model of human strongyloidiasis. Summary Seminal advances in genomics of Strongyloides spp. have transformed research into strongyloidiasis, facilitating fundamental phylogenetic and epidemiologic studies and aiding the deployment of CRISPR/Cas9 gene disruption and editing as functional genomic tools in Strongyloides spp. Studies of Ss-DAF-12 signaling in S. stercoralis demonstrated the potential of this pathway as a novel chemotherapeutic target in parasitic nematodes.
Collapse
Affiliation(s)
- Tegegn G. Jaleta
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - James B. Lok
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
6
|
Lok JB. CRISPR/Cas9 Mutagenesis and Expression of Dominant Mutant Transgenes as Functional Genomic Approaches in Parasitic Nematodes. Front Genet 2019; 10:656. [PMID: 31379923 PMCID: PMC6646703 DOI: 10.3389/fgene.2019.00656] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 06/21/2019] [Indexed: 12/13/2022] Open
Abstract
DNA transformation of parasitic nematodes enables novel approaches to validating predictions from genomic and transcriptomic studies of these important pathogens. Notably, proof of principle for CRISPR/Cas9 mutagenesis has been achieved in Strongyloides spp., allowing identification of molecules essential to the functions of sensory neurons that mediate behaviors comprising host finding, invasion, and location of predilection sites by parasitic nematodes. Likewise, CRISPR/Cas9 knockout of the developmental regulatory transcription factor Ss-daf-16 has validated its function in regulating morphogenesis of infective third-stage larvae in Strongyloides stercoralis. While encouraging, these studies underscore challenges that remain in achieving straightforward validation of essential intervention targets in parasitic nematodes. Chief among these is the likelihood that knockout of multifunctional regulators like Ss-DAF-16 or its downstream mediator, the nuclear receptor Ss-DAF-12, will produce phenotypes so complex as to defy interpretation and will render affected worms incapable of infecting their hosts, thus preventing establishment of stable mutant lines. Approaches to overcoming these impediments could involve refinements to current CRISPR/Cas9 methods in Strongyloides including regulatable Cas9 expression from integrated transgenes and CRISPR/Cas9 editing to ablate specific functional motifs in regulatory molecules without complete knockout. Another approach would express transgenes encoding regulatory molecules of interest with mutations designed to similarly ablate or degrade specific functional motifs such as the ligand binding domain of Ss-DAF-12 while preserving core functions such as DNA binding. Such mutant transgenes would be expected to exert a dominant interfering effect on their endogenous counterparts. Published reports validate the utility of such dominant-negative approaches in Strongyloides.
Collapse
Affiliation(s)
- James B Lok
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|