1
|
Huang WC, Lin CC, Chiu TW, Chen SY. 3D Gradient and Linearly Aligned Magnetic Microcapsules in Nerve Guidance Conduits with Remotely Spatiotemporally Controlled Release to Enhance Peripheral Nerve Repair. ACS APPLIED MATERIALS & INTERFACES 2022; 14:46188-46200. [PMID: 36198117 DOI: 10.1021/acsami.2c11362] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Although numerous strategies have been implemented to develop nerve guidance conduits (NGCs) to treat peripheral nerve injury (PNI), functionalization of an NGC to make it remotely controllable for providing spatiotemporal modulation on in situ nerve tissues remains a challenge. In this study, a gelatin/silk (GS) hydrogel was used to develop an NGC based on its self-owned reversible thermoresponsive sol-to-gel phase transformation ability that permitted rapid three-dimensional (3D) micropatterning of the incorporated nerve growth factor (NGF)-loaded magnetic poly(lactic-co-glycolic acid) (PLGA) microcapsules (called NGF@MPs) via multiple magnetic guidance. The thermally controllable viscosity of GS enabled the rapid formation of a 3D gradient and linearly aligned distribution of NGF@MPs, leading to magnetically controlled 3D gradient release of NGF to enhance topographical nerve guidance and wound healing in PNIs. Particularly, the as-formed micropatterned hydrogel, called NGF@MPs-GS, showed corrugation topography with a pattern height H of 15 μm, which resulted in the linear axon alignment of more than 90% of cells. In addition, by an external magnetic field, spatiotemporal controllability of NGF release was obtained and permitted neurite elongation that was almost 2-fold longer than that in the group with external addition of NGF. Finally, an NGC prototype was fabricated and implanted into the injured sciatic nerve. The patterned implant, assisted by magnetic stimulation, demonstrated accelerated restoration of motor function within 14 days after implantation. It further contributed to the enhancement of axon outgrowth and remyelination after 28 days. This NGC, with controllable mechanical, biochemical, and topographical cues, is a promising platform for the enhancement of nerve regeneration.
Collapse
Affiliation(s)
- Wei-Chen Huang
- Department of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, No. 1001 Ta-Hsueh Road, Hsinchu300093, Taiwan
| | - Chun-Chang Lin
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, No. 1001 Ta-Hsueh Road, Hsinchu300093, Taiwan
| | - Tzai-Wen Chiu
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, No. 1001 Ta-Hsueh Road, Hsinchu300093, Taiwan
| | - San-Yuan Chen
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, No. 1001 Ta-Hsueh Road, Hsinchu300093, Taiwan
- Frontier Research Centre on Fundamental and Applied Sciences of Matters, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu300044, Taiwan
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, No.100, Shih-Chuan 1st Road, Kaohsiung80708, Taiwan
- Graduate Institute of Biomedical Science, China Medical University, No. 91, Hsueh-Shih Road, Taichung40402, Taiwan
- Medical Device Innovation and Translation Center, National Yang Ming Chiao Tung University, Yangming Campus, No. 155, Section 2, Linong Street, Beitou District, Taipei112304, Taiwan
| |
Collapse
|
2
|
Ozgun A, Lomboni D, Arnott H, Staines WA, Woulfe J, Variola F. Biomaterial-based strategies for in vitro neural models. Biomater Sci 2022; 10:1134-1165. [PMID: 35023513 DOI: 10.1039/d1bm01361k] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In vitro models have been used as a complementary tool to animal studies in understanding the nervous system's physiological mechanisms and pathological disorders, while also serving as platforms to evaluate the safety and efficiency of therapeutic candidates. Following recent advances in materials science, micro- and nanofabrication techniques and cell culture systems, in vitro technologies have been rapidly gaining the potential to bridge the gap between animal and clinical studies by providing more sophisticated models that recapitulate key aspects of the structure, biochemistry, biomechanics, and functions of human tissues. This was made possible, in large part, by the development of biomaterials that provide cells with physicochemical features that closely mimic the cellular microenvironment of native tissues. Due to the well-known material-driven cellular response and the importance of mimicking the environment of the target tissue, the selection of optimal biomaterials represents an important early step in the design of biomimetic systems to investigate brain structures and functions. This review provides a comprehensive compendium of commonly used biomaterials as well as the different fabrication techniques employed for the design of neural tissue models. Furthermore, the authors discuss the main parameters that need to be considered to develop functional platforms not only for the study of brain physiological functions and pathological processes but also for drug discovery/development and the optimization of biomaterials for neural tissue engineering.
Collapse
Affiliation(s)
- Alp Ozgun
- Department of Mechanical Engineering, Faculty of Engineering, University of Ottawa, Ottawa, Canada. .,Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - David Lomboni
- Department of Mechanical Engineering, Faculty of Engineering, University of Ottawa, Ottawa, Canada. .,Ottawa-Carleton Institute for Biomedical Engineering (OCIBME), Ottawa, Canada
| | - Hallie Arnott
- Department of Mechanical Engineering, Faculty of Engineering, University of Ottawa, Ottawa, Canada. .,Ottawa-Carleton Institute for Biomedical Engineering (OCIBME), Ottawa, Canada
| | - William A Staines
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - John Woulfe
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada.,The Ottawa Hospital, Ottawa, Canada
| | - Fabio Variola
- Department of Mechanical Engineering, Faculty of Engineering, University of Ottawa, Ottawa, Canada. .,Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada.,Ottawa-Carleton Institute for Biomedical Engineering (OCIBME), Ottawa, Canada.,The Ottawa Hospital, Ottawa, Canada.,Children's Hospital of Eastern Ontario (CHEO), Ottawa, Canada
| |
Collapse
|
3
|
Romero-Araya P, Pino V, Nenen A, Cárdenas V, Pavicic F, Ehrenfeld P, Serandour G, Lisoni JG, Moreno-Villoslada I, Flores ME. Combining Materials Obtained by 3D-Printing and Electrospinning from Commercial Polylactide Filament to Produce Biocompatible Composites. Polymers (Basel) 2021; 13:polym13213806. [PMID: 34771361 PMCID: PMC8588263 DOI: 10.3390/polym13213806] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 01/29/2023] Open
Abstract
The design of scaffolds to reach similar three-dimensional structures mimicking the natural and fibrous environment of some cells is a challenge for tissue engineering, and 3D-printing and electrospinning highlights from other techniques in the production of scaffolds. The former is a well-known additive manufacturing technique devoted to the production of custom-made structures with mechanical properties similar to tissues and bones found in the human body, but lacks the resolution to produce small and interconnected structures. The latter is a well-studied technique to produce materials possessing a fibrillar structure, having the advantage of producing materials with tuned composition compared with a 3D-print. Taking the advantage that commercial 3D-printers work with polylactide (PLA) based filaments, a biocompatible and biodegradable polymer, in this work we produce PLA-based composites by blending materials obtained by 3D-printing and electrospinning. Porous PLA fibers have been obtained by the electrospinning of recovered PLA from 3D-printer filaments, tuning the mechanical properties by blending PLA with small amounts of polyethylene glycol and hydroxyapatite. A composite has been obtained by blending two layers of 3D-printed pieces with a central mat of PLA fibers. The composite presented a reduced storage modulus as compared with a single 3D-print piece and possessing similar mechanical properties to bone tissues. Furthermore, the biocompatibility of the composites is assessed by a simulated body fluid assay and by culturing composites with 3T3 fibroblasts. We observed that all these composites induce the growing and attaching of fibroblast over the surface of a 3D-printed layer and in the fibrous layer, showing the potential of commercial 3D-printers and filaments to produce scaffolds to be used in bone tissue engineering.
Collapse
Affiliation(s)
- Pablo Romero-Araya
- Laboratorio de Polímeros, Facultad de Ciencias, Instituto de Ciencias Químicas, Universidad Austral de Chile, Valdivia 5090000, Chile; (P.R.-A.); (V.P.); (A.N.); (V.C.); (I.M.-V.)
- Escuela de Odontología, Facultad de Medicina, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Victor Pino
- Laboratorio de Polímeros, Facultad de Ciencias, Instituto de Ciencias Químicas, Universidad Austral de Chile, Valdivia 5090000, Chile; (P.R.-A.); (V.P.); (A.N.); (V.C.); (I.M.-V.)
- Escuela de Odontología, Facultad de Medicina, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Ariel Nenen
- Laboratorio de Polímeros, Facultad de Ciencias, Instituto de Ciencias Químicas, Universidad Austral de Chile, Valdivia 5090000, Chile; (P.R.-A.); (V.P.); (A.N.); (V.C.); (I.M.-V.)
| | - Verena Cárdenas
- Laboratorio de Polímeros, Facultad de Ciencias, Instituto de Ciencias Químicas, Universidad Austral de Chile, Valdivia 5090000, Chile; (P.R.-A.); (V.P.); (A.N.); (V.C.); (I.M.-V.)
| | - Francisca Pavicic
- Facultad de Medicina, Instituto de Anatomia, Histologia y Patologia, Universidad Austral de Chile, Valdivia 5090000, Chile; (F.P.); (P.E.)
- Centro de Estudios Interdisciplinarios del Sistema Nervioso (CISNe), Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Pamela Ehrenfeld
- Facultad de Medicina, Instituto de Anatomia, Histologia y Patologia, Universidad Austral de Chile, Valdivia 5090000, Chile; (F.P.); (P.E.)
- Centro de Estudios Interdisciplinarios del Sistema Nervioso (CISNe), Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Guillaume Serandour
- LeufüLAB, Facultad de Ciencias de la Ingeniería, Instituto de Diseño y Métodos Industriales, Universidad Austral de Chile, Valdivia 5090000, Chile;
| | - Judit G. Lisoni
- Facultad de Ciencias, Instituto de Ciencias Físicas y Matemáticas, Universidad Austral de Chile, Valdivia 5090000, Chile;
| | - Ignacio Moreno-Villoslada
- Laboratorio de Polímeros, Facultad de Ciencias, Instituto de Ciencias Químicas, Universidad Austral de Chile, Valdivia 5090000, Chile; (P.R.-A.); (V.P.); (A.N.); (V.C.); (I.M.-V.)
| | - Mario E. Flores
- Laboratorio de Polímeros, Facultad de Ciencias, Instituto de Ciencias Químicas, Universidad Austral de Chile, Valdivia 5090000, Chile; (P.R.-A.); (V.P.); (A.N.); (V.C.); (I.M.-V.)
- Correspondence: ; Tel.: +56-63-2293521
| |
Collapse
|
4
|
Su Y, Toftdal MS, Le Friec A, Dong M, Han X, Chen M. 3D Electrospun Synthetic Extracellular Matrix for Tissue Regeneration. SMALL SCIENCE 2021. [DOI: 10.1002/smsc.202100003] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Yingchun Su
- State Key Laboratory of Urban Water Resource and Environment School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
- Department of Biological and Chemical Engineering Aarhus University DK-8000 Aarhus C Denmark
- Interdisciplinary Nanoscience Center (iNANO) Aarhus University DK-8000 Aarhus C Denmark
| | - Mette Steen Toftdal
- Department of Biological and Chemical Engineering Aarhus University DK-8000 Aarhus C Denmark
- Stem Cell Delivery and Pharmacology Novo Nordisk A/S DK-2760 Måløv Denmark
| | - Alice Le Friec
- Department of Biological and Chemical Engineering Aarhus University DK-8000 Aarhus C Denmark
| | - Mingdong Dong
- Interdisciplinary Nanoscience Center (iNANO) Aarhus University DK-8000 Aarhus C Denmark
| | - Xiaojun Han
- State Key Laboratory of Urban Water Resource and Environment School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
| | - Menglin Chen
- Department of Biological and Chemical Engineering Aarhus University DK-8000 Aarhus C Denmark
- Interdisciplinary Nanoscience Center (iNANO) Aarhus University DK-8000 Aarhus C Denmark
| |
Collapse
|
5
|
Ritzau-Reid KI, Spicer CD, Gelmi A, Grigsby CL, Ponder JF, Bemmer V, Creamer A, Vilar R, Serio A, Stevens MM. An Electroactive Oligo-EDOT Platform for Neural Tissue Engineering. ADVANCED FUNCTIONAL MATERIALS 2020; 30:2003710. [PMID: 34035794 PMCID: PMC7610826 DOI: 10.1002/adfm.202003710] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Indexed: 05/04/2023]
Abstract
The unique electrochemical properties of the conductive polymer poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) make it an attractive material for use in neural tissue engineering applications. However, inadequate mechanical properties, and difficulties in processing and lack of biodegradability have hindered progress in this field. Here, the functionality of PEDOT:PSS for neural tissue engineering is improved by incorporating 3,4-ethylenedioxythiophene (EDOT) oligomers, synthesized using a novel end-capping strategy, into block co-polymers. By exploiting end-functionalized oligoEDOT constructs as macroinitiators for the polymerization of poly(caprolactone), a block co-polymer is produced that is electroactive, processable, and bio-compatible. By combining these properties, electroactive fibrous mats are produced for neuronal culture via solution electrospinning and melt electrospinning writing. Importantly, it is also shown that neurite length and branching of neural stem cells can be enhanced on the materials under electrical stimulation, demonstrating the promise of these scaffolds for neural tissue engineering.
Collapse
Affiliation(s)
- Kaja I. Ritzau-Reid
- Department of Materials, Department of Bioengineering, Institute of
Biomedical Engineering, Imperial College London, London SW7 2AZ, UK
| | - Christopher D. Spicer
- Department of Materials, Department of Bioengineering, Institute of
Biomedical Engineering, Imperial College London, London SW7 2AZ, UK;
Department of Medical Biochemistry and Biophysics, Karolinska Institutet,
Stockholm 171 77, Sweden; Department of Chemistry, York Biomedical Research
Institute, University of York, Heslington YO10 5DD, UK
| | - Amy Gelmi
- Department of Materials, Department of Bioengineering, Institute of
Biomedical Engineering, Imperial College London, London SW7 2AZ, UK; Applied
Chemistry and Environmental Science, School of Science, RMIT University,
Melbourne 3000, Australia
| | - Christopher L. Grigsby
- Department of Medical Biochemistry and Biophysics, Karolinska
Institutet, Stockholm 171 77, Sweden
| | - James F. Ponder
- Department of Chemistry, Imperial College London, London SW7 2AZ,
UK
| | - Victoria Bemmer
- Department of Materials, Department of Bioengineering, Institute of
Biomedical Engineering, Imperial College London, London SW7 2AZ, UK
| | - Adam Creamer
- Department of Materials, Department of Bioengineering, Institute of
Biomedical Engineering, Imperial College London, London SW7 2AZ, UK
| | - Ramon Vilar
- Department of Chemistry, Imperial College London, London SW7 2AZ,
UK
| | - Andrea Serio
- Department of Materials, Department of Bioengineering, Institute of
Biomedical Engineering, Imperial College London, London SW7 2AZ, UK; Centre
for Craniofacial & Regenerative Biology, King’s College London
and The Francis Crick Institute, Tissue Engineering and Biophotonics
Division, Dental Institute, King’s College London, London SE1 9RT,
UK
| | - Molly M. Stevens
- Department of Materials, Department of Bioengineering, Institute
of Biomedical Engineering, Imperial College London, London SW7 2AZ, UK;
Department of Medical Biochemistry and Biophysics, Karolinska Institutet,
Stockholm 171 77, Sweden
| |
Collapse
|
6
|
Kim JH, Kim SM, Kim G, Yoon MH. Designing Polymeric Mixed Conductors and Their Application to Electrochemical-Transistor-Based Biosensors. Macromol Biosci 2020; 20:e2000211. [PMID: 32851795 DOI: 10.1002/mabi.202000211] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/11/2020] [Indexed: 12/13/2022]
Abstract
Organic electrochemical transistors that employ polymeric mixed conductors as their active channels are one of the most prominent biosensor platforms because of their signal amplification capability, low fabrication cost, mechanical flexibility, and various properties tunable through molecular design. For application to biomedical devices, polymeric mixed conductors should fulfill several requirements, such as excellent conductivities of both holes/electrons and ions, long-term operation stability, and decent biocompatibility. However, trade-offs may exist, for instance, one between ionic conduction and overall device stability. In this report, the fundamental understanding of polymeric mixed conductors, the recent advance in enhancing their ionic and electrical conductivity, and their practical applications as biosensors based on organic electrochemical transistors are reviewed. Finally, key strategies are suggested for developing novel polymeric mixed conductors that may exceed the trade-off between device performance and stability.
Collapse
Affiliation(s)
- Ji Hwan Kim
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, Republic of Korea
| | - Seong-Min Kim
- School of Materials Science and Engineering, Georgia Institute of Technology, 771 Ferst Dr. NW, Atlanta, GA, 30332, USA
| | - Gunwoo Kim
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, Republic of Korea
| | - Myung-Han Yoon
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, Republic of Korea
| |
Collapse
|
7
|
Aligned nanofiber scaffolds improve functionality of cardiomyocytes differentiated from human induced pluripotent stem cell-derived cardiac progenitor cells. Sci Rep 2020; 10:13575. [PMID: 32782331 PMCID: PMC7419298 DOI: 10.1038/s41598-020-70547-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 07/30/2020] [Indexed: 12/21/2022] Open
Abstract
Cardiac progenitor cells (CPCs), capable of differentiating into multiple cardiac cell types including cardiomyocytes (CMs), endothelial cells, and smooth muscle cells, are promising candidates for cardiac repair/regeneration. In vitro model systems where cells are grown in a more in vivo-like environment, such as 3D cultures, have been shown to be more predictive than 2D culture for studying cell biology and disease pathophysiology. In this report, we focused on using Wnt inhibitors to study the differentiation of human iPSC-CPCs under 2D or 3D culture conditions by measuring marker protein and gene expression as well as intracellular Ca2+ oscillation. Our results show that the 3D culture with aligned nanofiber scaffolds, mimicing the architecture of the extracellular matrix of the heart, improve the differentiation of iPSC-CPCs to functional cardiomyocytes induced by Wnt inhibition, as shown with increased number of cardiac Troponin T (cTnT)-positive cells and synchronized intracellular Ca2+ oscillation. In addition, we studied if 3D nanofiber culture can be used as an in vitro model for compound screening by testing a number of other differentiation factors including a ALK5 inhibitor and inhibitors of BMP signaling. This work highlights the importance of using a more relevant in vitro model and measuring not only the expression of marker proteins but also the functional readout in a screen in order to identify the best compounds and to investigate the resulting biology.
Collapse
|
8
|
Venkateswarlu K, Suman G, Dhyani V, Swain S, Giri L, Samavedi S. Three‐dimensional imaging and quantification of real‐time cytosolic calcium oscillations in microglial cells cultured on electrospun matrices using laser scanning confocal microscopy. Biotechnol Bioeng 2020; 117:3108-3123. [DOI: 10.1002/bit.27465] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 05/24/2020] [Accepted: 06/16/2020] [Indexed: 12/28/2022]
Affiliation(s)
- Kojja Venkateswarlu
- Department of Chemical Engineering Indian Institute of Technology Hyderabad Sangareddy Telangana India
| | - Gare Suman
- Department of Chemical Engineering Indian Institute of Technology Hyderabad Sangareddy Telangana India
| | - Vaibhav Dhyani
- Department of Chemical Engineering Indian Institute of Technology Hyderabad Sangareddy Telangana India
| | - Sarpras Swain
- Department of Chemical Engineering Indian Institute of Technology Hyderabad Sangareddy Telangana India
| | - Lopamudra Giri
- Department of Chemical Engineering Indian Institute of Technology Hyderabad Sangareddy Telangana India
| | - Satyavrata Samavedi
- Department of Chemical Engineering Indian Institute of Technology Hyderabad Sangareddy Telangana India
| |
Collapse
|
9
|
Rey F, Barzaghini B, Nardini A, Bordoni M, Zuccotti GV, Cereda C, Raimondi MT, Carelli S. Advances in Tissue Engineering and Innovative Fabrication Techniques for 3-D-Structures: Translational Applications in Neurodegenerative Diseases. Cells 2020; 9:cells9071636. [PMID: 32646008 PMCID: PMC7407518 DOI: 10.3390/cells9071636] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/01/2020] [Accepted: 07/06/2020] [Indexed: 12/11/2022] Open
Abstract
In the field of regenerative medicine applied to neurodegenerative diseases, one of the most important challenges is the obtainment of innovative scaffolds aimed at improving the development of new frontiers in stem-cell therapy. In recent years, additive manufacturing techniques have gained more and more relevance proving the great potential of the fabrication of precision 3-D scaffolds. In this review, recent advances in additive manufacturing techniques are presented and discussed, with an overview on stimulus-triggered approaches, such as 3-D Printing and laser-based techniques, and deposition-based approaches. Innovative 3-D bioprinting techniques, which allow the production of cell/molecule-laden scaffolds, are becoming a promising frontier in disease modelling and therapy. In this context, the specific biomaterial, stiffness, precise geometrical patterns, and structural properties are to be considered of great relevance for their subsequent translational applications. Moreover, this work reports numerous recent advances in neural diseases modelling and specifically focuses on pre-clinical and clinical translation for scaffolding technology in multiple neurodegenerative diseases.
Collapse
Affiliation(s)
- Federica Rey
- Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milan, Via Grassi 74, 20157 Milan, Italy; (F.R.); (G.V.Z.)
- Pediatric Clinical Research Center Fondazione “Romeo ed Enrica Invernizzi”, University of Milano, Via Grassi 74, 20157 Milano, Italy
| | - Bianca Barzaghini
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy; (B.B.); (A.N.)
| | - Alessandra Nardini
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy; (B.B.); (A.N.)
| | - Matteo Bordoni
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Centro di Eccellenza sulle Malattie Neurodegenerative, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy;
| | - Gian Vincenzo Zuccotti
- Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milan, Via Grassi 74, 20157 Milan, Italy; (F.R.); (G.V.Z.)
- Pediatric Clinical Research Center Fondazione “Romeo ed Enrica Invernizzi”, University of Milano, Via Grassi 74, 20157 Milano, Italy
| | - Cristina Cereda
- Genomic and post-Genomic Center, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy;
| | - Manuela Teresa Raimondi
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy; (B.B.); (A.N.)
- Correspondence: (M.T.R.); (S.C.); Tel.: +390-223-994-306 (M.T.R.); +390-250-319-825 (S.C.)
| | - Stephana Carelli
- Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milan, Via Grassi 74, 20157 Milan, Italy; (F.R.); (G.V.Z.)
- Pediatric Clinical Research Center Fondazione “Romeo ed Enrica Invernizzi”, University of Milano, Via Grassi 74, 20157 Milano, Italy
- Correspondence: (M.T.R.); (S.C.); Tel.: +390-223-994-306 (M.T.R.); +390-250-319-825 (S.C.)
| |
Collapse
|
10
|
Liu H, Gough CR, Deng Q, Gu Z, Wang F, Hu X. Recent Advances in Electrospun Sustainable Composites for Biomedical, Environmental, Energy, and Packaging Applications. Int J Mol Sci 2020; 21:E4019. [PMID: 32512793 PMCID: PMC7312508 DOI: 10.3390/ijms21114019] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/01/2020] [Accepted: 06/02/2020] [Indexed: 12/13/2022] Open
Abstract
Electrospinning has gained constant enthusiasm and wide interest as a novel sustainable material processing technique due to its ease of operation and wide adaptability for fabricating eco-friendly fibers on a nanoscale. In addition, the device working parameters, spinning solution properties, and the environmental factors can have a significant effect on the fibers' morphology during electrospinning. This review summarizes the newly developed principles and influence factors for electrospinning technology in the past five years, including these factors' interactions with the electrospinning mechanism as well as its most recent applications of electrospun natural or sustainable composite materials in biology, environmental protection, energy, and food packaging materials.
Collapse
Affiliation(s)
- Hao Liu
- Center of Analysis and Testing, Nanjing Normal University, Nanjing 210023, China; (H.L.); (Q.D.)
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China;
| | - Christopher R. Gough
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA;
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ 08028, USA
| | - Qianqian Deng
- Center of Analysis and Testing, Nanjing Normal University, Nanjing 210023, China; (H.L.); (Q.D.)
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China;
| | - Zhenggui Gu
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China;
| | - Fang Wang
- Center of Analysis and Testing, Nanjing Normal University, Nanjing 210023, China; (H.L.); (Q.D.)
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China;
| | - Xiao Hu
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA;
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA
- Department of Molecular and Cellular Biosciences, Rowan University, Glassboro, NJ 08028, USA
| |
Collapse
|
11
|
Larramendy F, Yoshida S, Maier D, Fekete Z, Takeuchi S, Paul O. 3D arrays of microcages by two-photon lithography for spatial organization of living cells. LAB ON A CHIP 2019; 19:875-884. [PMID: 30723853 DOI: 10.1039/c8lc01240g] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
This paper addresses a nanoengineering approach to create a fully three-dimensional (3D) network of living cells, providing an advanced solution to in vitro studies on either neuronal networks or artificial organs. The concept of our work relies on stackable scaffolds composed of microcontainers designed and dimensioned to favor the geometrically constrained growth of cells. The container geometry allows cells to communicate in the culture medium and freely grow their projections to form a 3D arrangement of living cells. Scaffolds are fabricated using two-photon polymerization of IP-L 780 photoresist and are coated with collagen. They are stacked by mechanical micromanipulation. Technical details of the proposed nanofabrication scheme and assembly of the modular culture environment are explained. Preliminary in vitro results using PC12 cells have shown that this structure provides a good basis for healthy cell growth for at least 16 days. Our approach is envisioned to provide tailor-made solutions of future 3D cell assemblies for potential applications in drug screening or creating artificial organs.
Collapse
Affiliation(s)
- Florian Larramendy
- Department of Microsystems Engineering (IMTEK), University of Freiburg, Germany
| | | | | | | | | | | |
Collapse
|
12
|
Xiao M, Li X, Song Q, Zhang Q, Lazzarino M, Cheng G, Ulloa Severino FP, Torre V. A Fully 3D Interconnected Graphene-Carbon Nanotube Web Allows the Study of Glioma Infiltration in Bioengineered 3D Cortex-Like Networks. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1806132. [PMID: 30387225 DOI: 10.1002/adma.201806132] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Indexed: 05/20/2023]
Abstract
Currently available 3D assemblies based on carbon nanotubes (CNTs) lag far behind their 2D CNT-based bricks and require major improvements for biological applications. By using Fe nanoparticles confined to the interlamination of graphite as catalyst, a fully 3D interconnected CNT web is obtained through the pores of graphene foam (GCNT web) by in situ chemical vapor deposition. This 3D GCNT web has a thickness up to 1.5 mm and a completely geometric, mechanical and electrical interconnectivity. Dissociated cortical cells cultured inside the GCNT web form a functional 3D cortex-like network exhibiting a spontaneous electrical activity that is closer to what is observed in vivo. By coculturing and fluorescently labeling glioma and healthy cortical cells with different colors, a new in vitro model is obtained to investigate malignant glioma infiltration. This model allows the 3D trajectories and velocity distribution of individual infiltrating glioma to be reconstructed with an unprecedented precision. The model is cost effective and allows a quantitative and rigorous screening of anticancer drugs. The fully 3D interconnected GCNT web is biocompatible and is an ideal tool to study 3D biological processes in vitro representing a pivotal step toward precise and personalized medicine.
Collapse
Affiliation(s)
- Miao Xiao
- International School for Advanced Studies (SISSA), via Bonomea 265, Trieste, 34136, Italy
- Joint Laboratory of Biophysics and Translational Medicine, ISM-SISSA, Suzhou Industrial Park, Jiangsu, 215123, China
| | - Xiaoyun Li
- International School for Advanced Studies (SISSA), via Bonomea 265, Trieste, 34136, Italy
| | - Qin Song
- International School for Advanced Studies (SISSA), via Bonomea 265, Trieste, 34136, Italy
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Zhejiang, 315201, China
- School of Pharmaceutical Engineering, Zhejiang Pharmaceutical College, Ningbo, Zhejiang, 315100, China
| | - Qi Zhang
- School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Medical College of Soochow University, Suzhou Industrial Park, Suzhou, Jiangsu, 215123, China
| | - Marco Lazzarino
- IOM-CNR, Area Science Park, Basovizza, Trieste, 34149, Italy
| | - Guosheng Cheng
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, 398 Ruoshui Road, Suzhou Industrial Park, Jiangsu, 215123, China
| | - Francesco Paolo Ulloa Severino
- Cell Biology Department, Duke University Medical Center, 335 Nanaline Duke Building Duke University Medical Center, Durham, NC, 27710, USA
| | - Vincent Torre
- International School for Advanced Studies (SISSA), via Bonomea 265, Trieste, 34136, Italy
- Joint Laboratory of Biophysics and Translational Medicine, ISM-SISSA, Suzhou Industrial Park, Jiangsu, 215123, China
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Zhejiang, 315201, China
| |
Collapse
|
13
|
Zamproni LN, Grinet MAVM, Mundim MTVV, Reis MBC, Galindo LT, Marciano FR, Lobo AO, Porcionatto M. Rotary jet-spun porous microfibers as scaffolds for stem cells delivery to central nervous system injury. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 15:98-107. [PMID: 30244084 DOI: 10.1016/j.nano.2018.08.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 08/10/2018] [Indexed: 12/20/2022]
Abstract
Stem cell transplantation is a promising strategy to treat brain injuries. However, cell-based therapies are limited because poor local cell engraftment. Here, we present a polylactic acid (PLA) scaffold to support mesenchymal stem cells (MSCs) delivery in stroke. We isolated bone marrow MSCs from adult C57/Bl6 mice, cultured them on PLA polymeric rough microfibrous (PRM) scaffolds obtained by rotary jet spinning, and transplanted over the brains of adult C57/Bl6 mice, carrying thermocoagulation-induced cortical stroke. No inflammatory response to PRM was found. MSCs transplantation significantly reduced the area of the lesion and PRM delivery increased MSCs retention at the injury site. In addition, PRM upregulated α6-integrin and CXCL12 production, which may be the cause for greater cell retention at the lesion site and may provide additional benefit to MSCs transplantation procedures. We conclude that PRM scaffolds offer a promising new system to deliver stem cells to injured areas of the brain.
Collapse
Affiliation(s)
- Laura N Zamproni
- Neurobiology Lab, Universidade Federal de São Paulo, São Paulo, SP, Brazil; Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | | | - Mayara T V V Mundim
- Neurobiology Lab, Universidade Federal de São Paulo, São Paulo, SP, Brazil; Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Marcella B C Reis
- Neurobiology Lab, Universidade Federal de São Paulo, São Paulo, SP, Brazil; Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Layla T Galindo
- Neurobiology Lab, Universidade Federal de São Paulo, São Paulo, SP, Brazil; Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Fernanda R Marciano
- Instituto de Ciência e Tecnologia, Universidade Brasil, São Paulo, SP, Brazil
| | - Anderson O Lobo
- Instituto de Ciência e Tecnologia, Universidade Brasil, São Paulo, SP, Brazil; Programa de Pós-graduação em Ciência e Engenharia de Materiais, Universidade Federal do Piaui, Teresina, PI, Brazil.
| | - Marimelia Porcionatto
- Neurobiology Lab, Universidade Federal de São Paulo, São Paulo, SP, Brazil; Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
14
|
Kang DH, Kim D, Wang S, Song D, Yoon MH. Water-insoluble, nanocrystalline, and hydrogel fibrillar scaffolds for biomedical applications. Polym J 2018. [DOI: 10.1038/s41428-018-0053-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
15
|
Wu Y, Ranjan VD, Zhang Y. A Living 3D In Vitro Neuronal Network Cultured inside Hollow Electrospun Microfibers. ACTA ACUST UNITED AC 2018; 2:e1700218. [DOI: 10.1002/adbi.201700218] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 01/20/2018] [Indexed: 11/09/2022]
Affiliation(s)
- Yingjie Wu
- School of Mechanical and Aerospace Engineering Nanyang Technological University 50 Nanyang Avenue Singapore 639798 Singapore
| | - Vivek Damodar Ranjan
- School of Mechanical and Aerospace Engineering Nanyang Technological University 50 Nanyang Avenue Singapore 639798 Singapore
| | - Yilei Zhang
- School of Mechanical and Aerospace Engineering Nanyang Technological University 50 Nanyang Avenue Singapore 639798 Singapore
| |
Collapse
|