1
|
Nishi K, Fu W, Kiyama R. Novel estrogen-responsive genes (ERGs) for the evaluation of estrogenic activity. PLoS One 2022; 17:e0273164. [PMID: 35976950 PMCID: PMC9385026 DOI: 10.1371/journal.pone.0273164] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/03/2022] [Indexed: 11/19/2022] Open
Abstract
Estrogen action is mediated by various genes, including estrogen-responsive genes (ERGs). ERGs have been used as reporter-genes and markers for gene expression. Gene expression profiling using a set of ERGs has been used to examine statistically reliable transcriptomic assays such as DNA microarray assays and RNA sequencing (RNA-seq). However, the quality of ERGs has not been extensively examined. Here, we obtained a set of 300 ERGs that were newly identified by six sets of RNA-seq data from estrogen-treated and control human breast cancer MCF-7 cells. The ERGs exhibited statistical stability, which was based on the coefficient of variation (CV) analysis, correlation analysis, and examination of the functional association with estrogen action using database searches. A set of the top 30 genes based on CV ranking were further evaluated quantitatively by RT-PCR and qualitatively by a functional analysis using the GO and KEGG databases and by a mechanistic analysis to classify ERα/β-dependent or ER-independent types of transcriptional regulation. The 30 ERGs were characterized according to (1) the enzymes, such as metabolic enzymes, proteases, and protein kinases, (2) the genes with specific cell functions, such as cell-signaling mediators, tumor-suppressors, and the roles in breast cancer, (3) the association with transcriptional regulation, and (4) estrogen-responsiveness. Therefore, the ERGs identified here represent various cell functions and cell signaling pathways, including estrogen signaling, and thus, may be useful to evaluate estrogenic activity.
Collapse
Affiliation(s)
- Kentaro Nishi
- Department of Life Science, Faculty of Life Science, Kyushu Sangyo University Matsukadai, Higashi-ku, Fukuoka, Japan
| | - Wenqiang Fu
- Department of Life Science, Faculty of Life Science, Kyushu Sangyo University Matsukadai, Higashi-ku, Fukuoka, Japan
| | - Ryoiti Kiyama
- Department of Life Science, Faculty of Life Science, Kyushu Sangyo University Matsukadai, Higashi-ku, Fukuoka, Japan
| |
Collapse
|
2
|
A Regulatory Axis between Epithelial Splicing Regulatory Proteins and Estrogen Receptor α Modulates the Alternative Transcriptome of Luminal Breast Cancer. Int J Mol Sci 2022; 23:ijms23147835. [PMID: 35887187 PMCID: PMC9319905 DOI: 10.3390/ijms23147835] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 11/17/2022] Open
Abstract
Epithelial splicing regulatory proteins 1 and 2 (ESRP1/2) control the splicing pattern during epithelial to mesenchymal transition (EMT) in a physiological context and in cancer, including breast cancer (BC). Here, we report that ESRP1, but not ESRP2, is overexpressed in luminal BCs of patients with poor prognosis and correlates with estrogen receptor α (ERα) levels. Analysis of ERα genome-binding profiles in cell lines and primary breast tumors showed its binding in the proximity of ESRP1 and ESRP2 genes, whose expression is strongly decreased by ERα silencing in hormone-deprived conditions. The combined knock-down of ESRP1/2 in MCF-7 cells followed by RNA-Seq, revealed the dysregulation of 754 genes, with a widespread alteration of alternative splicing events (ASEs) of genes involved in cell signaling, metabolism, cell growth, and EMT. Functional network analysis of ASEs correlated with ESRP1/2 expression in ERα+ BCs showed RAC1 as the hub node in the protein-protein interactions altered by ESRP1/2 silencing. The comparison of ERα- and ESRP-modulated ASEs revealed 63 commonly regulated events, including 27 detected in primary BCs and endocrine-resistant cell lines. Our data support a functional implication of the ERα-ESRP1/2 axis in the onset and progression of BC by controlling the splicing patterns of related genes.
Collapse
|
3
|
The Estrogen Receptor α Signaling Pathway Controls Alternative Splicing in the Absence of Ligands in Breast Cancer Cells. Cancers (Basel) 2021; 13:cancers13246261. [PMID: 34944881 PMCID: PMC8699117 DOI: 10.3390/cancers13246261] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/30/2021] [Accepted: 12/10/2021] [Indexed: 12/21/2022] Open
Abstract
Background: The transcriptional activity of estrogen receptor α (ERα) in breast cancer (BC) is extensively characterized. Our group has previously shown that ERα controls the expression of a number of genes in its unliganded form (apoERα), among which a large group of RNA-binding proteins (RBPs) encode genes, suggesting its role in the control of co- and post-transcriptional events. Methods: apoERα-mediated RNA processing events were characterized by the analysis of transcript usage and alternative splicing changes in an RNA-sequencing dataset from MCF-7 cells after siRNA-induced ERα downregulation. Results: ApoERα depletion induced an expression change of 681 RBPs, including 84 splicing factors involved in translation, ribonucleoprotein complex assembly, and 3′end processing. ApoERα depletion results in 758 isoform switching events with effects on 3′end length and the splicing of alternative cassette exons. The functional enrichment of these events shows that post-transcriptional regulation is part of the mechanisms by which apoERα controls epithelial-to-mesenchymal transition and BC cell proliferation. In primary BCs, the inclusion levels of the experimentally identified alternatively spliced exons are associated with overall and disease-free survival. Conclusion: Our data supports the role of apoERα in maintaining the luminal phenotype of BC cells by extensively regulating gene expression at the alternative splicing level.
Collapse
|
4
|
Steroid Receptor Signallings as Targets for Resveratrol Actions in Breast and Prostate Cancer. Int J Mol Sci 2019; 20:ijms20051087. [PMID: 30832393 PMCID: PMC6429419 DOI: 10.3390/ijms20051087] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 02/21/2019] [Accepted: 02/25/2019] [Indexed: 12/28/2022] Open
Abstract
Extensive research over the past 25 years in hormone-dependent cancers, such as breast cancer and prostate cancer, has identified the molecular mechanisms driven by steroid receptors, elucidating the interplay between genomic and non-genomic steroid receptors mechanism of action. Altogether, these mechanisms create the specific gene expression programs that contribute to endocrine therapy resistance and cancer progression. These findings, on the bidirectional molecular crosstalk between steroid and growth factor receptors pathways in endocrine resistance, suggest the use of multi-target inhibitors together with endocrine therapies, for treating resistant disease. In this review we will discuss the novel understanding on the chemopreventive and anti-cancer activities of Resveratrol (3,5,4′-trihydroxy-stilbene) (RSV), a phytoalexin found in grapes acting on a plethora of targets. We will highlight Resveratrol effect on steroid receptors signalling and its potential use in the treatment of hormone-dependent cancer. Understanding the molecular mechanisms by which the bioactive compound influences cancer cell behaviour, by interfering with steroid receptors functional activity, will help to advance the design of combination strategies to increase the rate of complete and durable clinical response in patients.
Collapse
|
5
|
Coscujuela Tarrero L, Ferrero G, Miano V, De Intinis C, Ricci L, Arigoni M, Riccardo F, Annaratone L, Castellano I, Calogero RA, Beccuti M, Cordero F, De Bortoli M. Luminal breast cancer-specific circular RNAs uncovered by a novel tool for data analysis. Oncotarget 2018; 9:14580-14596. [PMID: 29581865 PMCID: PMC5865691 DOI: 10.18632/oncotarget.24522] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 02/12/2018] [Indexed: 12/31/2022] Open
Abstract
Circular RNAs are highly stable molecules present in all eukaryotes generated by distinct transcript processing. We have exploited poly(A-) RNA-Seq data generated in our lab in MCF-7 breast cancer cells to define a compilation of exonic circRNAs more comprehensive than previously existing lists. Development of a novel computational tool, named CircHunter, allowed us to more accurately characterize circRNAs and to quantitatively evaluate their expression in publicly available RNA-Seq data from breast cancer cell lines and tumor tissues. We observed and confirmed, by ChIP analysis, that exons involved in circularization events display significantly higher levels of the histone post-transcriptional modification H3K36me3 than non-circularizing exons. This result has potential impact on circRNA biogenesis since H3K36me3 has been involved in alternative splicing mechanisms. By analyzing an Ago-HITS-CLIP dataset we also found that circularizing exons overlapped with an unexpectedly higher number of Ago binding sites than non-circularizing exons. Finally, we observed that a subset of MCF-7 circRNAs are specific to tumor versus normal tissue, while others can distinguish Luminal from other tumor subtypes, thus suggesting that circRNAs can be exploited as novel biomarkers and drug targets for breast cancer.
Collapse
Affiliation(s)
- Lucia Coscujuela Tarrero
- Center for Molecular Systems Biology, University of Turin, Turin, Italy.,Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Giulio Ferrero
- Center for Molecular Systems Biology, University of Turin, Turin, Italy.,Department of Clinical and Biological Sciences, University of Turin, Turin, Italy.,Department of Computer Science, University of Turin, Turin, Italy
| | - Valentina Miano
- Center for Molecular Systems Biology, University of Turin, Turin, Italy.,Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Carlo De Intinis
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Laura Ricci
- Center for Molecular Systems Biology, University of Turin, Turin, Italy.,Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Maddalena Arigoni
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Federica Riccardo
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Laura Annaratone
- Department of Medical Sciences, University of Turin, Turin, Italy
| | | | - Raffaele A Calogero
- Center for Molecular Systems Biology, University of Turin, Turin, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Marco Beccuti
- Department of Computer Science, University of Turin, Turin, Italy
| | - Francesca Cordero
- Center for Molecular Systems Biology, University of Turin, Turin, Italy.,Department of Computer Science, University of Turin, Turin, Italy
| | - Michele De Bortoli
- Center for Molecular Systems Biology, University of Turin, Turin, Italy.,Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| |
Collapse
|
6
|
Miano V, Ferrero G, Rosti V, Manitta E, Elhasnaoui J, Basile G, De Bortoli M. Luminal lncRNAs Regulation by ERα-Controlled Enhancers in a Ligand-Independent Manner in Breast Cancer Cells. Int J Mol Sci 2018; 19:E593. [PMID: 29462945 PMCID: PMC5855815 DOI: 10.3390/ijms19020593] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 02/07/2018] [Accepted: 02/14/2018] [Indexed: 12/12/2022] Open
Abstract
Estrogen receptor-α (ERα) is a ligand-inducible protein which mediates estrogenic hormones signaling and defines the luminal BC phenotype. Recently, we demonstrated that even in absence of ligands ERα (apoERα) binds chromatin sites where it regulates transcription of several protein-coding and lncRNA genes. Noteworthy, apoERα-regulated lncRNAs marginally overlap estrogen-induced transcripts, thus representing a new signature of luminal BC genes. By the analysis of H3K27ac enrichment in hormone-deprived MCF-7 cells, we defined a set of Super Enhancers (SEs) occupied by apoERα, including one mapped in proximity of the DSCAM-AS1 lncRNA gene. This represents a paradigm of apoERα activity since its expression is largely unaffected by estrogenic treatment, despite the fact that E2 increases ERα binding on DSCAM-AS1 promoter. We validated the enrichment of apoERα, p300, GATA3, FoxM1 and CTCF at both DSCAM-AS1 TSS and at its associated SE by ChIP-qPCR. Furthermore, by analyzing MCF-7 ChIA-PET data and by 3C assays, we confirmed long range chromatin interaction between the SE and the DSCAM-AS1 TSS. Interestingly, CTCF and p300 binding showed an enrichment in hormone-depleted medium and in the presence of ERα, elucidating the dynamics of the estrogen-independent regulation of DSCAM-AS1 expression. The analysis of this lncRNA provides a paradigm of transcriptional regulation of a luminal specific apoERα regulated lncRNA.
Collapse
Affiliation(s)
- Valentina Miano
- Center for Molecular Systems Biology, University of Turin, Orbassano, 10043 Turin, Italy.
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, 10043 Turin, Italy.
| | - Giulio Ferrero
- Center for Molecular Systems Biology, University of Turin, Orbassano, 10043 Turin, Italy.
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, 10043 Turin, Italy.
- Department of Computer Science, University of Turin, 10149 Turin, Italy.
| | - Valentina Rosti
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, 10043 Turin, Italy.
| | - Eleonora Manitta
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, 10043 Turin, Italy.
| | - Jamal Elhasnaoui
- Center for Molecular Systems Biology, University of Turin, Orbassano, 10043 Turin, Italy.
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, 10043 Turin, Italy.
| | - Giulia Basile
- Italian Institute for Genomic Medicine (IIGM), 10126 Turin, Italy.
| | - Michele De Bortoli
- Center for Molecular Systems Biology, University of Turin, Orbassano, 10043 Turin, Italy.
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, 10043 Turin, Italy.
| |
Collapse
|