1
|
Ghali ENHK, Sandopu SK, Maurya DK, Meriga B. Insights into the radioprotective efficacy of Pterocarpus santalinus L. aqueous extract. Fitoterapia 2024; 176:105986. [PMID: 38703914 DOI: 10.1016/j.fitote.2024.105986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 03/13/2024] [Accepted: 05/01/2024] [Indexed: 05/06/2024]
Abstract
In the present study, we have attempted a comprehensive assessment of the possible radioprotective efficacy of Pterocarpus santalinus aqueous extract (PSAE). All the studied models were gamma-irradiated with prior treatment with PSAE. First, the content of total phenols (4.061 μg/mg gallic acid equivalents), flavonoids (6.616 μg/mg quercetin equivalents), and tannins (0.008 mg/L of PSAE) were determined spectrophotometrically. Second, UHPLC-HRMS analysis was performed to identify the possible radioprotectors. Of those, santalins A & B are known for their usage as natural color in foods and alcoholic beverages identified in PSAE. Treatment was well tolerated with no side effects from PSAE. Later, it was shown that radiation-induced lethality significantly amended in PSAE-treated spleen lymphocytes as evidenced by reduced elevated levels of ROS and lipid peroxidation, restored total thiols and GSH: GSSG, inhibited DNA DSBs and cell death. Furthermore, an immunomodulation study was carried out because radiation exposure induces an inflammatory response. Our study shows that PSAE suppressed concanavalin A-induced T-cell proliferation as evidenced by CFSE dye dilution and CD69 antibody staining methods. Taken together, the current study explored the protective efficacy of PSAE from gamma radiation-inflicted injuries and hence we recommend PSAE as a potent radioprotective formulation.
Collapse
Affiliation(s)
- E N Hanuma Kumar Ghali
- Department of Biochemistry, Sri Venkateswara University, Tirupati 517502, India; Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Mumbai 400085, India; Medicine and Oncology ISU, South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen 78504, TX, USA
| | | | - Dharmendra Kumar Maurya
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Mumbai 400085, India.
| | - Balaji Meriga
- Department of Biochemistry, Sri Venkateswara University, Tirupati 517502, India.
| |
Collapse
|
2
|
Vitharana S, Stillahn JM, Katayama DS, Henry CS, Manning MC. Application of Formulation Principles to Stability Issues Encountered During Processing, Manufacturing, and Storage of Drug Substance and Drug Product Protein Therapeutics. J Pharm Sci 2023; 112:2724-2751. [PMID: 37572779 DOI: 10.1016/j.xphs.2023.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 07/24/2023] [Accepted: 08/07/2023] [Indexed: 08/14/2023]
Abstract
The field of formulation and stabilization of protein therapeutics has become rather extensive. However, most of the focus has been on stabilization of the final drug product. Yet, proteins experience stress and degradation through the manufacturing process, starting with fermentaition. This review describes how formulation principles can be applied to stabilize biopharmaceutical proteins during bioprocessing and manufacturing, considering each unit operation involved in prepration of the drug substance. In addition, the impact of the container on stabilty is discussed as well.
Collapse
Affiliation(s)
| | - Joshua M Stillahn
- Legacy BioDesign LLC, Johnstown, CO 80534, USA; Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
| | | | - Charles S Henry
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
| | - Mark Cornell Manning
- Legacy BioDesign LLC, Johnstown, CO 80534, USA; Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA.
| |
Collapse
|
3
|
Maiti A, Daschakraborty S. How Do Urea and Trimethylamine N-Oxide Influence the Dehydration-Induced Phase Transition of a Lipid Membrane? J Phys Chem B 2021; 125:10149-10165. [PMID: 34486370 DOI: 10.1021/acs.jpcb.1c05852] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Living organisms are often exposed to extreme dehydration, which is detrimental to the structure and function of the cell membrane. The lipid membrane undergoes fluid-to-gel phase transition due to dehydration and thus loses fluidity and functionality. To protect the fluid phase of the bilayer these organisms adopt several strategies. Enhanced production of small polar organic solutes (also called osmolytes) is one such strategy. Urea and trimethylamine N-oxide (TMAO) are two osmolytes found in different organisms combating osmotic stress. Previous experiments have found that both these osmolytes have strong effects on lipid membrane under different hydration conditions. Urea prevents the dehydration-induced phase transition of the lipid membrane by directly interacting with the lipids, while TMAO does not inhibit the phase transition. To provide atomistic insights, we have carried out all-atom molecular dynamics (MD) simulation of a lipid membrane under varying hydration levels and studied the effect of these osmolytes on different structural and dynamic properties of the membrane. This study suggests that urea significantly inhibits the dehydration-induced fluid-to-gel phase transition by strongly interacting with the lipid membrane via hydrogen bonds, which balances the reduced lipid hydration due to the decreasing water content. In contrast, TMAO is excluded from the membrane surface due to unfavorable interaction with the lipids. This induces further dehydration of the lipids which reinforces the fluid-to-gel phase transition. We have also studied the counteractive role of TMAO on the effect of urea on lipid membrane when both the osmolytes are present. TMAO draws some urea molecules out of the membrane and thereby reduces the effect of urea on the lipid membrane at lower hydration levels. This is similar to the counteraction of urea's deleterious effects on protein by TMAO. All these observations are consistent with the experimental results and thus provide deep molecular insights into the role of these osmolytes in protecting the fluid phase of the membrane, the key survival strategy against osmotic-stress-induced dehydration.
Collapse
Affiliation(s)
- Archita Maiti
- Department of Chemistry, Indian Institute of Technology Patna, Bihar 801106, India
| | | |
Collapse
|
4
|
Attri P, Kurita H, Koga K, Shiratani M. Impact of Reactive Oxygen and Nitrogen Species Produced by Plasma on Mdm2-p53 Complex. Int J Mol Sci 2021; 22:ijms22179585. [PMID: 34502494 PMCID: PMC8431430 DOI: 10.3390/ijms22179585] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 08/27/2021] [Accepted: 08/31/2021] [Indexed: 12/11/2022] Open
Abstract
The study of protein–protein interactions is of great interest. Several early studies focused on the murine double minute 2 (Mdm2)–tumor suppressor protein p53 interactions. However, the effect of plasma treatment on Mdm2 and p53 is still absent from the literature. This study investigated the structural changes in Mdm2, p53, and the Mdm2–p53 complex before and after possible plasma oxidation through molecular dynamic (MD) simulations. MD calculation revealed that the oxidized Mdm2 bounded or unbounded showed high flexibility that might increase the availability of tumor suppressor protein p53 in plasma-treated cells. This study provides insight into Mdm2 and p53 for a better understanding of plasma oncology.
Collapse
Affiliation(s)
- Pankaj Attri
- Center of Plasma Nano-Interface Engineering, Kyushu University, Fukuoka 819-0395, Japan;
- Graduate School of Information Science and Electrical Engineering, Kyushu University, Fukuoka 819-0395, Japan
- Correspondence:
| | - Hirofumi Kurita
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, Toyohashi 441-8580, Aichi, Japan;
| | - Kazunori Koga
- Faculty of Information Science and Electrical Engineering, Kyushu University, Fukuoka 819-0395, Japan;
- Center for Novel Science Initiatives, National Institute of Natural Science, Tokyo 105-0001, Japan
| | - Masaharu Shiratani
- Center of Plasma Nano-Interface Engineering, Kyushu University, Fukuoka 819-0395, Japan;
- Faculty of Information Science and Electrical Engineering, Kyushu University, Fukuoka 819-0395, Japan;
| |
Collapse
|
5
|
Attri P, Kaushik NK, Kaushik N, Hammerschmid D, Privat-Maldonado A, De Backer J, Shiratani M, Choi EH, Bogaerts A. Plasma treatment causes structural modifications in lysozyme, and increases cytotoxicity towards cancer cells. Int J Biol Macromol 2021; 182:1724-1736. [PMID: 34051258 DOI: 10.1016/j.ijbiomac.2021.05.146] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/19/2021] [Accepted: 05/21/2021] [Indexed: 02/07/2023]
Abstract
Bacterial and mammalian proteins, such as lysozyme, are gaining increasing interest as anticancer drugs. This study aims to modify the lysozyme structure using cold atmospheric plasma to boost its cancer cell killing effect. We investigated the structure at acidic and neutral pH using various experimental techniques (circular dichroism, fluorescence, and mass spectrometry) and molecular dynamics simulations. The controlled structural modification of lysozyme at neutral pH enhances its activity, while the activity was lost at acidic pH at the same treatment conditions. Indeed, a larger number of amino acids were oxidized at acidic pH after plasma treatment, which results in a greater distortion of the lysozyme structure, whereas only limited structural changes were observed in lysozyme after plasma treatment at neutral pH. We found that the plasma-treated lysozyme significantly induced apoptosis to the cancer cells. Our results reveal that plasma-treated lysozyme could have potential as a new cancer cell killing drug.
Collapse
Affiliation(s)
- Pankaj Attri
- Center of Plasma Nano-interface Engineering, Kyushu University, Fukuoka 819-0395, Japan; Graduate School of Information Science and Electrical Engineering, Kyushu University, Fukuoka 819-0395, Japan; Research Group PLASMANT, Department of Chemistry, University of Antwerp, Antwerp, Belgium.
| | - Nagendra Kumar Kaushik
- Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Neha Kaushik
- Department of Biotechnology, College of Engineering, University of Suwon, Hwaseong 18323, Republic of Korea
| | - Dietmar Hammerschmid
- Research Group PPES, Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, Antwerp, Belgium
| | | | - Joey De Backer
- Research Group PPES, Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, Antwerp, Belgium
| | - Masaharu Shiratani
- Center of Plasma Nano-interface Engineering, Kyushu University, Fukuoka 819-0395, Japan; Graduate School of Information Science and Electrical Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Eun Ha Choi
- Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Annemie Bogaerts
- Research Group PLASMANT, Department of Chemistry, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
6
|
Abstract
In recent years, non-thermal plasma (NTP) application in agriculture is rapidly increasing. Many published articles and reviews in the literature are focus on the post-harvest use of plasma in agriculture. However, the pre-harvest application of plasma still in its early stage. Therefore, in this review, we covered the effect of NTP and plasma-treated water (PTW) on seed germination and growth enhancement. Further, we will discuss the change in biochemical analysis, e.g., the variation in phytohormones, phytochemicals, and antioxidant levels of seeds after treatment with NTP and PTW. Lastly, we will address the possibility of using plasma in the actual agriculture field and prospects of this technology.
Collapse
|
7
|
Attri P, Choi S, Kim M, Shiratani M, Cho AE, Lee W. Influence of alkyl chain substitution of ammonium ionic liquids on the activity and stability of tobacco etch virus protease. Int J Biol Macromol 2020; 155:439-446. [DOI: 10.1016/j.ijbiomac.2020.03.175] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 03/19/2020] [Accepted: 03/20/2020] [Indexed: 02/06/2023]
|
8
|
Attri P, Razzokov J, Yusupov M, Koga K, Shiratani M, Bogaerts A. Influence of osmolytes and ionic liquids on the Bacteriorhodopsin structure in the absence and presence of oxidative stress: A combined experimental and computational study. Int J Biol Macromol 2020; 148:657-665. [DOI: 10.1016/j.ijbiomac.2020.01.179] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/16/2020] [Accepted: 01/19/2020] [Indexed: 12/17/2022]
|
9
|
Wang W, Ohtake S. Science and art of protein formulation development. Int J Pharm 2019; 568:118505. [PMID: 31306712 DOI: 10.1016/j.ijpharm.2019.118505] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 07/08/2019] [Accepted: 07/08/2019] [Indexed: 02/07/2023]
Abstract
Protein pharmaceuticals have become a significant class of marketed drug products and are expected to grow steadily over the next decade. Development of a commercial protein product is, however, a rather complex process. A critical step in this process is formulation development, enabling the final product configuration. A number of challenges still exist in the formulation development process. This review is intended to discuss these challenges, to illustrate the basic formulation development processes, and to compare the options and strategies in practical formulation development.
Collapse
Affiliation(s)
- Wei Wang
- Biological Development, Bayer USA, LLC, 800 Dwight Way, Berkeley, CA 94710, United States.
| | - Satoshi Ohtake
- Pharmaceutical Research and Development, Pfizer Biotherapeutics Pharmaceutical Sciences, Chesterfield, MO 63017, United States
| |
Collapse
|
10
|
Hosseiniyan Khatibi SM, Zununi Vahed F, Sharifi S, Ardalan M, Mohajel Shoja M, Zununi Vahed S. Osmolytes resist against harsh osmolarity: Something old something new. Biochimie 2019; 158:156-164. [PMID: 30629975 DOI: 10.1016/j.biochi.2019.01.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 01/03/2019] [Indexed: 12/14/2022]
Abstract
From the halophilic bacteria to human, cells have to survive under the stresses of harsh environments. Hyperosmotic stress is a process that triggers cell shrinkage, oxidative stress, DNA damage, and apoptosis and it potentially contributes to a number of human diseases. Remarkably, by high salts and organic solutes concentrations, a variety of organisms struggle with these conditions. Different strategies have been developed for cellular osmotic adaptations among which organic osmolyte synthesis/accumulation is a conserved once. Osmolytes are naturally occurring solutes used by cells of several halophilic (micro) organisms to preserve cell volume and function. In this review, the osmolytes diversity and their protective roles in harsh hyperosmolar environments from bacteria to human cells are highlighted. Moreover, it provides a close look at mammalian kidney osmoregulation at a molecular level. This review provides a concise view on the recent developments and advancements on the applications of osmolytes. Identification of disease-related osmolytes and their targeted-delivery may be used as a therapeutic measurement for treatment of the pathological conditions and the inherited diseases related to protein misfolding and aggregation. The molecular and cellular aspects of cell adaptation against harsh environmental osmolarity will benefit the development of effective drugs for many diseases.
Collapse
Affiliation(s)
| | | | - Simin Sharifi
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | | |
Collapse
|
11
|
Arneth B. Coevolution of the coagulation and immune systems. Inflamm Res 2019; 68:117-123. [PMID: 30604212 DOI: 10.1007/s00011-018-01210-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 12/20/2018] [Accepted: 12/21/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Higher organisms rely on the coagulation and immune systems to fight disease-causing pathogens and other foreign invaders in the body. Coagulation has an important role as a barrier against foreign bodies, including bacteria, viruses, and protozoa. The protective responses associated with the coagulation and immune systems can protect the host organism from a wide range of pathogens, such as viruses, parasites, fungi, and even bacteria. AIM The purpose of this paper was to review available research on the evolution of the coagulation and immune systems. MATERIALS AND METHODS The study analyzed evidence from studies that have examined the coagulation and immune systems in the context of evolutionary processes. The articles used in the review were identified from the PsycINFO, CIHAHL, PubMed, Web of Science, and CIHAHL databases. RESULTS Studies have shown that both the coagulation system and the early immune system originated from the same initial system in early organisms. Some researchers argue that hemocytes from lower organisms are the common link from which the immune system and coagulation system developed. DISCUSSION AND CONCLUSION Simple organisms have hemocytes that can carry out both immune response and coagulation processes. Evolution led to the separation of these processes in higher organisms. Furthermore, this divergence resulted in the emergence of thrombocytes and plasmatic coagulation subsystems. These observations explain why there is some form of overlap between immunity and hemostasis, even in advanced organisms such as vertebrates. Several phenomena in clinical medicine related to coagulation and immunity can be explained by this overlap and are consistent with the hypothesis of the coevolution of coagulation and the immune system.
Collapse
Affiliation(s)
- Borros Arneth
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, University Hospital of the Universities of Marburg and Giessen UKGM, Justus Liebig University Giessen, Feulgenstr. 12, 35392, Giessen, Germany.
| |
Collapse
|
12
|
Bacterial inactivation by plasma treated water enhanced by reactive nitrogen species. Sci Rep 2018; 8:11268. [PMID: 30050086 PMCID: PMC6062550 DOI: 10.1038/s41598-018-29549-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 06/25/2018] [Indexed: 12/31/2022] Open
Abstract
There is a growing body of literature that recognizes the importance of plasma treated water (PTW) for inactivation of microorganism. However, very little attention has been paid to the role of reactive nitrogen species (RNS) in deactivation of bacteria. The aim of this study is to explore the role of RNS in bacterial killing, and to develop a plasma system with increased sterilization efficiency. To increase the concentration of reactive oxygen and nitrogen species (RONS) in solution, we have used vapor systems (DI water/HNO3 at different wt%) combined with plasma using N2 as working gas. The results show that the addition of the vapor system yields higher RONS contents. Furthermore, PTW produced by N2 + 0.5 wt% HNO3 vapor comprises a large amount of both RNS and ROS, while PTW created by N2 + H2O vapor consists of a large amount of ROS, but much less RNS. Interestingly, we observed more deactivation of E. Coli with PTW created by N2 + 0.5 wt% HNO3 vapor plasma as compared to PTW generated by the other plasma systems. This work provides new insight into the role of RNS along with ROS for deactivation of bacteria.
Collapse
|
13
|
Attri P, Han J, Choi S, Choi EH, Bogaerts A, Lee W. CAP modifies the structure of a model protein from thermophilic bacteria: mechanisms of CAP-mediated inactivation. Sci Rep 2018; 8:10218. [PMID: 29977069 PMCID: PMC6033864 DOI: 10.1038/s41598-018-28600-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 06/19/2018] [Indexed: 12/14/2022] Open
Abstract
Cold atmospheric plasma (CAP) has great potential for sterilization in the food industry, by deactivation of thermophilic bacteria, but the underlying mechanisms are largely unknown. Therefore, we investigate here whether CAP is able to denature/modify protein from thermophilic bacteria. We focus on MTH1880 (MTH) from Methanobacterium thermoautotrophicum as model protein, which we treated with dielectric barrier discharge (DBD) plasma operating in air for 10, 15 and 20 mins. We analysed the structural changes of MTH using circular dichroism, fluorescence and NMR spectroscopy, as well as the thermal and chemical denaturation, upon CAP treatment. Additionally, we performed molecular dynamics (MD) simulations to determine the stability, flexibility and solvent accessible surface area (SASA) of both the native and oxidised protein.
Collapse
Affiliation(s)
- Pankaj Attri
- Research Group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, B-2610, Antwerp, Belgium
| | - Jeongmin Han
- Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, 134 Shinchon-Dong, Seodaemoon-Gu, Seoul, 120-749, Korea
| | - Sooho Choi
- Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, 134 Shinchon-Dong, Seodaemoon-Gu, Seoul, 120-749, Korea
| | - Eun Ha Choi
- Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897, Korea
| | - Annemie Bogaerts
- Research Group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, B-2610, Antwerp, Belgium.
| | - Weontae Lee
- Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, 134 Shinchon-Dong, Seodaemoon-Gu, Seoul, 120-749, Korea.
| |
Collapse
|
14
|
Laccase Enzyme Polymerization by Soft Plasma Jet for Durable Bioactive Coatings. Polymers (Basel) 2018; 10:polym10050532. [PMID: 30966566 PMCID: PMC6415393 DOI: 10.3390/polym10050532] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 05/07/2018] [Accepted: 05/11/2018] [Indexed: 01/31/2023] Open
Abstract
Conventional pin-to-point continuous wave Helium Corona plasma discharge was successfully used in Soft Plasma Polymerization (SPP) processes to immobilize into water and onto glass polymerized bioactive Cerrena unicolor laccase coatings. The coatings were tested for bioactivity and durability under water wash. The coatings showed up to 59% bioactivity relative to the native laccase in water deposition, undoubtedly due to damage to and fragmentation of monomer molecules by the active, energetic species in the plasma. However, plasma deposited laccase coatings on glass delivered 7 times the laccase activity of the same non-plasma deposition process in the coating after water wash. This latter result would seem to be due to the ability of the plasma to both crosslink monomer and more strongly bond it to the glass surface by a combination of surface cleaning and the creation of active, high energy sites in both glass and laccase molecules. FTIR analysis indicated that the core copper containing moieties at the centre of the molecule largely remain undamaged by this plasma type so that bonding and cross-linking reactions are likely to mainly involve species around the outer perimeter of the molecule. The chemical composition and structure of laccase biocoatings deposited by Corona SPP are described. The combination of the coating performance parameter values for retained activity and durability under water wash indicates that a relatively simple Corona plasma process for deposition of biocoatings, which directly polymerizes the monomer with no added matrix or encapsulant material, may offer enhanced solutions for biocatalyst, sensor or lab-on-a-chip applications.
Collapse
|
15
|
Attri P, Tochikubo F, Park JH, Choi EH, Koga K, Shiratani M. Impact of Gamma rays and DBD plasma treatments on wastewater treatment. Sci Rep 2018; 8:2926. [PMID: 29440647 PMCID: PMC5811431 DOI: 10.1038/s41598-018-21001-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 01/29/2018] [Indexed: 12/11/2022] Open
Abstract
The rapid growth in world population brings with it the need for improvement in the current technology for water purification, in order to provide adequate potable water to everyone. Although an advanced oxidation process has been used to purify wastewater, its action mechanism is still not clear. Therefore, in the present study we treat dye-polluted water with gamma rays and dielectric barrier discharge (DBD) plasma. We study the wastewater treatment efficiency of gamma rays and DBD plasma at different absorbed doses, and at different time intervals, respectively. Methyl orange and methylene blue dyes are taken as model dyes. To understand the effects of environment and humidity on the decolorization of these dyes, we use various gas mixtures in the DBD plasma reactor. In the plasma reactor, we use the ambient air and ambient air + other gas (oxygen, nitrogen, and argon) mixtures, respectively, for the treatment of dyes. Additionally, we study the humidity effect on the decolorization of dyes with air plasma. Moreover, we also perform plasma simulation in different environment conditions, to understand which major radicals are generated during the plasma treatments, and determine their probable densities.
Collapse
Affiliation(s)
- Pankaj Attri
- Plasma Bioscience Research Center/Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897, Korea. .,Faculty of Information Science and Electrical Engineering, Kyushu University, Fukuoka, Japan.
| | - Fumiyoshi Tochikubo
- Department of Electrical and Electronic Engineering, Tokyo Metropolitan University, Tokyo, Japan
| | - Ji Hoon Park
- Plasma Bioscience Research Center/Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897, Korea
| | - Eun Ha Choi
- Plasma Bioscience Research Center/Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897, Korea
| | - Kazunori Koga
- Faculty of Information Science and Electrical Engineering, Kyushu University, Fukuoka, Japan.
| | - Masaharu Shiratani
- Faculty of Information Science and Electrical Engineering, Kyushu University, Fukuoka, Japan.
| |
Collapse
|