1
|
Zhang SS, Yu JH, Jiang SS, Wang L, Chen J, Long J, Gu SX, Li H. T7 peptide-mediated co-delivery platform overcoming multidrug-resistant breast cancer: In vitro and in vivo evaluation. Eur J Pharm Biopharm 2024; 200:114327. [PMID: 38759900 DOI: 10.1016/j.ejpb.2024.114327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/30/2024] [Accepted: 05/14/2024] [Indexed: 05/19/2024]
Abstract
P-glycoprotein (P-gp) overexpressed mutidrug resistance (MDR) is currently a key factor limiting the effectiveness of breast cancer chemotherapy. Systemic administration based on P-gp-associated mechanism leads to severe toxic side effects. Here, we designed a T7 peptide-modified mixed liposome (T7-MLP@DTX/SchB) that, by active targeting co-delivering chemotherapeutic agents and P-gp inhibitors, harnessed synergistic effects to improve the treatment of MDR breast cancer. This study established drug-resistant cell models and animal models. Subsequently, comprehensive evaluations involving cell uptake, cell apoptosis, cellular toxicity assays, in vivo tumor-targeting capability, and anti-tumor activity assays were conducted to assess the drug resistance reversal effects of T7-MLP@DTX/SchB. Additionally, a systematic assessment of the biosafety profile of T7-MLP@DTX/SchB was executed, including blood profiles, biochemical markers, and histopathological examination. It was found that this co-delivery strategy successfully exerted the synergistic effects, since there was a significant tumor growth inhibitory effect on multidrug-resistant breast cancer. Targeted modification with T7 peptide enhanced the therapeutic efficacy remarkably, while vastly ameliorating the biocompatibility compared to free drugs. The intriguing results supported the promising potential use of T7-MLP@DTX/SchB in overcoming MDR breast cancer treatment.
Collapse
Affiliation(s)
- Shuang-Shuang Zhang
- School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, Hubei, China; Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, China.
| | - Jia-Hui Yu
- School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, Hubei, China
| | - Si-Si Jiang
- School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, Hubei, China
| | - Lun Wang
- Huazhong Pharmaceutical Company Limited, Xiangyang 441021, China
| | - Jiong Chen
- School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, Hubei, China
| | - Jiao Long
- School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, Hubei, China
| | - Shuang-Xi Gu
- School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, Hubei, China; Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, China.
| | - Hui Li
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
2
|
Jafernik K, Motyka S, Calina D, Sharifi-Rad J, Szopa A. Comprehensive review of dibenzocyclooctadiene lignans from the Schisandra genus: anticancer potential, mechanistic insights and future prospects in oncology. Chin Med 2024; 19:17. [PMID: 38267965 PMCID: PMC10809469 DOI: 10.1186/s13020-024-00879-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 01/01/2024] [Indexed: 01/26/2024] Open
Abstract
Cancer remains one of the leading causes of mortality worldwide. The search for novel and effective anticancer agents has been a significant area of research. Dibenzocyclooctadiene lignans (DBCLS), derived from the Schisandra genus plants like: S. chinensis, S. sphenanthera, S. henryi, S. rubriflora, S. grandiflora, S. propinqua, and S. glabra, have been traditionally used in various medicinal systems and are known for their myriad health benefits, including anticancer properties. This comprehensive review aimed to collate and critically analyse the recent literature on the anticancer properties of DBCLS, focusing on their mechanistic approaches against different cancer types. An exhaustive literature search was performed using databases like PubMed/MedLine, Scopus, Web of Science, Embase, TRIP database and Google Scholar from 1980 to 2023. Peer-reviewed articles that elucidated the mechanistic approach of these lignans on cancer cell lines, in vivo models and preliminary clinical studies were included. Studies were assessed for their experimental designs, cancer types studied, and the mechanistic insights provided. The studies demonstrate that the anticancer effects of DBCLS compounds are primarily driven by their ability to trigger apoptosis, arrest the cell cycle, induce oxidative stress, modulate autophagy, and disrupt essential signaling pathways, notably MAPK, PI3K/Akt, and NF-κB. Additionally, these lignans have been shown to amplify the impact of traditional chemotherapy treatments, suggesting their potential role as supportive adjuncts in cancer therapy. Notably, several studies also emphasise their capacity to target cancer stem cells and mitigate multi-drug resistance specifically. DBCLS from the Schisandra genus have showcased significant potential as anticancer agents. Their multi-targeted mechanistic approach makes them promising candidates for further research, potentially leading to developing of new therapeutic strategies in cancer management.
Collapse
Affiliation(s)
- Karolina Jafernik
- Chair and Department of Pharmaceutical Botany, Jagiellonian University, Medical College, Medyczna 9 St., 30-688, Kraków, Poland
| | - Sara Motyka
- Chair and Department of Pharmaceutical Botany, Jagiellonian University, Medical College, Medyczna 9 St., 30-688, Kraków, Poland
- Doctoral School of Medical and Health Sciences, Medical College, Jagiellonian University, Łazarza 16 St., 31-530, Kraków, Poland
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania.
| | | | - Agnieszka Szopa
- Chair and Department of Pharmaceutical Botany, Jagiellonian University, Medical College, Medyczna 9 St., 30-688, Kraków, Poland.
| |
Collapse
|
3
|
Alemi A, Karamallah MH, Sabaghan M, Hosseini SA, Veisi A, Karamallah SH, Farokhifar M. Combination drug therapy by herbal nanomedicine prevent multidrug resistance protein 1: promote apoptosis in Lung Carcinoma. J Appl Biomater Funct Mater 2024; 22:22808000241235442. [PMID: 38497242 DOI: 10.1177/22808000241235442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024] Open
Abstract
Given the numerous adverse effects of lung cancer treatment, more research on non-toxic medications is urgently needed. Curcumin (CUR) and berberine (BBR) combat drug resistance by controlling the expression of multidrug resistant pump (MDR1). Fascinatingly, combining these medications increases the effectiveness of preventing lung cancer. Their low solubility and poor stability, however, restrict their therapeutic efficacy. Because of the improved bioavailability and increased encapsulation effectiveness of water-insoluble medicines, surfactant-based nanovesicles have recently received a great deal of attention. The current study sought to elucidate the Combination drug therapy by herbal nanomedicine prevent multidrug resistance protein 1: promote apoptosis in Lung Carcinoma. The impact of several tween (20, 60, and 80) types with varied hydrophobic tails on BBR/CUR-TNV was evaluated. Additionally, the MDR1 activity and apoptosis rate of the BBR/CUR-TNV combination therapy were assessed. The encapsulation effectiveness of TNV was affected by the type of tween. With the TNV made from tween 60, cholesterol, and PEG (47.5: 47.5:5), more encapsulation effectiveness was attained. By combining CUR with BBR, especially when given in TNV, apoptosis increased. Additionally, when CUR and BBR were administered in combination, they significantly reduced the risk of MDR1 development. The current work suggests that the delivery of berberine and curcumin as a combination medication therapy via tween-based nanovesicles may be a potential lung cancer treatment.
Collapse
Affiliation(s)
- Ashraf Alemi
- Abadan University of Medical Sciences, Abadan, Iran
| | | | | | - Seyed Ahmad Hosseini
- Nutrition and Metabolic Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Veisi
- Behbahan Faculty of Medical Sciences, Behbahan, Iran
| | | | | |
Collapse
|
4
|
Momeni M, Rakhshani S, Abbaspour M, Alizadeh F, Sheikhi N, GhorbanZadeh F, Habibi Z, Tabesh H. Dataset development of pre-formulation tests on fast disintegrating tablets (FDT): data aggregation. BMC Res Notes 2023; 16:131. [PMID: 37400854 DOI: 10.1186/s13104-023-06416-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/20/2023] [Indexed: 07/05/2023] Open
Abstract
OBJECTIVES Tablet manufacturing development is costly, laborious, and time-consuming. Technologies related to artificial intelligence like ,predictive model ,can be used in the control process to facilitate and accelerate the tablet manufacturing process. predictive models have become popular recently. However, predictive models need a comprehensive dataset of related data in the field, due to the lack of a dataset of tablet formulations, the aim of this study is to aggregate and integrate fast disintegration tablet's formulation into a comprehensive dataset. DATA DESCRIPTION The search strategy has been prepared between the years of 2010 to 2020, consisting of the keyword's 'formulation' ,'disintegrating' and 'Tablet', as well as their synonyms. By searching four databases, 1503 articles were retrieved, from these articles only 232 articles met all of the study's criteria. By reviewing 232 articles, 1982 formulations have been extracted, afterward pre-processing and cleaning data, contain steps of unifying the name and units, removing inappropriate formulations by an expert, and finally, data tidying was done on data. The developed dataset contains valuable information from various FDT's formulations, which can be used in pharmaceutical studies that are critical to the discovery and development of new drugs. this method can be applied to aggregate datasets from the other dosage forms.
Collapse
Affiliation(s)
- Mehri Momeni
- Department of Medical Informatics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saleh Rakhshani
- Department of pharmaceutics, school of pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammadreza Abbaspour
- Department of pharmaceutics, school of pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Faezeh Alizadeh
- Student research committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nafiseh Sheikhi
- Student research committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Faezeh GhorbanZadeh
- Student research committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Habibi
- Student research committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamed Tabesh
- Department of Medical Informatics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
5
|
Wu J, Li Y, He Q, Yang X. Exploration of the Use of Natural Compounds in Combination with Chemotherapy Drugs for Tumor Treatment. Molecules 2023; 28:molecules28031022. [PMID: 36770689 PMCID: PMC9920618 DOI: 10.3390/molecules28031022] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
Currently, chemotherapy is the main treatment for tumors, but there are still problems such as unsatisfactory chemotherapy results, susceptibility to drug resistance, and serious adverse effects. Natural compounds have numerous pharmacological activities which are important sources of drug discovery for tumor treatment. The combination of chemotherapeutic drugs and natural compounds is gradually becoming an important strategy and development direction for tumor treatment. In this paper, we described the role of natural compounds in combination with chemotherapeutic drugs in synergizing, reducing drug resistance, mitigating adverse effects and related mechanisms, and providing new insights for future oncology research.
Collapse
Affiliation(s)
- Jianping Wu
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yunheng Li
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qiaojun He
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi 276000, China
| | - Xiaochun Yang
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi 276000, China
- Correspondence: ; Tel.: +86-571-8820-8076
| |
Collapse
|
6
|
Li B, Shao H, Gao L, Li H, Sheng H, Zhu L. Nano-drug co-delivery system of natural active ingredients and chemotherapy drugs for cancer treatment: a review. Drug Deliv 2022; 29:2130-2161. [PMID: 35815678 PMCID: PMC9275501 DOI: 10.1080/10717544.2022.2094498] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Chemotherapy drugs have been used for a long time in the treatment of cancer, but serious side effects are caused by the inability of the drug to be solely delivered to the tumor when treating cancer with chemotherapy. Natural products have attracted more and more attention due to the antitumor effect in multiple ways, abundant resources and less side effects. Therefore, the combination of natural active ingredients and chemotherapy drugs may be an effective antitumor strategy, which can inhibit the growth of tumor and multidrug resistance, reduce side effects of chemotherapy drugs. Nano-drug co-delivery system (NDCDS) can play an important role in the combination of natural active ingredients and chemotherapy drugs. This review provides a comprehensive summary of the research status and application prospect of nano-delivery strategies for the combination of natural active ingredients and chemotherapy drugs, aiming to provide a basis for the development of anti-tumor drugs.
Collapse
Affiliation(s)
- Bingqian Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Huili Shao
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lei Gao
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Huan Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Huagang Sheng
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Liqiao Zhu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
7
|
Deng C, Hu F, Zhao Z, Zhou Y, Liu Y, Zhang T, Li S, Zheng W, Zhang W, Wang T, Ma X. The Establishment of Quantitatively Regulating Expression Cassette with sgRNA Targeting BIRC5 to Elucidate the Synergistic Pathway of Survivin with P-Glycoprotein in Cancer Multi-Drug Resistance. Front Cell Dev Biol 2022; 9:797005. [PMID: 35047507 PMCID: PMC8762277 DOI: 10.3389/fcell.2021.797005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/30/2021] [Indexed: 11/13/2022] Open
Abstract
Quantitative analysis and regulating gene expression in cancer cells is an innovative method to study key genes in tumors, which conduces to analyze the biological function of the specific gene. In this study, we found the expression levels of Survivin protein (BIRC5) and P-glycoprotein (MDR1) in MCF-7/doxorubicin (DOX) cells (drug-resistant cells) were significantly higher than MCF-7 cells (wild-type cells). In order to explore the specific functions of BIRC5 gene in multi-drug resistance (MDR), a CRISPR/Cas9-mediated knocking-in tetracycline (Tet)-off regulatory system cell line was established, which enabled us to regulate the expression levels of Survivin quantitatively (clone 8 named MCF-7/Survivin was selected for further studies). Subsequently, the determination results of doxycycline-induced DOX efflux in MCF-7/Survivin cells implied that Survivin expression level was opposite to DOX accumulation in the cells. For example, when Survivin expression was down-regulated, DOX accumulation inside the MCF-7/Survivin cells was up-regulated, inducing strong apoptosis of cells (reversal index 118.07) by weakening the release of intracellular drug from MCF-7/Survivin cells. Also, down-regulation of Survivin resulted in reduced phosphorylation of PI3K, Akt, and mTOR in MCF-7/Survivin cells and significantly decreased P-gp expression. Previous studies had shown that PI3K/Akt/mTOR could regulate P-gp expression. Therefore, we speculated that Survivin might affect the expression of P-gp through PI3K/Akt/mTOR pathway. In summary, this quantitative method is not only valuable for studying the gene itself, but also can better analyze the biological phenomena related to it.
Collapse
Affiliation(s)
- Changping Deng
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Fabiao Hu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Zhangting Zhao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yiwen Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yuping Liu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Tong Zhang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Shihui Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Wenyun Zheng
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Wenliang Zhang
- Center of Translational Biomedical Research, University of North Carolina at Greensboro, Greensboro, NC, United States
| | - Tianwen Wang
- College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Xingyuan Ma
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
8
|
An P, Zhang LJ, Peng W, Chen YY, Liu QP, Luan X, Zhang H. Natural products are an important source for proteasome regulating agents. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 93:153799. [PMID: 34715511 DOI: 10.1016/j.phymed.2021.153799] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 09/14/2021] [Accepted: 10/07/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Natural medicines have a long history in the prevention and treatment of various diseases in East Asian region, especially in China. Modern research has proved that the pharmacological effects of numerous natural medicines involve the participation of ubiquitin proteasome system (UPS). UPS can degrade the unwanted and damaged proteins widely distributed in the nucleus and cytoplasm of various eukaryotes. PURPOSE The objective of the present study was to review and discuss the regulatory effects of natural products and extracts on proteasome components, which may help to find new proteasome regulators for drug development and clinical applications. METHODS The related information was compiled using the major scientific databases, such as CNKI, Elsevier, ScienceDirect, PubMed, SpringerLink, Wiley Online, and GeenMedical. The keywords "natural product" and "proteasome" were applied to extract the literature. Nature derived extracts, compounds and their derivatives involved in proteasome regulation were included, and the publications related to synthetic proteasome agents were excluded. RESULTS The pharmacological effects of more than 80 natural products and extracts derived from phytomedicines related to the proteasome regulation were reviewed. These natural products were classified according to their chemical properties. We also summarized some laws of action of natural products as proteasome regulators in the treatment of diseases, and listed the action characteristics of the typical natural products. CONCLUSION Natural products derived from nature can induce the degradation of damaged proteins through UPS or act as regulators to directly regulate the activity of proteasome. But few proteasome modulators are applied clinically. Summary of known rules for proteasome modulators will contribute to discover, modify and synthesize more proteasome modulators for clinical applications.
Collapse
Affiliation(s)
- Pei An
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, No. 1200, Cailun Road, Pudong New Area, Shanghai 201203, China
| | - Li-Jun Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, No. 1200, Cailun Road, Pudong New Area, Shanghai 201203, China
| | - Wei Peng
- School of pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yu-Ying Chen
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, No. 1200, Cailun Road, Pudong New Area, Shanghai 201203, China
| | - Qiu-Ping Liu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, No. 1200, Cailun Road, Pudong New Area, Shanghai 201203, China
| | - Xin Luan
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, No. 1200, Cailun Road, Pudong New Area, Shanghai 201203, China.
| | - Hong Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, No. 1200, Cailun Road, Pudong New Area, Shanghai 201203, China.
| |
Collapse
|
9
|
Advances in understanding the role of P-gp in doxorubicin resistance: Molecular pathways, therapeutic strategies, and prospects. Drug Discov Today 2021; 27:436-455. [PMID: 34624510 DOI: 10.1016/j.drudis.2021.09.020] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 07/22/2021] [Accepted: 09/29/2021] [Indexed: 12/11/2022]
Abstract
P-glycoprotein (P-gp) is a drug efflux transporter that triggers doxorubicin (DOX) resistance. In this review, we highlight the molecular avenues regulating P-gp, such as Nrf2, HIF-1α, miRNAs, and long noncoding (lnc)RNAs, to reveal their participation in DOX resistance. These antitumor compounds and genetic tools synergistically reduce P-gp expression. Furthermore, ATP depletion impairs P-gp activity to enhance the antitumor activity of DOX. Nanoarchitectures, including liposomes, micelles, polymeric nanoparticles (NPs), and solid lipid nanocarriers, have been developed for the co-delivery of DOX with anticancer compounds and genes enhancing DOX cytotoxicity. Surface modification of nanocarriers, for instance with hyaluronic acid (HA), can promote selectivity toward cancer cells. We discuss these aspects with a focus on P-gp expression and activity.
Collapse
|
10
|
Yoganathan S, Alagaratnam A, Acharekar N, Kong J. Ellagic Acid and Schisandrins: Natural Biaryl Polyphenols with Therapeutic Potential to Overcome Multidrug Resistance in Cancer. Cells 2021; 10:458. [PMID: 33669953 PMCID: PMC7924821 DOI: 10.3390/cells10020458] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/16/2021] [Accepted: 02/19/2021] [Indexed: 02/06/2023] Open
Abstract
Multidrug resistance (MDR) is one of the major clinical challenges in cancer treatment and compromises the effectiveness of conventional anticancer chemotherapeutics. Among known mechanisms of drug resistance, drug efflux via ATP binding cassette (ABC) transporters, namely P-glycoprotein (P-gp) has been characterized as a major mechanism of MDR. The primary function of ABC transporters is to regulate the transport of endogenous and exogenous small molecules across the membrane barrier in various tissues. P-gp and similar efflux pumps are associated with MDR because of their overexpression in many cancer types. One of the intensively studied approaches to overcome this mode of MDR involves development of small molecules to modulate P-gp activity. This strategy improves the sensitivity of cancer cells to anticancer drugs that are otherwise ineffective. Although multiple generations of P-gp inhibitors have been identified to date, reported compounds have demonstrated low clinical efficacy and adverse effects. More recently, natural polyphenols have emerged as a promising class of compounds to address P-gp linked MDR. This review highlights the chemical structure and anticancer activities of selected members of a structurally unique class of 'biaryl' polyphenols. The discussion focuses on the anticancer properties of ellagic acid, ellagic acid derivatives, and schisandrins. Research reports regarding their inherent anticancer activities and their ability to sensitize MDR cell lines towards conventional anticancer drugs are highlighted here. Additionally, a brief discussion about the axial chirality (i.e., atropisomerism) that may be introduced into these natural products for medicinal chemistry studies is also provided.
Collapse
Affiliation(s)
- Sabesan Yoganathan
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, 8000 Utopia Parkway, Queens, NY 11439, USA; (A.A.); (N.A.); (J.K.)
| | - Anushan Alagaratnam
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, 8000 Utopia Parkway, Queens, NY 11439, USA; (A.A.); (N.A.); (J.K.)
- Department of Chemistry, St. John’s College of Liberal Arts and Sciences, St. John’s University, 8000 Utopia Parkway, Queens, NY 11439, USA
| | - Nikita Acharekar
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, 8000 Utopia Parkway, Queens, NY 11439, USA; (A.A.); (N.A.); (J.K.)
| | - Jing Kong
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, 8000 Utopia Parkway, Queens, NY 11439, USA; (A.A.); (N.A.); (J.K.)
| |
Collapse
|
11
|
Zhou Y, Men L, Sun Y, Wei M, Fan X. Pharmacodynamic effects and molecular mechanisms of lignans from Schisandra chinensis Turcz. (Baill.), a current review. Eur J Pharmacol 2020; 892:173796. [PMID: 33345853 DOI: 10.1016/j.ejphar.2020.173796] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/08/2020] [Accepted: 12/11/2020] [Indexed: 02/06/2023]
Abstract
Fruit of Schisandra chinensis Turcz. (Baill.) (S. chinensis) is a traditional herbal medicine widely used in China, Korea, and many other east Asian countries. At present, S. chinensis commonly forms Chinese medicinal formulae with other herbal medicines to treat liver disease and neurological disease in clinical. Modern researches indicated that lignans were the main active ingredients of S. chinensis with high content and novel dibenzocyclooctadiene skeletal structure, exhibited considerable antioxidant, anti-inflammatory, and neuroprotective properties. Additionally, some of these lignans also showed certain potentials in anti-cancer, anti-fibrosis, and other effects. In the current review, we summarize literature reported lignans from S. chinensis in the past five years, and highlight the molecular mechanisms of lignans in exerting their biological functions. Also, we point out some deficiencies of existing researches and discuss the future direction of lignans study.
Collapse
Affiliation(s)
- Yuan Zhou
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Lihui Men
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China
| | - Yunxia Sun
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Mengying Wei
- Natural Medicine Institute of Zhejiang YangShengTang Co., Hangzhou, 310000, China
| | - Xiang Fan
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
12
|
Li YJ, Liu HT, Xue CJ, Xing XQ, Dong ST, Wang LS, Ding CY, Meng L, Dong ZJ. The synergistic anti-tumor effect of schisandrin B and apatinib. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2020; 22:839-849. [PMID: 31364407 DOI: 10.1080/10286020.2019.1645131] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 07/14/2019] [Accepted: 07/15/2019] [Indexed: 06/10/2023]
Abstract
The synergistic anti-tumor effect of schisandrin B (Sch.B) and apatinib was investigated in vitro. The CCK-8 assay revealed that Sch.B enhanced the inhibition of apatinib on cell proliferation by arresting cell cycle in G0/G1 phase. Sch.B also potentiated the suppression of apatinib on cell migration and invasion, by means of wound-healing and transwell invasion assay. Flow cytometry results showed that Sch.B enhanced apoptosis induced by apatinib. The results were confirmed by western blot analysis of the proteins MMP-9, and Bax caspase-9, and -12. These results suggest that combining apatinib and Sch.B is an effective therapeutic strategy for preventing GC progression. [Formula: see text].
Collapse
Affiliation(s)
- Ya-Jing Li
- Department of Pharmacy, Hebei General Hospital, Shijiazhuang 050051, China
| | - Hong-Tao Liu
- Department of Pharmacy, Hebei General Hospital, Shijiazhuang 050051, China
| | - Chao-Jun Xue
- Department of Pharmacy, Hebei General Hospital, Shijiazhuang 050051, China
| | - Xiao-Qin Xing
- Department of Pharmacy, Hebei General Hospital, Shijiazhuang 050051, China
| | - Song-Tao Dong
- Department of Pharmacy, Hebei General Hospital, Shijiazhuang 050051, China
| | - Lin-Shan Wang
- Department of Pharmacy, Hebei General Hospital, Shijiazhuang 050051, China
| | - Cong-Yang Ding
- Department of Pharmacy, Hebei General Hospital, Shijiazhuang 050051, China
- Graduate School of Hebei Medical University, Shijiazhuang 050017, China
| | - Lu Meng
- Department of Pharmacy, Hebei General Hospital, Shijiazhuang 050051, China
- Graduate School of Hebei Medical University, Shijiazhuang 050017, China
| | - Zhan-Jun Dong
- Department of Pharmacy, Hebei General Hospital, Shijiazhuang 050051, China
- Graduate School of Hebei Medical University, Shijiazhuang 050017, China
| |
Collapse
|
13
|
Cao Y, Shi Y, Cai Y, Hong Z, Chai Y. The Effects of Traditional Chinese Medicine on P-Glycoprotein–Mediated Multidrug Resistance and Approaches for Studying the Herb–P-Glycoprotein Interactions. Drug Metab Dispos 2020; 48:972-979. [DOI: 10.1124/dmd.120.000050] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 07/20/2020] [Indexed: 12/14/2022] Open
|
14
|
A Comprehensive Review on Schisandrin B and Its Biological Properties. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:2172740. [PMID: 32256947 PMCID: PMC7102409 DOI: 10.1155/2020/2172740] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 02/22/2020] [Indexed: 02/06/2023]
Abstract
Nature is a vast source of bioactive molecules and has provided an active and efficient reservoir for drug discovery. Among natural compounds, one of the most promising is Schisandrin B (Sch B), isolated from Schisandra chinensis, which was documented to possess diversified pharmacokinetic propriety, among them antioxidant, anti-inflammation, cardioprotection, and neuroprotection. Due to its large biological properties, Sch B was recorded to be a potent cure for several diseases by targeting several signaling pathways. This review is aimed at emphasizing the recent data on the biological properties of Sch B among the molecular mechanism of this drug on tumoral, cardiac, and neural diseases. The data suggest that the antitumor activities of Sch B were mainly through apoptosis and cell cycle arrest at the diver's stage. It is reported that Sch B could be used as effective chemotherapy, neuroprotection, and cardioprotection since it possesses a spectrum of biological activities; however, further investigations on the mechanism of its action and preclinical trials are still mandatory to further validate the potential of this natural drug candidate.
Collapse
|
15
|
Zhou X, Wang A, Wang L, Yin J, Wang L, Di L, Hoi MPM, Shan L, Wu X, Wang Y. A Danshensu-Tetramethylpyrazine Conjugate DT-010 Overcomes Multidrug Resistance in Human Breast Cancer. Front Pharmacol 2019; 10:722. [PMID: 31293428 PMCID: PMC6606714 DOI: 10.3389/fphar.2019.00722] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 06/05/2019] [Indexed: 11/13/2022] Open
Abstract
Background: We previously demonstrated that a Danshensu-Tetramethylpyrazine conjugate DT-010 enhanced anticancer effect of doxorubicin (Dox) in Dox-sensitive human breast cancer cells, and protected against Dox-induced cardiotoxicity. This work was designed to see whether DT-010 overcomes Dox resistance in resistant human breast cancer cells. Methods: The effects of DT-010, Dox or their combination on cell viability of Dox-resistant human breast cancer MCF-7/ADR cells were conducted using 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Apoptosis was examined by flow cytometry after Annexin V-FITC/PI co-staining. Dox accumulation in MCF-7/ADR cells was detected by flow cytometry and fluorescence microscopy. A fluorometric multidrug resistance (MDR) assay kit was used to evaluate the effect of DT-010 on MDR transporter activity. P-glycoprotein (P-gp) expression and activity were analyzed by Western blot and rhodamine 123 (Rh123) efflux assay, respectively. The effects of DT-010 on glycolysis and mitochondrial stress were detected using an Extracellular Flux Analyzer. A Succinate Dehydrogenase Activity Assay kit was used to measure mitochondrial complex II activity. Results: At non-cytotoxic concentrations, DT-010 in combination with Dox led to a significant growth inhibition of MCF-7/ADR cells, suggesting a synergy between DT-010 and Dox to reverse Dox resistance. DT-010 restored Dox-mediated apoptosis and p53 induction in MCF-7/ADR cells. DT-010 increased Dox accumulation in MCF-7/ADR cells via inhibiting P-gp activity, but without changing P-gp expression. Further studies showed that DT-010 significantly inhibited glycolysis and mitochondrial function of MCF-7/ADR cells. Mitochondrial complex II activity was inhibited by DT-010 or DT-010/Dox combination, but not by Dox. The DT-010-mediated suppression of metabolic process may render cells more vulnerable to Dox treatment and thus result in enhanced efficacy. Conclusions: The results indicate that DT-010 overcomes Dox resistance in human breast cancer cells through a dual action via simultaneously inhibiting P-gp-mediated drug efflux and influencing metabolic process.
Collapse
Affiliation(s)
- Xinhua Zhou
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Anqi Wang
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China.,PU-UM Innovative Institute of Chinese Medical Sciences, Zhuhai, China
| | - Liang Wang
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Jianhua Yin
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Li Wang
- Faculty of Health Sciences, University of Macau, Macao, China
| | - Lijun Di
- Faculty of Health Sciences, University of Macau, Macao, China
| | - Maggie Pui-Man Hoi
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Luchen Shan
- Institute of New Drug Research, College of Pharmacy, Jinan University, Guangzhou, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Yuqiang Wang
- Institute of New Drug Research, College of Pharmacy, Jinan University, Guangzhou, China
| |
Collapse
|
16
|
Abstract
Inhibition of BRAF improves therapeutic efficacy of BRAF-mutant melanoma. However, drug resistance to BRAF inhibitor is inevitable, and the drug resistance mechanisms still remain to be elucidated. Here, BRAF mutant cells A375 and SK-MEL-28 were chosen and treated with BRAF inhibitor vemurafenib, and the results showed that the ERK signaling pathway was blocked in these cells. Then, vemurafenib-resistant cells were constructed, and we found that drug resistance-related gene P-gp was overexpressed in the two cell lines. In addition, the histone acetylation was significantly increased on the P-gp promoter region, which suggested that the epigenetic modification participated in the P-gp overexpression. Furthermore, JQ1, a bromodomain inhibitor, was added to the vemurafenib-resistant cells and sensitizes the vemurafenib-induced melanoma cell apoptosis. In C57BL/6 mice intravenously injected with vemurafenib-resistant melanoma cells, cotreatment of vemurafenib and JQ1 also severely suppressed melanoma lung metastasis. Taken together, our findings may have important implications for the combined use of vemurafenib and JQ1 in the therapy for melanoma treatment.
Collapse
|
17
|
Choudhury H, Pandey M, Yin TH, Kaur T, Jia GW, Tan SQL, Weijie H, Yang EKS, Keat CG, Bhattamishra SK, Kesharwani P, Md S, Molugulu N, Pichika MR, Gorain B. Rising horizon in circumventing multidrug resistance in chemotherapy with nanotechnology. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 101:596-613. [PMID: 31029353 DOI: 10.1016/j.msec.2019.04.005] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/24/2019] [Accepted: 04/02/2019] [Indexed: 02/07/2023]
Abstract
Multidrug resistance (MDR) is one of the key barriers in chemotherapy, leading to the generation of insensitive cancer cells towards administered therapy. Genetic and epigenetic alterations of the cells are the consequences of MDR, resulted in drug resistivity, which reflects in impaired delivery of cytotoxic agents to the cancer site. Nanotechnology-based nanocarriers have shown immense shreds of evidence in overcoming these problems, where these promising tools handle desired dosage load of hydrophobic chemotherapeutics to facilitate designing of safe, controlled and effective delivery to specifically at tumor microenvironment. Therefore, encapsulating drugs within the nano-architecture have shown to enhance solubility, bioavailability, drug targeting, where co-administered P-gp inhibitors have additionally combat against developed MDR. Moreover, recent advancement in the stimuli-sensitive delivery of nanocarriers facilitates a tumor-targeted release of the chemotherapeutics to reduce the associated toxicities of chemotherapeutic agents in normal cells. The present article is focused on MDR development strategies in the cancer cell and different nanocarrier-based approaches in circumventing this hurdle to establish an effective therapy against deadliest cancer disease.
Collapse
Affiliation(s)
- Hira Choudhury
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Jalan Jalil Perkasa, Bukit Jalil, 57000, Kuala Lumpur, Malaysia; Centre for Bioactive Molecules and Drug Delivery, Institute for Research, Development and Innovation, International Medical University, 57000, Kuala Lumpur, Malaysia.
| | - Manisha Pandey
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Jalan Jalil Perkasa, Bukit Jalil, 57000, Kuala Lumpur, Malaysia; Centre for Bioactive Molecules and Drug Delivery, Institute for Research, Development and Innovation, International Medical University, 57000, Kuala Lumpur, Malaysia
| | - Tan Hui Yin
- Bachelor of Pharmacy student, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Taasjir Kaur
- Bachelor of Pharmacy student, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Gan Wei Jia
- Bachelor of Pharmacy student, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
| | - S Q Lawrence Tan
- Bachelor of Pharmacy student, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
| | - How Weijie
- Bachelor of Pharmacy student, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Eric Koh Sze Yang
- Bachelor of Pharmacy student, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Chin Guan Keat
- Bachelor of Pharmacy student, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Subrat Kumar Bhattamishra
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Shadab Md
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nagasekhara Molugulu
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Jalan Jalil Perkasa, Bukit Jalil, 57000, Kuala Lumpur, Malaysia; Centre for Bioactive Molecules and Drug Delivery, Institute for Research, Development and Innovation, International Medical University, 57000, Kuala Lumpur, Malaysia
| | - Mallikarjuna Rao Pichika
- Centre for Bioactive Molecules and Drug Delivery, Institute for Research, Development and Innovation, International Medical University, 57000, Kuala Lumpur, Malaysia; Department of Pharmaceutical Chemistry, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Bapi Gorain
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor 47500, Malaysia.
| |
Collapse
|
18
|
Diao L, Shen A, Yang Y, Tao J, Hu Y. CD44-targeted hyaluronic acid–curcumin reverses chemotherapeutics resistance by inhibiting P-gp and anti-apoptotic pathways. RSC Adv 2019; 9:40873-40882. [PMID: 35540044 PMCID: PMC9076387 DOI: 10.1039/c9ra08202f] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 12/02/2019] [Indexed: 01/20/2023] Open
Abstract
Chemotherapeutic drug resistance poses a great challenge in cancer therapy.
Collapse
Affiliation(s)
- Lu Diao
- School of Pharmaceutical Sciences
- Wenzhou Medical University
- Wenzhou
- China
- Zhejiang Pharmaceutical College
| | - Ao Shen
- The University of Queensland
- Brisbane 4072
- Australia
| | - Yunxu Yang
- Zhejiang Pharmaceutical College
- Ningbo
- China
| | - Jin Tao
- Zhejiang Pharmaceutical College
- Ningbo
- China
| | - Ying Hu
- School of Pharmaceutical Sciences
- Wenzhou Medical University
- Wenzhou
- China
- Zhejiang Pharmaceutical College
| |
Collapse
|
19
|
Effects of the Combination of Gliotoxin and Adriamycin on the Adriamycin-Resistant Non-Small-Cell Lung Cancer A549 Cell Line. Mar Drugs 2018; 16:md16040105. [PMID: 29584673 PMCID: PMC5923392 DOI: 10.3390/md16040105] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 03/17/2018] [Accepted: 03/24/2018] [Indexed: 02/05/2023] Open
Abstract
Acquired drug resistance constitutes an enormous hurdle in cancer treatment, and the search for effective compounds against resistant cancer is still advancing. Marine organisms are a promising natural resource for the discovery and development of anticancer agents. In this study, we examined whether gliotoxin (GTX), a secondary metabolite isolated from marine-derived Aspergillus fumigatus, inhibits the growth of adriamycin (ADR)-resistant non-small-cell lung cancer (NSCLC) cell lines A549/ADR. We investigated the effects of GTX on A549/ADR cell viability with the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and the induction of apoptosis in A549/ADR cells treated with GTX via fluorescence-activated cell sorting analysis, Hoechst staining, annexin V/propidium iodide staining, tetraethylbenzimidazolylcarbocyanine iodide (JC-1) staining, and western blotting. We found that GTX induced apoptosis in A549/ADR cells through the mitochondria-dependent pathway by disrupting mitochondrial membrane potential and activating p53, thereby increasing the expression levels of p21, p53 upregulated modulator of apoptosis (PUMA), Bax, cleaved poly (ADP-ribose) polymerase (PARP), and cleaved caspase-9. More importantly, we discovered that GTX works in conjunction with ADR to exert combinational effects on A549/ADR cells. In conclusion, our results suggest that GTX may have promising effects on ADR-resistant NSCLC cells by inducing mitochondria-dependent apoptosis and through the combined effects of sequential treatment with ADR.
Collapse
|
20
|
Yang C, Hou A, Yu C, Dai L, Wang W, Zhang K, Shao H, Ma J, Xu W. Kanglaite reverses multidrug resistance of HCC by inducing apoptosis and cell cycle arrest via PI3K/AKT pathway. Onco Targets Ther 2018; 11:983-996. [PMID: 29520149 PMCID: PMC5833758 DOI: 10.2147/ott.s153814] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Multidrug resistance (MDR) frequently contributes to the failure of chemotherapeutic treatments in patients diagnosed with hepatocellular carcinoma (HCC). Revealing the molecular mechanism of MDR is indispensable for the development of effective chemotherapeutic drugs. PURPOSE Due to the low-toxicity modulators to inhibit MDR, we considered that Kanglaite (KLT) is a potential agent for reversing MDR in HCC. MATERIALS AND METHODS BEL-7402/5-fluorouracil (5-FU) and HepG2/adriamycin (ADM) were analyzed for cell viability, colony formation assay, cell scratch assay, and cell cycle analysis and apoptosis assay by flow cytometry. The expression of PARP, caspase-3, Bax, Bcl-2, CDC25C, Cyclin B1 and phosphorylation of PTEN, PI3K, and AKT in HepG2/ADM cells were detected by western blotting. RESULTS The proliferation of drug-resistant cell lines BEL-7402/5-FU and HepG2/ADM pretreated with KLT was significantly inhibited when compared with drug alone. KLT could increase the accumulation of ADM in HepG2/ADM cells. In this study, we found that KLT treatment notably reduced cell viability, induced apoptosis and cell cycle arrest in human HepG2/ADM and BEL-7402/5-FU cells, and effectively reversed the MDR by p-glycoprotein (P-gp) inhibition. Moreover, KLT decreased the phosphorylation of AKT and PI3K in KLT-treated HepG2/ADM cells. These data together implied that KLT might reverse drug resistance in HCC by blocking the PI3K/AKT signaling. CONCLUSION We demonstrated that KLT reversed MDR of human HCC by inducing apoptosis and cell cycle arrest via the PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
| | - Aihua Hou
- Yantai Hospital of Traditional Chinese Medicine
- Binzhou Medical University, Yantai, China
| | - Chunfeng Yu
- Yantai Hospital of Traditional Chinese Medicine
| | | | - Wen Wang
- Yantai Hospital of Traditional Chinese Medicine
| | | | | | - Jinghua Ma
- Yantai Hospital of Traditional Chinese Medicine
| | - Wenjuan Xu
- Binzhou Medical University, Yantai, China
| |
Collapse
|
21
|
Chen J, Zhou C, Li J, Xiang X, Zhang L, Deng J, Xiong J. miR‑21‑5p confers doxorubicin resistance in gastric cancer cells by targeting PTEN and TIMP3. Int J Mol Med 2018; 41:1855-1866. [PMID: 29393355 PMCID: PMC5810196 DOI: 10.3892/ijmm.2018.3405] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 01/04/2018] [Indexed: 12/13/2022] Open
Abstract
Drug resistance and disease recurrence are major obstacles to the effective treatment of cancer, including gastric cancer (GC). However, the mechanisms of drug resistance remain to be fully elucidated. The present study investigated the roles of microRNA (miR)-21-5p in the doxorubicin (DOX) resistance of GC cells and the underlying mechanisms. miR-21-5p expression levels were identified to be inversely correlated with two well-known tumor suppressor genes, phosphatase and tensin homologue and tissue inhibitor of matrix metalloproteinases 3, and were upregulated in GC cell lines in proportion to their degree of resistance. Suppressing miR-21-5p expression partially sensitized SGC7901/DOX cells to DOX, suggesting that knockdown of miR-21-5p expression may be used as a therapeutic strategy to improve GC cell resistance. Importantly, increased miR-21-5p expression levels at diagnosis were correlated with clinicopathological characteristics including advanced stage and poor prognosis, further implying that a relapse of GC may be a consequence of miR-21-5p upregulation, thus providing evidence for the potential utility of miR-21-5p antagonism to sensitize GC cells to DOX chemotherapy.
Collapse
Affiliation(s)
- Jun Chen
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Chao Zhou
- Department of Neurology, Jiangxi Provincial People's Hospital, Nanchang, Jiangxi 330006, P.R. China
| | - Junhe Li
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xiaojun Xiang
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Ling Zhang
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Jun Deng
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Jianping Xiong
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|