1
|
Abbasi S, Khademi S, Montazerabadi A, Sahebkar A. FAP-Targeted Nanoparticle-based Imaging in Cancer: A Systematic Review. J Biomed Phys Eng 2024; 14:323-334. [PMID: 39175559 PMCID: PMC11336055 DOI: 10.31661/jbpe.v0i0.2404-1754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/12/2024] [Indexed: 08/24/2024]
Abstract
Background Fibroblast Activation Protein (FAP)-targeted nanoparticles (NPs) are designed to accumulate in cancerous stroma. These NPs hold promise for imaging applications in cancer therapy. Objective This systematic review aimed to comprehensively explore the use of FAP-targeting NPs for cancer diagnosis through different imaging modalities. Material and Methods This systematic review followed the framework proposed by O'Malley and Arksey. Peer-reviewed studies were searched in the Scopus, Science Direct, PubMed, and Google Scholar databases. Eligible studies were selected, and data were extracted to investigate the FAP-targeting NPs in imaging. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guideline was also utilized to present the results. Results Five studies met the specified inclusion criteria and were finally selected for analysis. The extracted data was classified into two categories: general and specific data. The general group indicated that most studies have been conducted in Mexico and have increased since 2022, and the specific group showed that colorectal cancer and Nude mice have received the most research attention. Furthermore, FAP-targeted NPs have demonstrated superior diagnostic imaging capabilities, even compared to specific methods for each cancer type. Also, they have been safe, with no toxicity. Conclusion FAP-targeted NPs using different ligands, such as Fibroblast Activation Protein Inhibitor (FAPI), can accurately detect tumors and metastases, and outperform specific cancer peptides like PSMA in cancer diagnosis. They are also non-toxic and do not cause radiation damage to tissues. Therefore, FAP-targeted NPs have the potential to serve as a viable alternative to FAP-targeted radionuclides for cancer diagnosis.
Collapse
Affiliation(s)
- Samaneh Abbasi
- Department of Medical Physics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sara Khademi
- Department of Radiology Technology, School of Paramedical Sciences, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Montazerabadi
- Department of Medical Physics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
2
|
Ashrafizadeh M, Zarrabi A, Karimi‐Maleh H, Taheriazam A, Mirzaei S, Hashemi M, Hushmandi K, Makvandi P, Nazarzadeh Zare E, Sharifi E, Goel A, Wang L, Ren J, Nuri Ertas Y, Kumar AP, Wang Y, Rabiee N, Sethi G, Ma Z. (Nano)platforms in bladder cancer therapy: Challenges and opportunities. Bioeng Transl Med 2023; 8:e10353. [PMID: 36684065 PMCID: PMC9842064 DOI: 10.1002/btm2.10353] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 01/25/2023] Open
Abstract
Urological cancers are among the most common malignancies around the world. In particular, bladder cancer severely threatens human health due to its aggressive and heterogeneous nature. Various therapeutic modalities have been considered for the treatment of bladder cancer although its prognosis remains unfavorable. It is perceived that treatment of bladder cancer depends on an interdisciplinary approach combining biology and engineering. The nanotechnological approaches have been introduced in the treatment of various cancers, especially bladder cancer. The current review aims to emphasize and highlight possible applications of nanomedicine in eradication of bladder tumor. Nanoparticles can improve efficacy of drugs in bladder cancer therapy through elevating their bioavailability. The potential of genetic tools such as siRNA and miRNA in gene expression regulation can be boosted using nanostructures by facilitating their internalization and accumulation at tumor sites and cells. Nanoparticles can provide photodynamic and photothermal therapy for ROS overgeneration and hyperthermia, respectively, in the suppression of bladder cancer. Furthermore, remodeling of tumor microenvironment and infiltration of immune cells for the purpose of immunotherapy are achieved through cargo-loaded nanocarriers. Nanocarriers are mainly internalized in bladder tumor cells by endocytosis, and proper design of smart nanoparticles such as pH-, redox-, and light-responsive nanocarriers is of importance for targeted tumor therapy. Bladder cancer biomarkers can be detected using nanoparticles for timely diagnosis of patients. Based on their accumulation at the tumor site, they can be employed for tumor imaging. The clinical translation and challenges are also covered in current review.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Faculty of Engineering and Natural SciencesSabanci University, Orta MahalleIstanbulTurkey
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural SciencesIstinye UniversityIstanbulTurkey
| | - Hassan Karimi‐Maleh
- School of Resources and EnvironmentUniversity of Electronic Science and Technology of ChinaChengduPeople's Republic of China
- Department of Chemical EngineeringQuchan University of TechnologyQuchanIran
- Department of Chemical SciencesUniversity of JohannesburgJohannesburgSouth Africa
| | - Afshin Taheriazam
- Department of Orthopedics, Faculty of medicineTehran Medical Sciences, Islamic Azad UniversityTehranIran
- Farhikhtegan Medical Convergence Sciences Research CenterFarhikhtegan Hospital Tehran Medical Sciences, Islamic Azad UniversityTehranIran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of ScienceIslamic Azad University, Science and Research BranchTehranIran
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research CenterFarhikhtegan Hospital Tehran Medical Sciences, Islamic Azad UniversityTehranIran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of epidemiology, Faculty of Veterinary MedicineUniversity of TehranTehranIran
| | - Pooyan Makvandi
- Istituto Italiano di TecnologiaCentre for Materials InterfacePontederaPisa56025Italy
| | | | - Esmaeel Sharifi
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and TechnologiesHamadan University of Medical SciencesHamadanIran
| | - Arul Goel
- La Canada High SchoolLa Cañada FlintridgeCaliforniaUSA
| | - Lingzhi Wang
- Cancer Science Institute of SingaporeNational University of SingaporeSingaporeSingapore
| | - Jun Ren
- Department of Laboratory Medicine and PathologyUniversity of WashingtonSeattleWashingtonUSA
- Shanghai Institute of Cardiovascular Diseases, Department of CardiologyZhongshan Hospital, Fudan UniversityShanghaiChina
| | - Yavuz Nuri Ertas
- Department of Biomedical EngineeringErciyes UniversityKayseriTurkey
- ERNAM—Nanotechnology Research and Application CenterErciyes UniversityKayseriTurkey
| | - Alan Prem Kumar
- Department of PharmacologyYong Loo Lin School of Medicine, National University of SingaporeSingaporeSingapore
| | - Yuzhuo Wang
- Department of Urologic Sciences and Vancouver Prostate CentreUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Navid Rabiee
- School of EngineeringMacquarie UniversitySydneyNew South Wales2109Australia
- Department of Materials Science and EngineeringPohang University of Science and Technology (POSTECH)PohangGyeongbuk37673South Korea
| | - Gautam Sethi
- Department of PharmacologyYong Loo Lin School of Medicine, National University of SingaporeSingaporeSingapore
| | - Zhaowu Ma
- Health Science CenterYangtze UniversityJingzhouHubeiChina
| |
Collapse
|
3
|
Kong C, Zhang S, Lei Q, Wu S. State-of-the-Art Advances of Nanomedicine for Diagnosis and Treatment of Bladder Cancer. BIOSENSORS 2022; 12:bios12100796. [PMID: 36290934 PMCID: PMC9599190 DOI: 10.3390/bios12100796] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/17/2022] [Accepted: 09/20/2022] [Indexed: 06/13/2023]
Abstract
Bladder cancer is a common malignant tumor of the urinary system. Cystoscopy, urine cytology, and CT are the routine diagnostic methods. However, there are some problems such as low sensitivity and difficulty in staging, which must be urgently supplemented by novel diagnostic methods. Surgery, intravesical instillation, systemic chemotherapy, and radiotherapy are the main clinical treatments for bladder cancer. It is difficult for conventional treatment to deal with tumor recurrence, progression and drug resistance. In addition, the treatment agents usually have the defects of poor specific distribution ability to target tumor tissues and side effects. The rapid development of nanomedicine has brought hope for the treatment of bladder cancer in reducing side effects, enhancing tumor inhibition effects, and anti-drug resistance. Overall, we review the new progression of nano-platforms in the diagnosis and treatment of bladder cancer.
Collapse
Affiliation(s)
- Chenfan Kong
- Department of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen 518000, China
- Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Shaohua Zhang
- Department of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen 518000, China
- Department of Urology, The Affiliated South China Hospital of Shenzhen University, Shenzhen University, Shenzhen 518000, China
| | - Qifang Lei
- Department of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen 518000, China
- Department of Urology, The Affiliated South China Hospital of Shenzhen University, Shenzhen University, Shenzhen 518000, China
| | - Song Wu
- Department of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen 518000, China
- Department of Urology, The Affiliated South China Hospital of Shenzhen University, Shenzhen University, Shenzhen 518000, China
| |
Collapse
|
4
|
Wang Y, Zhao C, Liu Y, Wang C, Jiang H, Hu Y, Wu J. Recent Advances of Tumor Therapy Based on the CD47-SIRPα Axis. Mol Pharm 2022; 19:1273-1293. [PMID: 35436123 DOI: 10.1021/acs.molpharmaceut.2c00073] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cancer is still a major disease that is currently difficult for humans to overcome. When the expression of the cluster of differentiation 47 (CD47) is upregulated, tumor cells interact with the macrophage inhibitory receptor signal regulatory protein α (SIRPα) to transmit the "Don't eat me" signal, thereby avoiding phagocytosis by the macrophages. Therefore, when the CD47-SIRPα axis is inhibited, the macrophages' phagocytic function can be restored and can also exert antitumor effects. This Review mainly introduces recent advances in tumor therapy targeted on the CD47-SIRPα axis, including the antibody and fusion protein, small molecule, gene therapy, cell therapy, and drug delivery system, to inhibit the function of CD47 expressed on tumor cells and promote tumor phagocytosis by macrophages. In addition, this Review also summarizes the current approaches to avoid anemia, a common side effect of CD47-SIRPα inhibitions, and provides ideas for clinical transformation.
Collapse
Affiliation(s)
- Yuchen Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center, Medical School of Nanjing University, Nanjing 210093, China
| | - Chenxuan Zhao
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center, Medical School of Nanjing University, Nanjing 210093, China
| | - Yang Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center, Medical School of Nanjing University, Nanjing 210093, China
| | - Chao Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center, Medical School of Nanjing University, Nanjing 210093, China
| | - Haojie Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center, Medical School of Nanjing University, Nanjing 210093, China
| | - Yiqiao Hu
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center, Medical School of Nanjing University, Nanjing 210093, China.,Jiangsu Key Laboratory for Nano Technology, Nanjing University, Nanjing 210093, China
| | - Jinhui Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center, Medical School of Nanjing University, Nanjing 210093, China.,Jiangsu Key Laboratory for Nano Technology, Nanjing University, Nanjing 210093, China
| |
Collapse
|
5
|
Nguyen KG, Wagner ES, Vrabel MR, Mantooth SM, Meritet DM, Zaharoff DA. Safety and Pharmacokinetics of Intravesical Chitosan/Interleukin-12 Immunotherapy in Murine Bladders. Bladder Cancer 2021; 7:427-437. [PMID: 38993985 PMCID: PMC11181725 DOI: 10.3233/blc-211542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 09/30/2021] [Indexed: 11/15/2022]
Abstract
BACKGROUND Intravesical administration of interleukin 12 (IL-12) co-formulated with the biopolymer, chitosan (CS/IL-12), has demonstrated remarkable antitumor activity against preclinical models of bladder cancer. However, given historical concerns regarding severe toxicities associated with systemic IL-12 administration in clinical trials, it is important to evaluate the safety of intravesical CS/IL-12 prior to clinical translation. OBJECTIVE To evaluate the pharmacokinetics as well as the local and systemic toxicities of intravesical CS/IL-12 immunotherapy in laboratory mice. METHODS Local inflammatory responses in mouse bladders treated with intravesical IL-12 or CS/IL-12 were assessed via histopathology. Serum cytokine levels following intravesical and subcutaneous (s.c.) administrations of IL-12 or CS/IL-12 in laboratory mice were compared. Systemic toxicities were evaluated via body weight and liver enzyme levels. RESULTS Intravesical IL-12 and CS/IL-12 treatments did not induce significant local or systemic toxicity. IL-12 dissemination and exposure from intravesical administration was significantly lower compared to s.c. injections. Weekly intravesical CS/IL-12 treatments were well-tolerated and did not result in blunted immune responses. CONCLUSIONS Intravesical CS/IL-12 is safe and well-tolerated in mice. In particular, the lack of cystitis and acute inflammation justifies continued investigation of intravesical CS/IL-12 immunotherapy in larger animals and patients with bladder cancer.
Collapse
Affiliation(s)
- Khue G. Nguyen
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina-Chapel Hill, Raleigh, NC, USA
| | - Ethan S. Wagner
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina-Chapel Hill, Raleigh, NC, USA
| | - Maura R. Vrabel
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina-Chapel Hill, Raleigh, NC, USA
| | - Siena M. Mantooth
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina-Chapel Hill, Raleigh, NC, USA
| | - Danielle M. Meritet
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - David A. Zaharoff
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina-Chapel Hill, Raleigh, NC, USA
| |
Collapse
|
6
|
Barani M, Hosseinikhah SM, Rahdar A, Farhoudi L, Arshad R, Cucchiarini M, Pandey S. Nanotechnology in Bladder Cancer: Diagnosis and Treatment. Cancers (Basel) 2021; 13:2214. [PMID: 34063088 PMCID: PMC8125468 DOI: 10.3390/cancers13092214] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/29/2021] [Accepted: 05/04/2021] [Indexed: 02/07/2023] Open
Abstract
Bladder cancer (BC) is the second most common cancer of the urinary tract in men and the fourth most common cancer in women, and its incidence rises with age. There are many conventional methods for diagnosis and treatment of BC. There are some current biomarkers and clinical tests for the diagnosis and treatment of BC. For example, radiotherapy combined with chemotherapy and surgical, but residual tumor cells mostly cause tumor recurrence. In addition, chemotherapy after transurethral resection causes high side effects, and lack of selectivity, and low sensitivity in sensing. Therefore, it is essential to improve new procedures for the diagnosis and treatment of BC. Nanotechnology has recently sparked an interest in a variety of areas, including medicine, chemistry, physics, and biology. Nanoparticles (NP) have been used in tumor therapies as appropriate tools for enhancing drug delivery efficacy and enabling therapeutic performance. It is noteworthy, nanomaterial could be reduced the limitation of conventional cancer diagnosis and treatments. Since, the major disadvantages of therapeutic drugs are their insolubility in an aqueous solvent, for instance, paclitaxel (PTX) is one of the important therapeutic agents utilized to treating BC, due to its ability to prevent cancer cell growth. However, its major problem is the poor solubility, which has confirmed to be a challenge when improving stable formulations for BC treatment. In order to reduce this challenge, anti-cancer drugs can be loaded into NPs that can improve water solubility. In our review, we state several nanosystem, which can effective and useful for the diagnosis, treatment of BC. We investigate the function of metal NPs, polymeric NPs, liposomes, and exosomes accompanied therapeutic agents for BC Therapy, and then focused on the potential of nanotechnology to improve conventional approaches in sensing.
Collapse
Affiliation(s)
- Mahmood Barani
- Department of Chemistry, Shahid Bahonar University of Kerman, Kerman 76169-14111, Iran;
| | - Seyedeh Maryam Hosseinikhah
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 91886-17871, Iran; (S.M.H.); (L.F.)
| | - Abbas Rahdar
- Department of Physics, Faculty of Science, University of Zabol, Zabol 98613-35856, Iran
| | - Leila Farhoudi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 91886-17871, Iran; (S.M.H.); (L.F.)
| | - Rabia Arshad
- Department of Pharmacy, Quaid-I-Azam University, Islamabad 45320, Pakistan;
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center, 66421 Homburg/Saar, Germany
| | - Sadanand Pandey
- Department of Chemistry, College of Natural Science, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Korea
- Particulate Matter Research Center, Research Institute of Industrial Science & Technology (RIST), 187-12, Geumho-ro, Gwangyang-si 57801, Korea
| |
Collapse
|
7
|
Radnia F, Mohajeri N, Hashemi F, Imani M, Zarghami N. Design and development of folate-chitosan/CD nanogel: An efficient fluorescent platform for Cancer-specific delivery of AntimiR-21. REACT FUNCT POLYM 2021. [DOI: 10.1016/j.reactfunctpolym.2021.104814] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Kargozar S, Hoseini SJ, Milan PB, Hooshmand S, Kim H, Mozafari M. Quantum Dots: A Review from Concept to Clinic. Biotechnol J 2020; 15:e2000117. [DOI: 10.1002/biot.202000117] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/10/2020] [Indexed: 01/30/2023]
Affiliation(s)
- Saeid Kargozar
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine Mashhad University of Medical Sciences Mashhad Iran
| | - Seyed Javad Hoseini
- Department of Medical Biotechnology and Nanotechnology, School of Medicine Mashhad University of Medical Sciences Mashhad Iran
| | - Peiman Brouki Milan
- Cellular and Molecular Research Centre Iran University of Medical Sciences Tehran Iran
- Institutes of Regenerative Medicine, Faculty of Advanced Technologies in Medicine Iran University of Medical Sciences Tehran Iran
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine Iran University of Medical Sciences Tehran Iran
| | - Sara Hooshmand
- Pharmacological Research Center of Medicinal Plants Mashhad University of Medical Sciences Mashhad Iran
- Department of Pharmacology, Faculty of Medicine Mashhad University of Medical Sciences Mashhad Iran
| | - Hae‐Won Kim
- Institute of Tissue Regeneration Engineering (ITREN) Dankook University Cheonan Republic of Korea
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine Dankook University Cheonan Republic of Korea
- Department of Biomaterials Science, School of Dentistry Dankook University Cheonan Republic of Korea
| | - Masoud Mozafari
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine Iran University of Medical Sciences Tehran Iran
| |
Collapse
|
9
|
Siddique S, Chow JCL. Application of Nanomaterials in Biomedical Imaging and Cancer Therapy. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1700. [PMID: 32872399 PMCID: PMC7559738 DOI: 10.3390/nano10091700] [Citation(s) in RCA: 176] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 08/24/2020] [Accepted: 08/27/2020] [Indexed: 12/11/2022]
Abstract
Nanomaterials, such as nanoparticles, nanorods, nanosphere, nanoshells, and nanostars, are very commonly used in biomedical imaging and cancer therapy. They make excellent drug carriers, imaging contrast agents, photothermal agents, photoacoustic agents, and radiation dose enhancers, among other applications. Recent advances in nanotechnology have led to the use of nanomaterials in many areas of functional imaging, cancer therapy, and synergistic combinational platforms. This review will systematically explore various applications of nanomaterials in biomedical imaging and cancer therapy. The medical imaging modalities include magnetic resonance imaging, computed tomography, positron emission tomography, single photon emission computerized tomography, optical imaging, ultrasound, and photoacoustic imaging. Various cancer therapeutic methods will also be included, including photothermal therapy, photodynamic therapy, chemotherapy, and immunotherapy. This review also covers theranostics, which use the same agent in diagnosis and therapy. This includes recent advances in multimodality imaging, image-guided therapy, and combination therapy. We found that the continuous advances of synthesis and design of novel nanomaterials will enhance the future development of medical imaging and cancer therapy. However, more resources should be available to examine side effects and cell toxicity when using nanomaterials in humans.
Collapse
Affiliation(s)
- Sarkar Siddique
- Department of Physics, Ryerson University, Toronto, ON M5B 2K3, Canada;
| | - James C. L. Chow
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1X6, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, ON M5T 1P5, Canada
| |
Collapse
|
10
|
Ko YJ, Lee JW, Kim H, Cho E, Yang Y, Kim IS, Kim SH, Kwon IC. Versatile activatable vSIRPα-probe for cancer-targeted imaging and macrophage-mediated phagocytosis of cancer cells. J Control Release 2020; 323:376-386. [DOI: 10.1016/j.jconrel.2020.04.037] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 03/30/2020] [Accepted: 04/22/2020] [Indexed: 01/14/2023]
|
11
|
Filali S, Pirot F, Miossec P. Biological Applications and Toxicity Minimization of Semiconductor Quantum Dots. Trends Biotechnol 2020; 38:163-177. [DOI: 10.1016/j.tibtech.2019.07.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 07/27/2019] [Accepted: 07/30/2019] [Indexed: 12/18/2022]
|
12
|
Li Y, Wan J, Wang F, Guo J, Wang C. Effect of increasing liver blood flow on nanodrug clearance by the liver for enhanced antitumor therapy. Biomater Sci 2019; 7:1507-1515. [PMID: 30675877 DOI: 10.1039/c8bm01371c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
The clinical applications of particulate drug delivery systems have demonstrated limited treatment outcomes, which is largely attributable to the elimination of such systems by the immune system, especially in the liver. Inspired by the mechanism of nanomaterial clearance by the liver, we designed a new anticancer auxiliary delivery system by introducing norepinephrine loaded poly(acrylic acid) nanogels as angiotonics. The auxilliary system effectively decreased the liver uptake of nanodrugs by increasing the liver blood flow rate. With administration of the as-prepared norepinephrine-loaded poly(acrylic acid) nanogels, the blood perfusion amount increased significantly by 177.0% (i.e. 2.77 times) as observed directly by ultrasonic imaging, indicating an increased blood flow rate in the liver. Since the blood flow rate plays a key role in nanomaterial clearance in the liver, nanodrug clearance should be changed by modulation of the blood flow. Our in vivo experimental results clearly showed the enhancement of nanodrug efficiency with this two-step treatment, with a 52% improvement in plasma drug concentration, obvious drug accumulation in the tumor, and significant antitumor effects. These results indicate that a pre-conditioning strategy involving norepinephrine-loaded poly(acrylic acid) nanogels can serve as an ideal route for reducing nanodrug clearance by the liver.
Collapse
Affiliation(s)
- Yongjing Li
- State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Laboratory of Advanced Materials, Fudan University, Shanghai 200433, P.R. China.
| | | | | | | | | |
Collapse
|
13
|
Prapainop K, Mekseriwattana W, Siangproh W, Chailapakul O, Songsrirote K. Successive detection of benzoic acid and total parabens in foodstuffs using mercaptosuccinic acid capped cadmium telluride quantum dots. Food Control 2019. [DOI: 10.1016/j.foodcont.2018.10.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
14
|
Mao LC, Zhang XY, Wei Y. Recent Advances and Progress for the Fabrication and Surface Modification of AIE-active Organic-inorganic Luminescent Composites. CHINESE JOURNAL OF POLYMER SCIENCE 2019. [DOI: 10.1007/s10118-019-2208-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
15
|
Novel real-time optical imaging modalities for the detection of neoplastic lesions in urology: a systematic review. Surg Endosc 2018; 33:1349-1367. [PMID: 30421080 PMCID: PMC6484817 DOI: 10.1007/s00464-018-6578-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 11/02/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Current optical diagnostic techniques for malignancies are limited in their diagnostic accuracy and lack the ability to further characterise disease, leading to the rapidly increasing development of novel imaging methods within urology. This systematic review critically appraises the literature for novel imagining modalities, in the detection and staging of urological cancer and assesses their effectiveness via their utility and accuracy. METHODS A systematic literature search utilising MEDLINE, EMBASE and Cochrane Library Database was conducted from 1970 to September 2018 by two independent reviewers. Studies were included if they assessed real-time imaging modalities not already approved in guidelines, in vivo and in humans. Outcome measures included diagnostic accuracy and utility parameters, including feasibility and cost. RESULTS Of 5475 articles identified from screening, a final 46 were included. Imaging modalities for bladder cancer included optical coherence tomography (OCT), confocal laser endomicroscopy, autofluorescence and spectroscopic techniques. OCT was the most widely investigated, with 12 studies demonstrating improvements in overall diagnostic accuracy (sensitivity 74.5-100% and specificity 60-98.5%). Upper urinary tract malignancy diagnosis was assessed using photodynamic diagnosis (PDD), narrow band imaging, optical coherence tomography and confocal laser endomicroscopy. Only PDD demonstrated consistent improvements in overall diagnostic accuracy in five trials (sensitivity 94-96% and specificity 96.6-100%). Limited evidence for optical coherence tomography in percutaneous renal biopsy was identified, with anecdotal evidence for any modality in penile cancer. CONCLUSIONS Evidence supporting the efficacy for identified novel imaging modalities remains limited at present. However, OCT for bladder cancer and PDD in upper tract malignancy demonstrate the best potential for improvement in overall diagnostic accuracy. OCT may additionally aid intraoperative decision making via real-time staging of disease. Both modalities require ongoing investigation through larger, well-conducted clinical trials to assess their diagnostic accuracy, use as an intraoperative staging aid and how to best utilise them within clinical practice.
Collapse
|
16
|
Davis RM, Kiss B, Trivedi DR, Metzner TJ, Liao JC, Gambhir SS. Surface-Enhanced Raman Scattering Nanoparticles for Multiplexed Imaging of Bladder Cancer Tissue Permeability and Molecular Phenotype. ACS NANO 2018; 12:9669-9679. [PMID: 30203645 PMCID: PMC6202635 DOI: 10.1021/acsnano.8b03217] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Accepted: 08/28/2018] [Indexed: 05/20/2023]
Abstract
Bladder cancer has the highest recurrence rate of all cancers due in part to inadequate transurethral resection. Inadequate resection is caused by the inability of cystoscopes to detect invisible lesions during the resection procedure. To improve detection and resection of nonmuscle invasive bladder cancer, we quantified the ability of a surface-enhanced Raman nanoparticle and endoscope system to classify bladder tissue as normal or cancerous. Both antibody-based (active) and tissue permeability-based (passive) targeting mechanisms were evaluated by topically applying nanoparticles to ex vivo human bladder tissue samples. Multiplexed molecular imaging of CD47 and Carbonic Anhydrase 9 tumor proteins gave a receiver operating characteristic area under the curve (ROC AUC of 0.93 (0.75, 1.00). Furthermore, passively targeted nanoparticles enabled tissue classification with an ROC AUC of 0.93 (0.73, 1.00). Passively targeted nanoparticles penetrated 5-fold deeper and bound to tumor tissue at 3.3-fold higher concentrations in cancer compared to normal bladder urothelium, suggesting the existence of an enhanced surface permeability and retention effect in human bladder cancer.
Collapse
Affiliation(s)
- Ryan M. Davis
- Department
of Radiology and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California 94305, United States
| | - Bernhard Kiss
- Department
of Radiology and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California 94305, United States
- Department
of Urology, Stanford University School of
Medicine, Stanford, California 94305, United States
| | - Dharati R. Trivedi
- Department
of Urology, Stanford University School of
Medicine, Stanford, California 94305, United States
- Veterans
Affairs, Palo Alto Health Care System, Palo Alto, California 94550, United States
| | - Thomas J. Metzner
- Department
of Urology, Stanford University School of
Medicine, Stanford, California 94305, United States
| | - Joseph C. Liao
- Department
of Urology, Stanford University School of
Medicine, Stanford, California 94305, United States
- Veterans
Affairs, Palo Alto Health Care System, Palo Alto, California 94550, United States
| | - Sanjiv S. Gambhir
- Department
of Radiology and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California 94305, United States
- E-mail:
| |
Collapse
|