1
|
Li X, Wang Y, Li X, Kong L, Díez JJ, Wang H, Zhang D. A comprehensive pan-cancer analysis revealing SPAG6 as a novel diagnostic, prognostic and immunological biomarker in tumor. Gland Surg 2024; 13:999-1015. [PMID: 39015705 PMCID: PMC11247597 DOI: 10.21037/gs-24-157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 06/21/2024] [Indexed: 07/18/2024]
Abstract
Background There have been studies on the role of sperm-associated antigen 6 (SPAG6) in cytoskeleton formation and growth cone stability, but it is also unknown how spag6 affect tumor growth and development. The aim of this study was to clarify the role of SPAG6 in pan-cancer, with some findings about thyroid carcinoma (THCA) validated through experiments. Methods We examined the role of SPAG6 in pan-cancer, with the data being collected from databases. Further analysis was conducted to assess its correlations with prognosis, gene heterogeneity, stemness, and tumor immunity. The interacting proteins of SPAG6 were also identified, and gene ontology enrichment analysis was performed to determine its biological function. We preliminarily confirmed the role of SPAG6 via in vitro experiments and immunofluorescence staining. Results This study found that SPAG6 expression was differentially expressed in cancers and at various tumor stages and grades. In stomach and esophageal carcinoma (STES), stomach adenocarcinoma (STAD), kidney renal clear cell carcinoma (KIRC), lung squamous cell carcinoma (LUSC), and adrenocortical carcinoma (ACC), SPAG6 expression was correlated with gender. SPAG6 expression was also found to be correlated with prognostic value, with low expression being associated with poor prognosis. Furthermore, SPAG6 expression was positively linked with immune-related cells in HNSC, chemokine receptors in LUSC, and immune checkpoint genes in THCA. Furthermore, SPAG6 overexpression suppressed the malignant phenotypes of THCA cells, manifested by slower proliferation and decreased migration. The different SPAG6 expression in THCA led to different malignant phenotypes, which are involved in the upregulation of DNA repair, MYC targets, peroxisome, and G2M checkpoint. Conclusions SPAG6 plays a significant role as an oncogene and can be used as a marker to predict the prognosis of cancer. SPAG6 influences both the tumor immune infiltration and microenvironment, making it a promising immunotherapeutic target for tumor therapy.
Collapse
Affiliation(s)
- Xiaofei Li
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, China
- Shandong Provincial Vertigo & Dizziness Medical Center, Jinan, China
- Shandong Medical Health Key Laboratory of Vertigo & Vestibular Medicine, Jinan, China
| | - Yue Wang
- Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Xiaoyi Li
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, China
- Shandong Provincial Vertigo & Dizziness Medical Center, Jinan, China
- Shandong Medical Health Key Laboratory of Vertigo & Vestibular Medicine, Jinan, China
| | - Ligang Kong
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, China
- Shandong Provincial Vertigo & Dizziness Medical Center, Jinan, China
- Shandong Medical Health Key Laboratory of Vertigo & Vestibular Medicine, Jinan, China
| | - Juan J. Díez
- Department of Endocrinology, Hospital Universitario Puerta de Hierro Majadahonda, Instituto de Investigación Sanitaria Puerta de Hierro Segovia de Arana, Majadahonda, Madrid, Spain
| | - Haibo Wang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, China
- Shandong Provincial Vertigo & Dizziness Medical Center, Jinan, China
- Shandong Medical Health Key Laboratory of Vertigo & Vestibular Medicine, Jinan, China
| | - Daogong Zhang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, China
- Shandong Provincial Vertigo & Dizziness Medical Center, Jinan, China
- Shandong Medical Health Key Laboratory of Vertigo & Vestibular Medicine, Jinan, China
| |
Collapse
|
2
|
Smitchger JA, Taylor JB, Mousel MR, Schaub D, Thorne JW, Becker GM, Murdoch BM. Genome-wide associations with longevity and reproductive traits in U.S. rangeland ewes. Front Genet 2024; 15:1398123. [PMID: 38859938 PMCID: PMC11163081 DOI: 10.3389/fgene.2024.1398123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 04/18/2024] [Indexed: 06/12/2024] Open
Abstract
Introduction: Improving ewe longevity is an important breeding and management goal, as death loss and early culling of mature ewes are economic burdens in the sheep industry. Ewe longevity can be improved by selecting for positive reproductive outcomes. However, the breeding approaches for accomplishing this come with the challenge of recording a lifetime trait. Characterizing genetic factors underpinning ewe longevity and related traits could result in the development of genomic selection strategies to improve the stayability of sheep through early, informed selection of replacement ewes. Methods: Towards this aim, a genome-wide association study (GWAS) was performed to identify genetic markers associated with ewe longevity, reproductive, and production traits. Traits evaluated included longevity (i.e., length of time in the flock), parity and the lifetime number of lambs born, lambs born alive, lambs weaned, and weight of lambs weaned. Ewe records from previous studies were used. Specifically, Rambouillet (n = 480), Polypay (n = 404), Suffolk (n = 182), and Columbia (n = 64) breed ewes (N = 1,130) were analyzed against 503,617 SNPs in across-breed and within-breed GWAS conducted with the Bayesian-information and Linkage-disequilibrium Iteratively Nested Keyway (BLINK) model in R. Results: The across-breed GWAS identified 25 significant SNPs and the within-breed GWAS for Rambouillet, Polypay, and Suffolk ewes identified an additional 19 significant SNPs. The most significant markers were rs411309094 (13:22,467,143) associated with longevity in across-breed GWAS (p-value = 8.3E-13) and rs429525276 (2:148,398,336) associated with both longevity (p-value = 6.4E-15) and parity (p-value = 4.8E-15) in Rambouillet GWAS. Significant SNPs were identified within or in proximity (±50 kb) of genes with known or proposed roles in reproduction, dentition, and the immune system. These genes include ALPL, ANOS1, ARHGEF26, ASIC2, ASTN2, ATP8A2, CAMK2D, CEP89, DISC1, ITGB6, KCNH8, MBNL3, MINDY4, MTSS1, PLEKHA7, PRIM2, RNF43, ROBO2, SLCO1A2, TMEM266, TNFRSF21, and ZNF804B. Discussion: This study proposes multiple SNPs as candidates for use in selection indices and suggests genes for further research towards improving understanding of the genetic factors contributing to longevity, reproductive, and production traits of ewes.
Collapse
Affiliation(s)
- Jamin A. Smitchger
- Department of Animal, Veterinary and Food Sciences, University of Idaho, Moscow, ID, United States
| | - J. Bret Taylor
- USDA, Agriculture Research Service, Range Sheep Production Efficiency Research Unit, U.S. Sheep Experiment Station, Dubois, ID, United States
| | - Michelle R. Mousel
- Animal Diseases Research Unit, Agricultural Research Service, US Department of Agriculture, Pullman, WA, United States
| | - Daniel Schaub
- Department of Animal, Veterinary and Food Sciences, University of Idaho, Moscow, ID, United States
| | - Jacob W. Thorne
- Department of Animal, Veterinary and Food Sciences, University of Idaho, Moscow, ID, United States
- Texas A&M AgriLife Research and Extension, San Angelo, TX, United States
| | - Gabrielle M. Becker
- Department of Animal, Veterinary and Food Sciences, University of Idaho, Moscow, ID, United States
| | - Brenda M. Murdoch
- Department of Animal, Veterinary and Food Sciences, University of Idaho, Moscow, ID, United States
| |
Collapse
|
3
|
Ding L, Luo J, Du J, Zhao B, Luo J, Pan S, Zhang L, Yan X, Li J, Liu L. Upregulated SPAG6 correlates with increased STAT1 and is associated with reduced sensitivity of interferon-α response in BCR::ABL1 negative myeloproliferative neoplasms. Cancer Sci 2023; 114:4445-4458. [PMID: 37681349 PMCID: PMC10637088 DOI: 10.1111/cas.15950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 08/06/2023] [Accepted: 08/16/2023] [Indexed: 09/09/2023] Open
Abstract
Sperm-associated antigen 6 (SPAG6) has been identified as an oncogene or tumor suppressor in various types of human cancer. However, the role of SPAG6 in BCR::ABL1 negative myeloproliferative neoplasms (MPNs) remains unclear. Herein, we found that SPAG6 was upregulated at the mRNA level in primary MPN cells and MPN-derived leukemia cell lines. The SPAG6 protein was primarily located in the cytoplasm around the nucleus and positively correlated with β-tubulin expression. In vitro, forced expression of SPAG6 increased cell clone formation and promoted G1 to S cell cycle progression. Downregulation of SPAG6 promoted apoptosis, reduced G1 to S phase transition, and impaired cell proliferation and cytokine release accompanied by downregulated signal transducer and activator of transcription 1 (STAT1) expression. Furthermore, the inhibitory effect of interferon-α (INF-α) on the primary MPN cells with high SPAG6 expression was decreased. Downregulation of SPAG6 enhanced STAT1 induction, thus enhancing the proapoptotic and cell cycle arrest effects of INF-α both in vitro and in vivo. Finally, a decrease in SPAG6 protein expression was noted when the STAT1 signaling was blocked. Chromatin immunoprecipitation assays indicated that STAT1 protein could bind to the SPAG6 promoter, while the dual-luciferase reporter assay indicated that STAT1 could promote the expression of SPAG6. Our results substantiate the relationship between upregulated SPAG6, increased STAT1, and reduced sensitivity to INF-α response in MPN.
Collapse
Affiliation(s)
- Li Ding
- Department of HematologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
- Department of HematologyThe Affiliated Hospital of Southwest Medical UniversityLuzhouChina
| | - Jie Luo
- Department of HematologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Juan Du
- Department of HematologyThe Affiliated Hospital of Southwest Medical UniversityLuzhouChina
| | - Beibei Zhao
- Department of HematologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Jin Luo
- Department of HematologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Shirui Pan
- Department of HematologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Linyi Zhang
- Department of HematologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Xinyu Yan
- Department of HematologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Junnan Li
- Department of HematologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Lin Liu
- Department of HematologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| |
Collapse
|
4
|
Hu Y, Cao X, Zhao Y, Jin Y, Li F, Xu B, Zhao M, Chen Y, Du B, Sun Y, Zhang L. The Function of Spag6 to Repair Brain Edema Damage After Cerebral Ischemic Stroke-reperfusion. Neuroscience 2023; 522:132-149. [PMID: 37169167 DOI: 10.1016/j.neuroscience.2023.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 04/12/2023] [Accepted: 04/19/2023] [Indexed: 05/13/2023]
Abstract
Sperm associated antigen 6 (Spag6) is the PF16 homolog of Chlamydomonas and participates in the regulation of cilia movement. Studies have shown that Spag6 is expressed in the brain, and its loss will lead to cerebral edema caused by a defect in motor cilium function in ependymal cells. However, it has not been reported whether the limited or extensive cerebral edema resulting from ischemic strokes is related to the expression regulation of Spag6. Therefore, this study aimed to investigate the effect and related mechanism of Spag6 in alleviating Cerebral Ischemic stroke-reperfusion (CIS/R) damage. Our experimental results showed that Spag6 overexpression alleviated CIS/R-mediated motor cilia structural disorder, improved cerebral edema, inhibited nerve injuries in rats with cerebral ischemia, and alleviated synaptic and dendritic spinal injuries by regulating the expressions of synaptic-related proteins such as CaMKII, PSD95, and CREB. Based on significant changes in PI3K/AKT-mTOR signaling pathway activity after CIS/R determination, we determined that Spag6 regulates the abnormal expression of CIS/R-induced inflammatory factors NF-κB, NLRP3, IL-10, and the autophagy-related proteins Beclin-1, LC3, and P62 by activating the PI3K/AKT-mTOR signaling pathway. This inhibits inflammation and autophagy in the brain tissue. In summary, this study revealed that Spag6 alleviates brain edema damage after CIS/R by maintaining the structural function of the motor cilium, regulating the PI3K/AKT-mTOR signaling pathway, and inhibiting inflammation and autophagy reaction.
Collapse
Affiliation(s)
- Yiming Hu
- Environmental Toxicology Laboratory, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Xiaolu Cao
- Environmental Toxicology Laboratory, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China.
| | - Yujie Zhao
- Qiaoxi Center for Disease Control and Prevention, Shijiazhuang, China
| | - Yang Jin
- Department of Biology, College of Arts and Science, New York University, New York, United States
| | - Fengqin Li
- Environmental Toxicology Laboratory, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Bingmei Xu
- Environmental Toxicology Laboratory, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Minghui Zhao
- Environmental Toxicology Laboratory, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Yajun Chen
- Environmental Toxicology Laboratory, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Bingxue Du
- Environmental Toxicology Laboratory, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Yu Sun
- Environmental Toxicology Laboratory, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Ling Zhang
- Environmental Toxicology Laboratory, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, China
| |
Collapse
|
5
|
Bao Z, Zhu R, Fan H, Ye Y, Li T, Chai D. Aberrant expression of SPAG6 and NM23 predicts poor prognosis of human osteosarcoma. Front Genet 2022; 13:1012548. [PMID: 36199573 PMCID: PMC9527292 DOI: 10.3389/fgene.2022.1012548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
Objective: To investigate the expression and clinical significance of sperm-associated antigen 6 and NM23 proteins in human osteosarcoma.Methods: The specimens of conventional osteosarcoma with follow-up from 42 Chinese patients were analyzed in this study, and 12 cases of osteochondroma were considered controls. The expression of SPAG6 and NM23 was inspected using immunohistochemical staining, qRT-PCR, and Western blotting methods.Results: The positive expression rate of SPAG6 protein (71.43%) in 42 cases of osteosarcoma tissue was significantly higher than that (33.33%) in 12 cases of osteochondroma tissues (p < 0.05), while the positive rate of NM23 protein (35.71%) in osteosarcoma tissue was lower than that (58.33%) in osteochondroma tissue (p < 0.05). The mRNA and protein levels of SPAG6 were significantly higher than those of the adjacent normal tissues, while the expression of NM23 was lower in osteosarcoma tissues than that in the controls (p < 0.05 for all). There was a positive relationship between the expression of SPAG6 and pathological grade, metastasis, and Enneking stage (p < 0.05 for all). The overall survival rate of osteosarcoma patients with SPAG6 positive expression was significantly lower than that with SPAG6 negative expression. The relationship between the expression of NM23 and pathological grade, metastasis, and Enneking stage was negative (p < 0.05 for all). The overall survival rate of the osteosarcoma patients with NM23 positive expression was higher than that of the patients with NM23 negative expression (p < 0.05).Conclusion: Overexpression of SPAG6 and low expression of NM23 are negatively related to pathological grade, metastasis, and Enneking stage and prognosis of osteosarcoma patients. This suggested that SPAG6 and NM23 should be considered candidate prognostic biomarkers for patients with osteosarcoma.
Collapse
Affiliation(s)
- Zhengqi Bao
- Department of Orthopedics, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China
- Anhui Province Key Laboratory of Tissue Transplantation, Bengbu Medical University, Bengbu, China
- *Correspondence: Zhengqi Bao, ; Tian Li, ; Damin Chai,
| | - Ruizhi Zhu
- Department of Orthopedics, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - Huagang Fan
- Department of Orthopedics, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - Yuchen Ye
- Department of Orthopedics, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - Tian Li
- School of Basic Medicine, Fourth Military Medical University, Xi’an, China
- *Correspondence: Zhengqi Bao, ; Tian Li, ; Damin Chai,
| | - Damin Chai
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China
- *Correspondence: Zhengqi Bao, ; Tian Li, ; Damin Chai,
| |
Collapse
|
6
|
Lu F, Liang P, Fan B, Zhu Q, Xue T, Liu Z, Wang R, Zhang Y, Zhang X, WeiLi, Wang J, Chen J, Zha D. TNN is first linked to auditory neuropathy. Biochem Biophys Res Commun 2022; 632:69-75. [DOI: 10.1016/j.bbrc.2022.09.081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/21/2022] [Indexed: 11/27/2022]
|
7
|
Zhang C, Zhao J, Mi W, Zhang Y, Zhong X, Tan G, Li F, Li X, Xu Y, Zhang Y. Comprehensive analysis of microglia gene and subpathway signatures for glioma prognosis and drug screening: linking microglia to glioma. Lab Invest 2022; 20:277. [PMID: 35729639 PMCID: PMC9210642 DOI: 10.1186/s12967-022-03475-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/08/2022] [Indexed: 11/10/2022]
Abstract
Glioma is the most common malignant tumors in the brain. Previous studies have revealed that, as the innate immune cells in nervous system, microglia cells were involved in glioma pathology. And, the resident microglia displayed its specific biological roles which distinguished with peripheral macrophages. In this study, an integrated analysis was performed based on public resource database to explore specific biological of microglia within glioma. Through comprehensive analysis, the biological characterization underlying two conditions, glioma microglia compared to glioma macrophage (MicT/MacT) as well as glioma microglia compared to normal microglia (MicT/MicN), were revealed. Notably, nine core MicT/MicN genes displayed closely associations with glioma recurrence and prognosis, such as P2RY2, which was analyzed in more than 2800 glioma samples from 25 studies. Furthermore, we applied a random walk based strategy to identify microglia specific subpathways and developed SubP28 signature for glioma prognostic analysis. Multiple validation data sets confirmed the predictive performance of SubP28 and involvement in molecular subtypes. The associations between SuP28 score and microglia M1/M2 polarization were also explored for both GBM and LGG types. Finally, a comprehensive drug-subpathway network was established for screening candidate medicable molecules (drugs) and identifying therapeutic subpathway targets. In conclusions, the comprehensive analysis of microglia related gene and functional signatures in glioma pathobiologic events by large-scale data sets displayed a framework to dissect inner connection between microglia and glioma, and identify robust signature for glioma clinical implications.
Collapse
Affiliation(s)
- Chunlong Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Jiaxin Zhao
- Center of Cerebrovascular Disease, Zhuhai People's Hospital, Zhuhai Hospital Affiliated With Jinan University, Zhuhai, 519000, China
| | - Wanqi Mi
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Yuxi Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Xiaoling Zhong
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Guiyuan Tan
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Feng Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Xia Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China.
| | - Yanjun Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China.
| | - Yunpeng Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China.
| |
Collapse
|
8
|
Yap YT, Li W, Zhou Q, Haj-Diab S, Chowdhury DD, Vaishnav A, Harding P, Williams DC, Edwards BF, Strauss JF, Zhang Z. The Ancient and Evolved Mouse Sperm-Associated Antigen 6 Genes Have Different Biologic Functions In Vivo. Cells 2022; 11:336. [PMID: 35159146 PMCID: PMC8834003 DOI: 10.3390/cells11030336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/10/2022] [Accepted: 01/12/2022] [Indexed: 01/09/2023] Open
Abstract
Sperm-associated antigen 6 (SPAG6) is the mammalian orthologue of Chlamydomonas PF16, an axonemal central pair protein involved in flagellar motility. In mice, two Spag6 genes have been identified. The ancestral gene, on mouse chromosome 2, is named Spag6. A related gene originally called Spag6, localized on mouse chromosome 16, evolved from the ancient Spag6 gene. It has been renamed Spag6-like (Spag6l). Spag6 encodes a 1.6 kb transcript consisting of 11 exons, while Spag6l encodes a 2.4 kb transcript which contains an additional non-coding exon in the 3'-end as well as the 11 exons found in Spag6. The two Spag6 genes share high similarities in their nucleotide and amino acid sequences. Unlike Spag6l mRNA, which is widely expressed, Spag6 mRNA expression is limited to a smaller number of tissues, including the testis and brain. In transfected mammalian cells, SPAG6/GFP is localized on microtubules, a similar localization as SPAG6L. A global Spag6l knockout mouse model was generated previously. In addition to a role in modulating the ciliary beat, SPAG6L has many unexpected functions, including roles in the regulation of ciliogenesis/spermatogenesis, hearing, and the immunological synapse, among others. To investigate the role of the ancient Spag6 gene, we phenotyped global Spag6 knockout mice. All homozygous mutant mice were grossly normal, and fertility was not affected in both males and females. The homozygous males had normal sperm parameters, including sperm number, motility, and morphology. Examination of testis histology revealed normal spermatogenesis. Testicular protein expression levels of selected SPAG6L binding partners, including SPAG16L, were not changed in the Spag6 knockout mice, even though the SPAG16L level was significantly reduced in the Spag6l knockout mice. Structural analysis of the two SPAG6 proteins shows that both adopt very similar folds, with differences in a few amino acids, many of which are solvent-exposed. These differences endow the two proteins with different functional characteristics, even though both have eight armadillo repeats that mediate protein-protein interaction. Our studies suggest that SPAG6 and SPAG6L have different functions in vivo, with the evolved SPAG6L protein being more important. Since the two proteins have some overlapping binding partners, SPAG6 could have functions that are yet to be identified.
Collapse
Affiliation(s)
- Yi Tian Yap
- Department of Physiology, School of Medicine, Wayne State University, Detroit, MI 48201, USA; (Y.T.Y.); (W.L.); (Q.Z.); (S.H.-D.)
| | - Wei Li
- Department of Physiology, School of Medicine, Wayne State University, Detroit, MI 48201, USA; (Y.T.Y.); (W.L.); (Q.Z.); (S.H.-D.)
| | - Qi Zhou
- Department of Physiology, School of Medicine, Wayne State University, Detroit, MI 48201, USA; (Y.T.Y.); (W.L.); (Q.Z.); (S.H.-D.)
- Department of Occupational and Environmental Medicine, School of Public Health, Wuhan University of Science and Technology, Wuhan 430060, China
| | - Sarah Haj-Diab
- Department of Physiology, School of Medicine, Wayne State University, Detroit, MI 48201, USA; (Y.T.Y.); (W.L.); (Q.Z.); (S.H.-D.)
| | - Dipanwita Dutta Chowdhury
- Department of Biochemistry, Microbiology & Immunology, School of Medicine, Wayne State University, Detroit, MI 48201, USA; (D.D.C.); (A.V.); (B.F.E.)
| | - Asmita Vaishnav
- Department of Biochemistry, Microbiology & Immunology, School of Medicine, Wayne State University, Detroit, MI 48201, USA; (D.D.C.); (A.V.); (B.F.E.)
| | - Pamela Harding
- Hypertension & Vascular Research Division, Henry Ford Health System, Detroit, MI 48201, USA;
| | - David C. Williams
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| | - Brian F. Edwards
- Department of Biochemistry, Microbiology & Immunology, School of Medicine, Wayne State University, Detroit, MI 48201, USA; (D.D.C.); (A.V.); (B.F.E.)
| | - Jerome F. Strauss
- Center for Research on Reproduction and Women’s Health, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Zhibing Zhang
- Department of Physiology, School of Medicine, Wayne State University, Detroit, MI 48201, USA; (Y.T.Y.); (W.L.); (Q.Z.); (S.H.-D.)
- The C.S. Mott Center for Human Growth and Development, Department of Obstetrics & Gynecology, Wayne State University, Detroit, MI 48201, USA
| |
Collapse
|
9
|
Lindemann CB. The flagellar germ-line hypothesis: How flagellate and ciliate gametes significantly shaped the evolution of organismal complexity. Bioessays 2021; 44:e2100143. [PMID: 34967029 DOI: 10.1002/bies.202100143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 12/10/2021] [Accepted: 12/15/2021] [Indexed: 11/10/2022]
Abstract
This essay presents a hypothesis which contends that the development of organismic complexity in the eukaryotes depended extensively on propagation via flagellated and ciliated gametes. Organisms utilizing flagellate and ciliate gametes to propagate their germ line have contributed most of the organismic complexity found in the higher animals. The genes of the flagellum and the flagellar assembly system (intraflagellar transport) have played a disproportionately important role in the construction of complex tissues and organs. The hypothesis also proposes that competition between large numbers of haploid flagellated male gametes rigorously conserved the functionality of a key set of flagellar genes for more than 700 million years. This in turn has insured that a large set (>600) of highly functional cytoskeletal and signal pathway genes is always present in the lineage of organisms with flagellated or ciliated gametes to act as a dependable resource, or "toolkit," for organ elaboration.
Collapse
|
10
|
Ding L, Luo J, Zhang JP, Wang J, Li ZQ, Huang J, Chai L, Mu J, Zhao B, Zhong YR, Zhang LY, Liu L. Aberrant expression of SPAG6 may affect the disease phenotype and serve as a tumor biomarker in BCR/ABL1-negative myeloproliferative neoplasms. Oncol Lett 2021; 23:10. [PMID: 34820009 PMCID: PMC8607346 DOI: 10.3892/ol.2021.13128] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 10/15/2021] [Indexed: 11/28/2022] Open
Abstract
Sperm-associated antigen 6 (SPAG6) is a newly identified cancer-testis antigen that has been revealed to contribute to the occurrence and development of various types of human cancer, such as ovarian, bladder, breast and lung cancer. However, to the best of our knowledge, the expression levels of SPAG6 in breakpoint cluster region (BCR)/ABL1-negative myeloproliferative neoplasms (MPNs) have not been investigated previously. Using reverse transcription-quantitative PCR and different tissue staining techniques, the present study revealed that SPAG6 was expressed by MPN cells, both at the mRNA and protein levels, and that nucleated erythroid precursors and megakaryocytes expressed the highest levels of SPAG6. In addition, SPAG6, which is known as a microtubule-associated protein, was found to exhibit nucleic, cytoplasmic or both cytoplasmic and nucleic subcellular localization patterns within the same patient or cell type; however, it did not always co-localize with β-tubulin. Furthermore, SPAG6 expression was revealed to be associated with fewer splenomegaly [P=0.015 for polycythemia vera (PV) and essential thrombocythemia (ET); and P=0.012 for primary myelofibrosis (PMF)] and myelofibrosis events (P=0.014 for PV and ET; and P=0.004 for PMF). In patients with PMF, upregulated expression levels of SPAG6 were also found to be associated with lower white blood cell counts (P=0.042) and lactate dehydrogenase levels (P=0.012), and higher hemoglobin levels (P=0.031) and platelet counts (P=0.025). In addition, the receiver operating characteristic curve analysis indicated that SPAG6 may be a potential biomarker for distinguishing MPN cases from healthy individuals. In conclusion, to the best of our knowledge, the present study is the first to report that aberrant SPAG6 expression may affect the disease phenotype and serve as a tumor biomarker in BCR/ABL1-negative MPNs.
Collapse
Affiliation(s)
- Li Ding
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, P.R. China.,Department of Hematology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Jie Luo
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, P.R. China
| | - Jing Ping Zhang
- Department of Hematology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Ji Wang
- Department of Hematology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Zhao Quan Li
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, P.R. China
| | - Juan Huang
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Li Chai
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Jiao Mu
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, P.R. China
| | - Beibei Zhao
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, P.R. China
| | - Yi Rui Zhong
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, P.R. China
| | - Lin Yi Zhang
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, P.R. China
| | - Lin Liu
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, P.R. China
| |
Collapse
|
11
|
Li X, Zhang D, Xu L, Liu W, Zhang N, Strauss JF, Zhang Z, Wang H. Sperm-associated antigen 6 (Spag6) mutation leads to vestibular dysfunction in mice. J Pharmacol Sci 2021; 147:325-330. [PMID: 34663514 DOI: 10.1016/j.jphs.2021.08.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 07/13/2021] [Accepted: 08/10/2021] [Indexed: 12/31/2022] Open
Abstract
Spag6 encodes an axoneme central apparatus protein that is required for normal flagellar and cilia motility. Recent findings suggest that Spag6 plays a role in hearing and planar cell polarity (PCP) in the cochlea of the inner ear. However, a role for Spag6 in the vestibule has not yet been explored. In the present study, the function of Spag6 in the vestibule of the inner ear was examined using Spag6-deficient mice. Our results demonstrate a vestibular disorder in the Spag6 mutants, associated with abnormal ultrastructures of vestibular hair cells and Scarpa's ganglion cells, including swollen stereocilia, decreased crista in mitochondria and swollen Scarpa's ganglion cells. Immunostaining data suggests existence of caspase-dependent apoptosis in vestibular sensory epithelium and Scarpa's ganglion cells. Our observations reveal new functions for Spag6 in vestibular function and apoptosis in the mouse vestibule.
Collapse
Affiliation(s)
- Xiaofei Li
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250022, PR China
| | - Daogong Zhang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250022, PR China
| | - Lei Xu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250022, PR China
| | - Wenwen Liu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250022, PR China
| | - Na Zhang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250022, PR China
| | - Jerome F Strauss
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Zhibing Zhang
- Department of Physiology, Wayne State University, Detroit, MI, 48201, USA; Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, 48201, USA.
| | - Haibo Wang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250022, PR China.
| |
Collapse
|
12
|
Faraji S, Sharafi M, Shahverdi A, Fathi R. Sperm Associated Antigens: Vigorous Influencers in Life. CELL JOURNAL 2021; 23:495-502. [PMID: 34837675 PMCID: PMC8588810 DOI: 10.22074/cellj.2021.7377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 06/27/2020] [Indexed: 11/21/2022]
Abstract
Sperm associated antigens (SPAGs) are specific proteins in terms of performance and evolution, that have common expressions in the testes or sperm cells. Moreover, the humoral immune response against some of SPAGs can result in immunological infertilities. On the other hand, recent studies have explored several new properties of SPAGs and shed light on sperm's function, the impact of anti-sperm antibodies (ASA) in immunological infertility, and some tumors related to SPAGs. This article presents an exhaustive review of SPAGs and their roles in the cell cycle, signaling pathways, fertility, sperm-oocyte cross-talk as well as their unfavorable positions as prognostic factors in many types of cancers.
Collapse
Affiliation(s)
- Samaneh Faraji
- Department of Molecular and Cellular Biology, Faculty of Basic Science and Advanced Technologies in Biology, University of Science
and Culture, ACECR, Tehran, Iran,Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR,
Tehran, Iran
| | - Mohsen Sharafi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR,
Tehran, Iran
| | - Abdolhossein Shahverdi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR,
Tehran, Iran,Reproductive Epidemiology Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran,P.O.Box: 16635-148Department of EmbryologyReproductive Biomedicine Research CenterRoyan Institute for
Reproductive BiomedicineACECRTehranIran
Emails:,
| | - Rouhollah Fathi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR,
Tehran, Iran,P.O.Box: 16635-148Department of EmbryologyReproductive Biomedicine Research CenterRoyan Institute for
Reproductive BiomedicineACECRTehranIran
Emails:,
| |
Collapse
|
13
|
Yu Y, Yang J, Luan F, Gu G, Zhao R, Wang Q, Dong Z, Tang J, Wang W, Sun J, Lv P, Zhang H, Wang C. Sensorineural Hearing Loss and Mitochondrial Apoptosis of Cochlear Spiral Ganglion Neurons in Fibroblast Growth Factor 13 Knockout Mice. Front Cell Neurosci 2021; 15:658586. [PMID: 34220452 PMCID: PMC8242186 DOI: 10.3389/fncel.2021.658586] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/26/2021] [Indexed: 12/17/2022] Open
Abstract
Deafness is known to occur in more than 400 syndromes and accounts for almost 30% of hereditary hearing loss. The molecular mechanisms underlying such syndromic deafness remain unclear. Furthermore, deafness has been a common feature in patients with three main syndromes, the BÖrjeson-Forssman-Lehmann syndrome, Wildervanck syndrome, and Congenital Generalized Hirsutism, all of which are characterized by loss-of-function mutations in the Fgf13 gene. Whether the pathogenesis of deafness in these syndromes is associated with the Fgf13 mutation is not known. To elucidate its role in auditory function, we generated a mouse line with conditional knockout of the Fgf13 gene in the inner ear (Fgf13 cKO). FGF13 is expressed predominantly in the organ of Corti, spiral ganglion neurons (SGNs), stria vascularis, and the supporting cells. Conditional knockout of the gene in the inner ear led to sensorineural deafness with low amplitude and increased latency of wave I in the auditory brainstem response test but had a normal distortion product otoacoustic emission threshold. Fgf13 deficiency resulted in decreased SGN density from the apical to the basal region without significant morphological changes and those in the number of hair cells. TUNEL and caspase-3 immunocytochemistry assays showed that apoptotic cell death mediated the loss of SGNs. Further detection of apoptotic factors through qRT-PCR suggested the activation of the mitochondrial apoptotic pathway in SGNs. Together, this study reveals a novel role for Fgf13 in auditory function, and indicates that the gene could be a potential candidate for understanding deafness. These findings may provide new perspectives on the molecular mechanisms and novel therapeutic targets for treatment deafness.
Collapse
Affiliation(s)
- Yulou Yu
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, China.,The Key Laboratory of New Drug Pharmacology and Toxicology, Department of Pharmacology, Hebei Medical University, Shijiazhuang, China
| | - Jing Yang
- Department of Physiology, Hebei Medical University, Shijiazhuang, China
| | - Feng Luan
- Department of Otolaryngology, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Guoqiang Gu
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Ran Zhao
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, China.,The Key Laboratory of New Drug Pharmacology and Toxicology, Department of Pharmacology, Hebei Medical University, Shijiazhuang, China
| | - Qiong Wang
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, China.,The Key Laboratory of New Drug Pharmacology and Toxicology, Department of Pharmacology, Hebei Medical University, Shijiazhuang, China
| | - Zishan Dong
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, China.,The Key Laboratory of New Drug Pharmacology and Toxicology, Department of Pharmacology, Hebei Medical University, Shijiazhuang, China
| | - Junming Tang
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China
| | - Wei Wang
- Department of Physiology, Hebei Medical University, Shijiazhuang, China
| | - Jinpeng Sun
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ping Lv
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, China.,The Key Laboratory of New Drug Pharmacology and Toxicology, Department of Pharmacology, Hebei Medical University, Shijiazhuang, China
| | - Hailin Zhang
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, China.,The Key Laboratory of New Drug Pharmacology and Toxicology, Department of Pharmacology, Hebei Medical University, Shijiazhuang, China
| | - Chuan Wang
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, China.,The Key Laboratory of New Drug Pharmacology and Toxicology, Department of Pharmacology, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
14
|
Central Apparatus, the Molecular Kickstarter of Ciliary and Flagellar Nanomachines. Int J Mol Sci 2021; 22:ijms22063013. [PMID: 33809498 PMCID: PMC7999657 DOI: 10.3390/ijms22063013] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/10/2021] [Accepted: 03/12/2021] [Indexed: 02/07/2023] Open
Abstract
Motile cilia and homologous organelles, the flagella, are an early evolutionarily invention, enabling primitive eukaryotic cells to survive and reproduce. In animals, cilia have undergone functional and structural speciation giving raise to typical motile cilia, motile nodal cilia, and sensory immotile cilia. In contrast to other cilia types, typical motile cilia are able to beat in complex, two-phase movements. Moreover, they contain many additional structures, including central apparatus, composed of two single microtubules connected by a bridge-like structure and assembling numerous complexes called projections. A growing body of evidence supports the important role of the central apparatus in the generation and regulation of the motile cilia movement. Here we review data concerning the central apparatus structure, protein composition, and the significance of its components in ciliary beating regulation.
Collapse
|
15
|
Li X, Zhang D, Xu L, Han Y, Liu W, Li W, Fan Z, Costanzo RM, Strauss Iii JF, Zhang Z, Wang H. Planar cell polarity defects and hearing loss in sperm-associated antigen 6 ( Spag6)-deficient mice. Am J Physiol Cell Physiol 2021; 320:C132-C141. [PMID: 33175573 PMCID: PMC7846974 DOI: 10.1152/ajpcell.00166.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Spag6 encodes an axoneme central apparatus protein that is required for normal flagellar and cilia motility. Recent findings suggest that Spag6 also plays a role in ciliogenesis, orientation of cilia basal feet, and planar polarity. Sensory cells of the inner ear display unique structural features that underlie their mechanosensitivity. They represent a distinctive form of cellular polarity, known as planar cell polarity (PCP). However, a role for Spag6 in the inner ear has not yet been explored. In the present study, the function of Spag6 in the inner ear was examined using Spag6-deficient mice. Our results demonstrate hearing loss in the Spag6 mutants, associated with abnormalities in cellular patterning, cell shape, stereocilia bundles, and basal bodies, as well as abnormally distributed Frizzled class receptor 6 (FZD6), suggesting that Spag6 participates in PCP regulation. Moreover, we found that the subapical microtubule meshwork was disrupted. Our observations suggest new functions for Spag6 in hearing and PCP in the inner ear.
Collapse
Affiliation(s)
- Xiaofei Li
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Daogong Zhang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Lei Xu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Yuechen Han
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Wenwen Liu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Wei Li
- Department of Physiology, Wayne State University, Detroit, Michigan
| | - Zhaomin Fan
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Richard M Costanzo
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia
| | - Jerome F Strauss Iii
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, Virginia
| | - Zhibing Zhang
- Department of Physiology, Wayne State University, Detroit, Michigan
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, Michigan
| | - Haibo Wang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| |
Collapse
|
16
|
Zhang M, Luo J, Luo X, Liu L. SPAG6 silencing induces autophagic cell death in SKM-1 cells via the AMPK/mTOR/ULK1 signaling pathway. Oncol Lett 2020; 20:551-560. [PMID: 32537026 PMCID: PMC7291649 DOI: 10.3892/ol.2020.11607] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 03/06/2020] [Indexed: 02/06/2023] Open
Abstract
As a member of the cancer-testis antigen family, sperm-associated antigen 6 (SPAG6) has been reported to be associated with the pathogenesis of myelodysplastic syndromes (MDS). Previous studies have demonstrated that SPAG6 is upregulated in bone marrow from patients with MDS and MDS-transformed acute myeloid leukemia and that knockdown of SPAG6 expression levels suppressed proliferation and promote apoptosis and differentiation in SKM-1 cells. However, the association between SPAG6 and autophagy in SKM-1 cells remains unclear. Hence, the aim of the present study was to investigate this association and its underlying mechanism. The present study used a short hairpin RNA (shRNA) lentivirus to silence SPAG6 expression levels in SKM-1 cells and demonstrated that SPAG6 knockdown increased autophagy and apoptosis. Furthermore, pharmacologically inhibiting autophagy with chloroquine and 3-methyladenine decreased SPAG6 knockdown-mediated apoptosis, indicating that SPAG6 knockdown-mediated autophagy promoted apoptosis in SKM-1 cells. Additionally, compared with the expression levels in negative control-shRNA lentivirus-transfected SKM-1 cells, the protein expression levels of phosphorylated AMP-activated protein kinase (p-AMPK) and phosphorylated unc-51-like autophagy activating kinase 1 (p-ULK1) were upregulated, while phosphorylated mammalian target of rapamycin (p-mTOR) protein expression was downregulated in SPAG6-shRNA lentivirus-transfected cells. Moreover, inhibiting AMPK expression levels with Compound C, a specific inhibitor of AMPK, attenuated SPAG6 knockdown-induced autophagy and apoptosis, suggesting that AMPK-mediated autophagy enhanced the pro-apoptotic effect of SPAG6 knockdown in SKM-1 cells. Taken together, the results of the present study demonstrated that SPAG6 silencing triggered autophagy via regulation of the AMPK/mTOR/ULK1 signaling pathway, which further contributed to the apoptosis of SKM-1 cells induced by SPAG6 knockdown. Thus, the current results indicate that SPAG6 may be a potential therapeutic target against MDS, and that autophagy may represent a potential mechanism for the treatment of MDS.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing 400016, P.R. China.,Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing 400016, P.R. China
| | - Jie Luo
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing 400016, P.R. China.,Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing 400016, P.R. China
| | - Xiaohua Luo
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing 400016, P.R. China
| | - Lin Liu
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing 400016, P.R. China
| |
Collapse
|
17
|
The Emerging Role of Sperm-Associated Antigen 6 Gene in the Microtubule Function of Cells and Cancer. MOLECULAR THERAPY-ONCOLYTICS 2019; 15:101-107. [PMID: 31660426 PMCID: PMC6807308 DOI: 10.1016/j.omto.2019.08.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Accumulated evidence shows that sperm-associated antigen 6 (SPAG6) gene has multiple biological functions. It maintains the normal function of a variety of cells including ciliary/flagellar biogenesis and polarization, neurogenesis, and neuronal migration. Moreover, SPAG6 is found to be critically involved in auditory transduction and the fibroblast life cycle. Furthermore, SPAG6 plays an essential role in immuno-regulation. Notably, SPAG6 has been demonstrated to participate in the occurrence and progression of a variety of human cancers. New evidence shows that SPAG6 gene regulates tumor cell proliferation, apoptosis, invasion, and metastasis. Therefore, in this review, we describe the physiological function and mechanism of SPAG6 in human normal cells and cancer cells. We also highlight that SPAG6 gene may be an effective biomarker for the diagnosis of human cancer. Taken together, targeting SPAG6 could be a novel strategy for the treatment of human diseases including cancer.
Collapse
|
18
|
Alciaturi J, Anesetti G, Irigoin F, Skowronek F, Sapiro R. Distribution of sperm antigen 6 (SPAG6) and 16 (SPAG16) in mouse ciliated and non-ciliated tissues. J Mol Histol 2019; 50:189-202. [PMID: 30911868 DOI: 10.1007/s10735-019-09817-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 03/08/2019] [Indexed: 12/11/2022]
Abstract
The cilia and flagella of eukaryotic cells serve many functions, exhibiting remarkable conservation of both structure and molecular composition in widely divergent eukaryotic organisms. SPAG6 and SPAG16 are the homologous in the mice to Chlamydomonas reinhardtii PF16 and PF20. Both proteins are associated with the axonemal central apparatus and are essential for ciliary and flagellar motility in mammals. Recent data derived from high-throughput studies revealed expression of these genes in tissues that do not contain motile cilia. However, the distribution of SPAG6 and SPAG16 in ciliated and non-ciliated tissues is not completely understood. In this work, we performed a quantitative analysis of the expression of Spag6 and Spag16 genes in parallel with the immune-localization of the proteins in several tissues of adult mice. Expression of mRNA was higher in the testis and tissues bearing motile cilia than in the other analyzed tissues. Both proteins were present in ciliated and non-ciliated tissues. In the testis, SPAG6 was detected in spermatogonia, spermatocytes, and in the sperm flagella whereas SPAG16 was found in spermatocytes and in the sperm flagella. In addition, both proteins were detected in the cytoplasm of cells from the brain, spinal cord, and ovary. A small isoform of SPAG16 was localized in the nucleus of germ cells and some neurons. In a parallel set of experiments, we overexpressed EGFP-SPAG6 in cultured cells and observed that the protein co-localized with a subset of acetylated cytoplasmic microtubules. A role of these proteins stabilizing the cytoplasmic microtubules of eukaryotic cells is discussed.
Collapse
Affiliation(s)
- Jimena Alciaturi
- Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República, Gral. Flores 2125, Montevideo, Uruguay
| | - Gabriel Anesetti
- Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República, Gral. Flores 2125, Montevideo, Uruguay
| | - Florencia Irigoin
- Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República, Gral. Flores 2125, Montevideo, Uruguay.,Laboratorio de Genética Molecular Humana, Institut Pasteur de Montevideo, Mataojo 2020, Montevideo, Uruguay
| | - Fernanda Skowronek
- Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República, Gral. Flores 2125, Montevideo, Uruguay
| | - Rossana Sapiro
- Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República, Gral. Flores 2125, Montevideo, Uruguay.
| |
Collapse
|