1
|
Siddiq MM, Toro CA, Johnson NP, Hansen J, Xiong Y, Mellado W, Tolentino RE, Johnson K, Jayaraman G, Suhail Z, Harlow L, Dai J, Beaumont KG, Sebra R, Willis DE, Cardozo CP, Iyengar R. Spinal cord injury regulates circular RNA expression in axons. Front Mol Neurosci 2023; 16:1183315. [PMID: 37692100 PMCID: PMC10483835 DOI: 10.3389/fnmol.2023.1183315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 07/04/2023] [Indexed: 09/12/2023] Open
Abstract
Introduction Neurons transport mRNA and translational machinery to axons for local translation. After spinal cord injury (SCI), de novo translation is assumed to enable neurorepair. Knowledge of the identity of axonal mRNAs that participate in neurorepair after SCI is limited. We sought to identify and understand how axonal RNAs play a role in axonal regeneration. Methods We obtained preparations enriched in axonal mRNAs from control and SCI rats by digesting spinal cord tissue with cold-active protease (CAP). The digested samples were then centrifuged to obtain a supernatant that was used to identify mRNA expression. We identified differentially expressed genes (DEGS) after SCI and mapped them to various biological processes. We validated the DEGs by RT-qPCR and RNA-scope. Results The supernatant fraction was highly enriched for mRNA from axons. Using Gene Ontology, the second most significant pathway for all DEGs was axonogenesis. Among the DEGs was Rims2, which is predominately a circular RNA (circRNA) in the CNS. We show that Rims2 RNA within spinal cord axons is circular. We found an additional 200 putative circRNAs in the axonal-enriched fraction. Knockdown in primary rat cortical neurons of the RNA editing enzyme ADAR1, which inhibits formation of circRNAs, significantly increased axonal outgrowth and increased the expression of circRims2. Using Rims2 as a prototype we used Circular RNA Interactome to predict miRNAs that bind to circRims2 also bind to the 3'UTR of GAP-43, PTEN or CREB1, all known regulators of axonal outgrowth. Axonally-translated GAP-43 supports axonal elongation and we detect GAP-43 mRNA in the rat axons by RNAscope. Discussion By enriching for axonal RNA, we detect SCI induced DEGs, including circRNA such as Rims2. Ablation of ADAR1, the enzyme that regulates circRNA formation, promotes axonal outgrowth of cortical neurons. We developed a pathway model using Circular RNA Interactome that indicates that Rims2 through miRNAs can regulate the axonal translation GAP-43 to regulate axonal regeneration. We conclude that axonal regulatory pathways will play a role in neurorepair.
Collapse
Affiliation(s)
- Mustafa M. Siddiq
- Pharmacological Sciences and Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Carlos A. Toro
- Spinal Cord Damage Research Center, James J. Peters VA Medical Center, Bronx, NY, United States
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Nicholas P. Johnson
- Pharmacological Sciences and Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Jens Hansen
- Pharmacological Sciences and Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Yuguang Xiong
- Pharmacological Sciences and Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | | | - Rosa E. Tolentino
- Pharmacological Sciences and Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Kaitlin Johnson
- Spinal Cord Damage Research Center, James J. Peters VA Medical Center, Bronx, NY, United States
| | - Gomathi Jayaraman
- Pharmacological Sciences and Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Zaara Suhail
- Pharmacological Sciences and Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Lauren Harlow
- Spinal Cord Damage Research Center, James J. Peters VA Medical Center, Bronx, NY, United States
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Jinye Dai
- Pharmacological Sciences and Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Kristin G. Beaumont
- Department of Genetics and Genomic Studies, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Icahn Genomics Institute, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Robert Sebra
- Department of Genetics and Genomic Studies, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Icahn Genomics Institute, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Dianna E. Willis
- Burke Neurological Institute, White Plains, NY, United States
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, United States
| | - Christopher P. Cardozo
- Spinal Cord Damage Research Center, James J. Peters VA Medical Center, Bronx, NY, United States
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Rehabilitation Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Ravi Iyengar
- Pharmacological Sciences and Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
2
|
Birkhoff JC, Korporaal AL, Brouwer RWW, Nowosad K, Milazzo C, Mouratidou L, van den Hout MCGN, van IJcken WFJ, Huylebroeck D, Conidi A. Zeb2 DNA-Binding Sites in Neuroprogenitor Cells Reveal Autoregulation and Affirm Neurodevelopmental Defects, Including in Mowat-Wilson Syndrome. Genes (Basel) 2023; 14:genes14030629. [PMID: 36980900 PMCID: PMC10048071 DOI: 10.3390/genes14030629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/16/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Functional perturbation and action mechanism studies have shown that the transcription factor Zeb2 controls cell fate decisions, differentiation, and/or maturation in multiple cell lineages in embryos and after birth. In cultured embryonic stem cells (ESCs), Zeb2’s mRNA/protein upregulation is necessary for the exit from primed pluripotency and for entering general and neural differentiation. We edited mouse ESCs to produce Flag-V5 epitope-tagged Zeb2 protein from one endogenous allele. Using chromatin immunoprecipitation coupled with sequencing (ChIP-seq), we mapped 2432 DNA-binding sites for this tagged Zeb2 in ESC-derived neuroprogenitor cells (NPCs). A new, major binding site maps promoter-proximal to Zeb2 itself. The homozygous deletion of this site demonstrates that autoregulation of Zeb2 is necessary to elicit the appropriate Zeb2-dependent effects in ESC-to-NPC differentiation. We have also cross-referenced all the mapped Zeb2 binding sites with previously obtained transcriptome data from Zeb2 perturbations in ESC-derived NPCs, GABAergic interneurons from the ventral forebrain of mouse embryos, and stem/progenitor cells from the post-natal ventricular-subventricular zone (V-SVZ) in mouse forebrain, respectively. Despite the different characteristics of each of these neurogenic systems, we found interesting target gene overlaps. In addition, our study also contributes to explaining developmental disorders, including Mowat-Wilson syndrome caused by ZEB2 deficiency, and also other monogenic syndromes.
Collapse
Affiliation(s)
- Judith C. Birkhoff
- Department of Cell Biology, Erasmus University Medical Center, 3015 Rotterdam, The Netherlands
| | - Anne L. Korporaal
- Department of Cell Biology, Erasmus University Medical Center, 3015 Rotterdam, The Netherlands
| | - Rutger W. W. Brouwer
- Center for Biomics-Genomics, Erasmus University Medical Center, 3015 Rotterdam, The Netherlands
| | - Karol Nowosad
- Department of Cell Biology, Erasmus University Medical Center, 3015 Rotterdam, The Netherlands
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093 Lublin, Poland
- The Postgraduate School of Molecular Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Claudia Milazzo
- Department of Cell Biology, Erasmus University Medical Center, 3015 Rotterdam, The Netherlands
| | - Lidia Mouratidou
- Department of Cell Biology, Erasmus University Medical Center, 3015 Rotterdam, The Netherlands
| | | | - Wilfred F. J. van IJcken
- Department of Cell Biology, Erasmus University Medical Center, 3015 Rotterdam, The Netherlands
- Center for Biomics-Genomics, Erasmus University Medical Center, 3015 Rotterdam, The Netherlands
| | - Danny Huylebroeck
- Department of Cell Biology, Erasmus University Medical Center, 3015 Rotterdam, The Netherlands
- Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
| | - Andrea Conidi
- Department of Cell Biology, Erasmus University Medical Center, 3015 Rotterdam, The Netherlands
- Correspondence: ; Tel.: +31-10-7043169
| |
Collapse
|
3
|
Horvath S, Haghani A, Zoller JA, Naderi A, Soltanmohammadi E, Farmaki E, Kaza V, Chatzistamou I, Kiaris H. Methylation studies in Peromyscus: aging, altitude adaptation, and monogamy. GeroScience 2022; 44:447-461. [PMID: 34698996 PMCID: PMC8810952 DOI: 10.1007/s11357-021-00472-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/07/2021] [Indexed: 11/18/2022] Open
Abstract
DNA methylation-based biomarkers of aging have been developed for humans and many other mammals and could be used to assess how stress factors impact aging. Deer mice (Peromyscus) are long-living rodents that have emerged as an informative model to study aging, adaptation to extreme environments, and monogamous behavior. In the present study, we have undertaken an exhaustive, genome-wide analysis of DNA methylation in Peromyscus, spanning different species, stocks, sexes, tissues, and age cohorts. We describe DNA methylation-based estimators of age for different species of deer mice based on novel DNA methylation data generated on highly conserved mammalian CpGs measured with a custom array. The multi-tissue epigenetic clock for deer mice was trained on 3 tissues (tail, liver, and brain). Two human-Peromyscus clocks accurately measure age and relative age, respectively. We present CpGs and enriched pathways that relate to different conditions such as chronological age, high altitude, and monogamous behavior. Overall, this study provides a first step towards studying the epigenetic correlates of monogamous behavior and adaptation to high altitude in Peromyscus. The human-Peromyscus epigenetic clocks are expected to provide a significant boost to the attractiveness of Peromyscus as a biological model.
Collapse
Affiliation(s)
- Steve Horvath
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA USA
- Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, CA USA
| | - Amin Haghani
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA USA
| | - Joseph A. Zoller
- Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, CA USA
| | - Asieh Naderi
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC USA
| | - Elham Soltanmohammadi
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC USA
| | - Elena Farmaki
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC USA
| | - Vimala Kaza
- Peromyscus Genetic Stock Center, University of South Carolina, Columbia, SC USA
| | - Ioulia Chatzistamou
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC USA
| | - Hippokratis Kiaris
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC USA
- Peromyscus Genetic Stock Center, University of South Carolina, Columbia, SC USA
| |
Collapse
|
4
|
Goulding SR, Anantha J, Collins LM, Sullivan AM, O'Keeffe GW. Growth differentiation factor 5: a neurotrophic factor with neuroprotective potential in Parkinson's disease. Neural Regen Res 2022; 17:38-44. [PMID: 34100424 PMCID: PMC8451580 DOI: 10.4103/1673-5374.314290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/08/2021] [Accepted: 01/24/2021] [Indexed: 11/04/2022] Open
Abstract
Parkinson's disease is the most common movement disorder worldwide, affecting over 6 million people. It is an age-related disease, occurring in 1% of people over the age of 60, and 3% of the population over 80 years. The disease is characterized by the progressive loss of midbrain dopaminergic neurons from the substantia nigra, and their axons, which innervate the striatum, resulting in the characteristic motor and non-motor symptoms of Parkinson's disease. This is paralleled by the intracellular accumulation of α-synuclein in several regions of the nervous system. Current therapies are solely symptomatic and do not stop or slow disease progression. One promising disease-modifying strategy to arrest the loss of dopaminergic neurons is the targeted delivery of neurotrophic factors to the substantia nigra or striatum, to protect the remaining dopaminergic neurons of the nigrostriatal pathway. However, clinical trials of two well-established neurotrophic factors, glial cell line-derived neurotrophic factor and neurturin, have failed to meet their primary end-points. This failure is thought to be at least partly due to the downregulation by α-synuclein of Ret, the common co-receptor of glial cell line-derived neurorophic factor and neurturin. Growth/differentiation factor 5 is a member of the bone morphogenetic protein family of neurotrophic factors, that signals through the Ret-independent canonical Smad signaling pathway. Here, we review the evidence for the neurotrophic potential of growth/differentiation factor 5 in in vitro and in vivo models of Parkinson's disease. We discuss new work on growth/differentiation factor 5's mechanisms of action, as well as data showing that viral delivery of growth/differentiation factor 5 to the substantia nigra is neuroprotective in the α-synuclein rat model of Parkinson's disease. These data highlight the potential for growth/differentiation factor 5 as a disease-modifying therapy for Parkinson's disease.
Collapse
Affiliation(s)
- Susan R. Goulding
- Department of Anatomy and Neuroscience, and Cork Neuroscience Centre, University College Cork, Cork, Ireland
| | - Jayanth Anantha
- Department of Anatomy and Neuroscience, and Cork Neuroscience Centre, University College Cork, Cork, Ireland
| | - Louise M. Collins
- Department of Anatomy and Neuroscience, and Cork Neuroscience Centre, University College Cork, Cork, Ireland
- Department of Physiology, University College Cork, Cork, Ireland
| | - Aideen M. Sullivan
- Department of Anatomy and Neuroscience, and Cork Neuroscience Centre, University College Cork, Cork, Ireland
| | - Gerard W. O'Keeffe
- Department of Anatomy and Neuroscience, and Cork Neuroscience Centre, University College Cork, Cork, Ireland
| |
Collapse
|
5
|
Bahado-Singh RO, Vishweswaraiah S, Aydas B, Radhakrishna U. Artificial intelligence and placental DNA methylation: newborn prediction and molecular mechanisms of autism in preterm children. J Matern Fetal Neonatal Med 2021; 35:8150-8159. [PMID: 34404318 DOI: 10.1080/14767058.2021.1963704] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BACKGROUND Autism Spectrum Disorder (ASD) represents a heterogeneous group of disorders with a complex genetic and epigenomic etiology. DNA methylation is the most extensively studied epigenomic mechanism and correlates with altered gene expression. Artificial intelligence (AI) is a powerful tool for group segregation and for handling the large volume of data generated in omics experiments. METHODS We performed genome-wide methylation analysis for differential methylation of cytosine nucleotide (CpG) was performed in 20 postpartum placental tissue samples from preterm births. Ten newborns went on to develop autism (Autistic Disorder subtype) and there were 10 unaffected controls. AI including Deep Learning (AI-DL) platforms were used to identify and rank cytosine methylation markers for ASD detection. Ingenuity Pathway Analysis (IPA) to identify genes and molecular pathways that were dysregulated in autism. RESULTS We identified 4870 CpG loci comprising 2868 genes that were significantly differentially methylated in ASD compared to controls. Of these 431 CpGs met the stringent EWAS threshold (p-value <5 × 10-8) along with ≥10% methylation difference between CpGs in cases and controls. DL accurately predicted autism with an AUC (95% CI) of 1.00 (1-1) and sensitivity and specificity of 100% using a combination of 5 CpGs [cg13858611 (NRN1), cg09228833 (ZNF217), cg06179765 (GPNMB), cg08814105 (NKX2-5), cg27092191 (ZNF267)] CpG markers. IPA identified five prenatally dysregulated molecular pathways linked to ASD. CONCLUSIONS The present study provides substantial evidence that epigenetic differences in placental tissue are associated with autism development and raises the prospect of early and accurate detection of the disorder.
Collapse
Affiliation(s)
- Ray O Bahado-Singh
- Department of Obstetrics and Gynecology, Oakland University William Beaumont School of Medicine, Royal Oak, MI, USA
| | - Sangeetha Vishweswaraiah
- Department of Obstetrics and Gynecology, Oakland University William Beaumont School of Medicine, Royal Oak, MI, USA
| | - Buket Aydas
- Department of Healthcare Analytics, Meridian Health Plans, Detroit, MI, USA
| | - Uppala Radhakrishna
- Department of Obstetrics and Gynecology, Oakland University William Beaumont School of Medicine, Royal Oak, MI, USA
| |
Collapse
|
6
|
Birkhoff JC, Huylebroeck D, Conidi A. ZEB2, the Mowat-Wilson Syndrome Transcription Factor: Confirmations, Novel Functions, and Continuing Surprises. Genes (Basel) 2021; 12:1037. [PMID: 34356053 PMCID: PMC8304685 DOI: 10.3390/genes12071037] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 12/15/2022] Open
Abstract
After its publication in 1999 as a DNA-binding and SMAD-binding transcription factor (TF) that co-determines cell fate in amphibian embryos, ZEB2 was from 2003 studied by embryologists mainly by documenting the consequences of conditional, cell-type specific Zeb2 knockout (cKO) in mice. In between, it was further identified as causal gene causing Mowat-Wilson Syndrome (MOWS) and novel regulator of epithelial-mesenchymal transition (EMT). ZEB2's functions and action mechanisms in mouse embryos were first addressed in its main sites of expression, with focus on those that helped to explain neurodevelopmental and neural crest defects seen in MOWS patients. By doing so, ZEB2 was identified in the forebrain as the first TF that determined timing of neuro-/gliogenesis, and thereby also the extent of different layers of the cortex, in a cell non-autonomous fashion, i.e., by its cell-intrinsic control within neurons of neuron-to-progenitor paracrine signaling. Transcriptomics-based phenotyping of Zeb2 mutant mouse cells have identified large sets of intact-ZEB2 dependent genes, and the cKO approaches also moved to post-natal brain development and diverse other systems in adult mice, including hematopoiesis and various cell types of the immune system. These new studies start to highlight the important adult roles of ZEB2 in cell-cell communication, including after challenge, e.g., in the infarcted heart and fibrotic liver. Such studies may further evolve towards those documenting the roles of ZEB2 in cell-based repair of injured tissue and organs, downstream of actions of diverse growth factors, which recapitulate developmental signaling principles in the injured sites. Evident questions are about ZEB2's direct target genes, its various partners, and ZEB2 as a candidate modifier gene, e.g., in other (neuro)developmental disorders, but also the accurate transcriptional and epigenetic regulation of its mRNA expression sites and levels. Other questions start to address ZEB2's function as a niche-controlling regulatory TF of also other cell types, in part by its modulation of growth factor responses (e.g., TGFβ/BMP, Wnt, Notch). Furthermore, growing numbers of mapped missense as well as protein non-coding mutations in MOWS patients are becoming available and inspire the design of new animal model and pluripotent stem cell-based systems. This review attempts to summarize in detail, albeit without discussing ZEB2's role in cancer, hematopoiesis, and its emerging roles in the immune system, how intense ZEB2 research has arrived at this exciting intersection.
Collapse
Affiliation(s)
- Judith C. Birkhoff
- Department of Cell Biology, Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands; (J.C.B.); (D.H.)
| | - Danny Huylebroeck
- Department of Cell Biology, Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands; (J.C.B.); (D.H.)
- Department of Development and Regeneration, Unit Stem Cell and Developmental Biology, Biomedical Sciences Group, KU Leuven, 3000 Leuven, Belgium
| | - Andrea Conidi
- Department of Cell Biology, Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands; (J.C.B.); (D.H.)
| |
Collapse
|
7
|
Mazzocchi M, Goulding SR, Wyatt SL, Collins LM, Sullivan AM, O'Keeffe GW. LMK235, a small molecule inhibitor of HDAC4/5, protects dopaminergic neurons against neurotoxin- and α-synuclein-induced degeneration in cellular models of Parkinson's disease. Mol Cell Neurosci 2021; 115:103642. [PMID: 34119632 DOI: 10.1016/j.mcn.2021.103642] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/03/2021] [Accepted: 06/05/2021] [Indexed: 01/24/2023] Open
Abstract
Epigenetic modifications in neurodegenerative disease are under investigation for their roles in disease progression. Alterations in acetylation rates of certain Parkinson's disease (PD)-linked genes have been associated with the pathological progression of this disorder. In light of this, and given the lack of disease-modifying therapies for PD, HDAC inhibitors (HDIs) are under consideration as potential pharmacological agents. The neuroprotective effects of pan-HDACs and some class-specific inhibitors have been tested in in vivo and in vitro models of PD, with varying outcomes. Here we used gene co-expression analysis to identify HDACs that are associated with human dopaminergic (DA) neuron development. We identified HDAC3, HDAC5, HDAC6 and HDAC9 as being highly correlated with the DA markers, SLC6A3 and NR4A2. RT-qPCR revealed that mRNA expression of these HDACs exhibited similar temporal profiles during embryonic mouse midbrain DA (mDA) neuron development. We tested the neuroprotective potential of a number of class-specific small molecule HDIs on human SH-SY5Y cells, using neurite growth as a phenotypic readout of neurotrophic action. Neither the class I-specific HDIs, RGFP109 and RGFP966, nor the HDAC6 inhibitor ACY1215, had significant effects on neurite outgrowth. However, the class IIa HDI, LMK235 (a HDAC4/5 inhibitor), significantly increased histone acetylation and neurite outgrowth. We found that LMK235 increased BMP-Smad-dependent transcription in SH-SY5Y cells and that this was required for its neurite growth-promoting effects on SH-SY5Y cells and on DA neurons in primary cultures of embryonic day (E) 14 rat ventral mesencephalon (VM). These effects were also seen in SH-SY5Y cells transfected with HDAC5 siRNA. Furthermore, LMK235 treatment exerted neuroprotective effects against degeneration induced by the DA neurotoxin 1-methyl-4-phenylpyridinium (MPP+), in both SH-SY5Y cells and cultured DA neurons. Treatment with LMK235 was also neuroprotective against axonal degeneration induced by overexpression of wild-type (WT) or A53T mutant α-synuclein in both SH-SY5Y cells and primary cultures of DA neurons. In summary, these data show the neuroprotective potential of the class IIa HDI, LMK235, in cell models of relevance to PD.
Collapse
Affiliation(s)
- Martina Mazzocchi
- Department of Anatomy & Neuroscience, University College Cork (UCC), Cork, Ireland
| | - Susan R Goulding
- Department of Anatomy & Neuroscience, University College Cork (UCC), Cork, Ireland
| | - Sean L Wyatt
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Louise M Collins
- Department of Anatomy & Neuroscience, University College Cork (UCC), Cork, Ireland; Department of Physiology, UCC, Cork, Ireland
| | - Aideen M Sullivan
- Department of Anatomy & Neuroscience, University College Cork (UCC), Cork, Ireland; APC Microbiome Ireland, UCC, Cork, Ireland.
| | - Gerard W O'Keeffe
- Department of Anatomy & Neuroscience, University College Cork (UCC), Cork, Ireland; APC Microbiome Ireland, UCC, Cork, Ireland.
| |
Collapse
|
8
|
Anantha J, Goulding SR, Wyatt SL, Concannon RM, Collins LM, Sullivan AM, O'Keeffe GW. STRAP and NME1 Mediate the Neurite Growth-Promoting Effects of the Neurotrophic Factor GDF5. iScience 2020; 23:101457. [PMID: 32853992 PMCID: PMC7452236 DOI: 10.1016/j.isci.2020.101457] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 07/17/2020] [Accepted: 08/10/2020] [Indexed: 12/23/2022] Open
Abstract
Loss of midbrain dopaminergic (mDA) neurons and their axons is central to Parkinson's disease (PD). Growth differentiation factor (GDF)5 is a potential neurotrophic factor for PD therapy. However, the molecular mediators of its neurotrophic action are unknown. Our proteomics analysis shows that GDF5 increases the expression of serine threonine receptor-associated protein kinase (STRAP) and nucleoside diphosphate kinase (NME)1 in the SH-SY5Y neuronal cell line. GDF5 overexpression increased NME1 expression in adult rat brain in vivo. NME and STRAP mRNAs are expressed in developing and adult rodent midbrain. Expression of both STRAP and NME1 is necessary and sufficient for the promotion of neurite growth in SH-SY5Y cells by GDF5. NME1 treatment increased neurite growth in both SH-SY5Y cells and cultured mDA neurons. Expression patterns of NME and STRAP are altered in PD midbrain. NME1 and STRAP are thus key mediators of GDF5's neurotrophic effects, rationalizing their future study as therapeutic targets for PD.
Collapse
Affiliation(s)
- Jayanth Anantha
- Department of Anatomy & Neuroscience, University College Cork (UCC), Cork, Ireland
| | - Susan R. Goulding
- Department of Anatomy & Neuroscience, University College Cork (UCC), Cork, Ireland
- Department of Biological Sciences, Cork Institute of Technology, Cork, Ireland
| | - Sean L. Wyatt
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff, UK
| | - Ruth M. Concannon
- Department of Anatomy & Neuroscience, University College Cork (UCC), Cork, Ireland
| | - Louise M. Collins
- Department of Anatomy & Neuroscience, University College Cork (UCC), Cork, Ireland
- Department of Physiology, UCC, Cork, Ireland
| | - Aideen M. Sullivan
- Department of Anatomy & Neuroscience, University College Cork (UCC), Cork, Ireland
- APC Microbiome Ireland, UCC, Cork, Ireland
- Cork Neuroscience Centre, UCC, Cork, Ireland
| | - Gerard W. O'Keeffe
- Department of Anatomy & Neuroscience, University College Cork (UCC), Cork, Ireland
- APC Microbiome Ireland, UCC, Cork, Ireland
- Cork Neuroscience Centre, UCC, Cork, Ireland
| |
Collapse
|
9
|
Deryckere A, Stappers E, Dries R, Peyre E, van den Berghe V, Conidi A, Zampeta FI, Francis A, Bresseleers M, Stryjewska A, Vanlaer R, Maas E, Smal IV, van IJcken WFJ, Grosveld FG, Nguyen L, Huylebroeck D, Seuntjens E. Multifaceted actions of Zeb2 in postnatal neurogenesis from the ventricular-subventricular zone to the olfactory bulb. Development 2020; 147:dev184861. [PMID: 32253238 DOI: 10.1242/dev.184861] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 03/23/2020] [Indexed: 03/01/2024]
Abstract
The transcription factor Zeb2 controls fate specification and subsequent differentiation and maturation of multiple cell types in various embryonic tissues. It binds many protein partners, including activated Smad proteins and the NuRD co-repressor complex. How Zeb2 subdomains support cell differentiation in various contexts has remained elusive. Here, we studied the role of Zeb2 and its domains in neurogenesis and neural differentiation in the young postnatal ventricular-subventricular zone (V-SVZ), in which neural stem cells generate olfactory bulb-destined interneurons. Conditional Zeb2 knockouts and separate acute loss- and gain-of-function approaches indicated that Zeb2 is essential for controlling apoptosis and neuronal differentiation of V-SVZ progenitors before and after birth, and we identified Sox6 as a potential downstream target gene of Zeb2. Zeb2 genetic inactivation impaired the differentiation potential of the V-SVZ niche in a cell-autonomous fashion. We also provide evidence that its normal function in the V-SVZ also involves non-autonomous mechanisms. Additionally, we demonstrate distinct roles for Zeb2 protein-binding domains, suggesting that Zeb2 partners co-determine neuronal output from the mouse V-SVZ in both quantitative and qualitative ways in early postnatal life.
Collapse
Affiliation(s)
- Astrid Deryckere
- Laboratory of Developmental Neurobiology, Department of Biology, KU Leuven, Leuven 3000, Belgium
| | - Elke Stappers
- Laboratory of Molecular Biology (Celgen), Department of Development and Regeneration, KU Leuven, Leuven 3000, Belgium
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam 3015 CN, The Netherlands
| | - Ruben Dries
- Laboratory of Molecular Biology (Celgen), Department of Development and Regeneration, KU Leuven, Leuven 3000, Belgium
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam 3015 CN, The Netherlands
| | - Elise Peyre
- GIGA-Stem Cells and GIGA-Neurosciences, Liège University, Liège 4000, Belgium
| | - Veronique van den Berghe
- Laboratory of Molecular Biology (Celgen), Department of Development and Regeneration, KU Leuven, Leuven 3000, Belgium
- Department of Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, and MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, UK
| | - Andrea Conidi
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam 3015 CN, The Netherlands
| | - F Isabella Zampeta
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam 3015 CN, The Netherlands
| | - Annick Francis
- Laboratory of Molecular Biology (Celgen), Department of Development and Regeneration, KU Leuven, Leuven 3000, Belgium
| | - Marjolein Bresseleers
- Laboratory of Molecular Biology (Celgen), Department of Development and Regeneration, KU Leuven, Leuven 3000, Belgium
| | - Agata Stryjewska
- Laboratory of Molecular Biology (Celgen), Department of Development and Regeneration, KU Leuven, Leuven 3000, Belgium
| | - Ria Vanlaer
- Laboratory of Developmental Neurobiology, Department of Biology, KU Leuven, Leuven 3000, Belgium
| | - Elke Maas
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, KU Leuven, Leuven 3000, Belgium
| | - Ihor V Smal
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam 3015 CN, The Netherlands
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam 3015 CN, The Netherlands
| | - Wilfred F J van IJcken
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam 3015 CN, The Netherlands
- Center for Biomics-Genomics, Department of Cell Biology, Erasmus University Medical Center, Rotterdam 3015 CN, The Netherlands
| | - Frank G Grosveld
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam 3015 CN, The Netherlands
| | - Laurent Nguyen
- GIGA-Stem Cells and GIGA-Neurosciences, Liège University, Liège 4000, Belgium
| | - Danny Huylebroeck
- Laboratory of Molecular Biology (Celgen), Department of Development and Regeneration, KU Leuven, Leuven 3000, Belgium
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam 3015 CN, The Netherlands
| | - Eve Seuntjens
- Laboratory of Developmental Neurobiology, Department of Biology, KU Leuven, Leuven 3000, Belgium
- Laboratory of Molecular Biology (Celgen), Department of Development and Regeneration, KU Leuven, Leuven 3000, Belgium
| |
Collapse
|
10
|
Goulding SR, Sullivan AM, O'Keeffe GW, Collins LM. The potential of bone morphogenetic protein 2 as a neurotrophic factor for Parkinson's disease. Neural Regen Res 2020; 15:1432-1436. [PMID: 31997802 PMCID: PMC7059567 DOI: 10.4103/1673-5374.274327] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Parkinson's disease is the second most common neurodegenerative disorder; it affects 1% of the population over the age of 65. The number of people with Parkinson's disease is set to rapidly increase due to changing demographics and there is an unmet clinical need for disease-modifying therapies. The pathological hallmarks of Parkinson's disease are the progressive degeneration of dopaminergic neurons in the substantia nigra and their axons which project to the striatum, and the aggregation of α-synuclein; these result in a range of debilitating motor and non-motor symptoms. The application of neurotrophic factors to protect and potentially regenerate the remaining dopaminergic neurons is a major area of research interest. However, this strategy has had limited success to date. Clinical trials of two well-known neurotrophic factors, glial cell line-derived neurotrophic factor and neurturin, have reported limited efficacy in Parkinson's disease patients, despite these factors showing potent neurotrophic actions in animal studies. There is therefore a need to identify other neurotrophic factors that can protect against α-synuclein-induced degeneration of dopaminergic neurons. The bone morphogenetic protein (BMP) family is the largest subgroup of the transforming growth factor-β superfamily of proteins. BMPs are naturally secreted proteins that play crucial roles throughout the developing nervous system. Importantly, many BMPs have been shown to be potent neurotrophic factors for dopaminergic neurons. Here we discuss recent work showing that transcripts for the BMP receptors and BMP2 are co-expressed with several key markers of dopaminergic neurons in the human substantia nigra, and evidence for downregulation of BMP2 expression at distinct stages of Parkinson's disease. We also discuss studies that explored the effects of BMP2 treatment, in in vitro and in vivo models of Parkinson's disease. These studies found potent effects of BMP2 on dopaminergic neurites, which is important given that axon degeneration is increasingly recognized as a key early event in Parkinson's disease. Thus, the aim of this mini-review is to give an overview of the BMP family and the BMP-Smad signalling pathway, in addition to reviewing the available evidence demonstrating the potential of BMP2 for Parkinson's disease therapy.
Collapse
Affiliation(s)
- Susan R Goulding
- Department of Biological Sciences, Cork Institute of Technology; Department of Anatomy and Neuroscience and Cork Neuroscience Centre, University College Cork, Cork, Ireland
| | - Aideen M Sullivan
- Department of Anatomy and Neuroscience and Cork Neuroscience Centre, University College Cork, Cork, Ireland
| | - Gerard W O'Keeffe
- Department of Anatomy and Neuroscience and Cork Neuroscience Centre, University College Cork, Cork, Ireland
| | - Louise M Collins
- Department of Anatomy and Neuroscience and Cork Neuroscience Centre; Department of Physiology, University College Cork, Cork, Ireland
| |
Collapse
|
11
|
Mazzocchi M, Wyatt SL, Mercatelli D, Morari M, Morales-Prieto N, Collins LM, Sullivan AM, O’Keeffe GW. Gene Co-expression Analysis Identifies Histone Deacetylase 5 and 9 Expression in Midbrain Dopamine Neurons and as Regulators of Neurite Growth via Bone Morphogenetic Protein Signaling. Front Cell Dev Biol 2019; 7:191. [PMID: 31572723 PMCID: PMC6753186 DOI: 10.3389/fcell.2019.00191] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 08/26/2019] [Indexed: 12/27/2022] Open
Abstract
Parkinson's disease is characterized by the intracellular accumulation of α-synuclein which has been linked to early dopaminergic axonal degeneration. Identifying druggable targets that can promote axonal growth in cells overexpressing α-synuclein is important in order to develop strategies for early intervention. Class-IIa histone deacetylases (HDACs) have previously emerged as druggable targets, however, it is not known which specific class-IIa HDACs should be targeted to promote neurite growth in dopaminergic neurons. To provide insight into this, we used gene co-expression analysis to identify which, if any, of the class-IIa HDACs had a positive correlation with markers of dopaminergic neurons in the human substantia nigra. This revealed that two histone deacetylases, HDAC5 and HDAC9, are co-expressed with TH, GIRK2 and ALDH1A1 in the human SN. We further found that HDAC5 and HDAC9 are expressed in dopaminergic neurons in the adult mouse substantia nigra. We show that siRNAs targeting HDAC5 or HDAC9 can promote neurite growth in SH-SY5Y cells, and that their pharmacological inhibition, using the drug MC1568, promoted neurite growth in cultured rat dopaminergic neurons. Moreover, MC1568 treatment upregulated the expression of the neurotrophic factor, BMP2, and its downstream transcription factor, SMAD1. In addition, MC1568 or siRNAs targeting HDAC5 or HDAC9 led to an increase in Smad-dependent GFP expression in a reporter assay. Furthermore, MC1568 treatment of cultured rat dopaminergic neurons increased cellular levels of phosphorylated Smad1, which was prevented by the BMP receptor inhibitor, dorsomorphin. Dorsomorphin treatment prevented the neurite growth-promoting effects of siRNAs targeting HDAC5, as did overexpression of dominant-negative Smad4 or of the inhibitory Smad7, demonstrating a functional link to BMP signaling. Supplementation with BMP2 prevented the neurite growth-inhibitory effects of nuclear-restricted HDAC5. Finally, we report that siRNAs targeting HDAC5 or HDAC9 promoted neurite growth in cells overexpressing wild-type or A53T-α-synuclein and that MC1568 protected cultured rat dopaminergic neurons against the neurotoxin, MPP+. These findings establish HDAC5 and HDAC9 as novel regulators of BMP-Smad signaling, that additionally may be therapeutic targets worthy of further exploration in iPSC-derived human DA neurons and in vivo models of Parkinson's disease.
Collapse
Affiliation(s)
- Martina Mazzocchi
- Department of Anatomy & Neuroscience, University College Cork (UCC), Cork, Ireland
| | - Sean L. Wyatt
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Daniela Mercatelli
- Department of Medical Sciences, Section of Pharmacology, University of Ferrara, National Institute of Neuroscience, Ferrara, Italy
| | - Michele Morari
- Department of Medical Sciences, Section of Pharmacology, University of Ferrara, National Institute of Neuroscience, Ferrara, Italy
| | | | - Louise M. Collins
- Department of Anatomy & Neuroscience, University College Cork (UCC), Cork, Ireland
- Department of Physiology, University College Cork, Cork, Ireland
| | - Aideen M. Sullivan
- Department of Anatomy & Neuroscience, University College Cork (UCC), Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Gerard W. O’Keeffe
- Department of Anatomy & Neuroscience, University College Cork (UCC), Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| |
Collapse
|
12
|
Goulding SR, Sullivan AM, O'Keeffe GW, Collins LM. Gene co-expression analysis of the human substantia nigra identifies BMP2 as a neurotrophic factor that can promote neurite growth in cells overexpressing wild-type or A53T α-synuclein. Parkinsonism Relat Disord 2019; 64:194-201. [PMID: 31000327 DOI: 10.1016/j.parkreldis.2019.04.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 04/02/2019] [Accepted: 04/07/2019] [Indexed: 01/28/2023]
Abstract
INTRODUCTION α-synuclein-induced degeneration of dopaminergic neurons has been proposed to be central to the early progression of Parkinson's disease. This highlights the need to identify factors that are neuroprotective or neuroregenerative against α-synuclein-induced degeneration. Due to their potent neurotrophic effects on nigrostriatal dopaminergic neurons, we hypothesized that members of the bone morphogenetic protein (BMP) family have potential to protect these cells against α-synuclein. METHODS To identify the most relevant BMP ligands, we used unbiased gene co-expression analysis to identify all BMP family members having a significant positive correlation with five markers of dopaminergic neurons in the human substantia nigra (SN). We then tested the ability of lead BMPs to promote neurite growth in SH-SY5Y cells and in primary cultures of ventral mesencephalon (VM) dopaminergic neurons, treated with either 6-OHDA or MPP+, or overexpressing wild-type or A53T α-synuclein. RESULTS Only the expression of BMP2 was found to be significantly correlated with multiple dopaminergic markers in the SN. We found that BMP2 treatment promoted neurite growth in SH-SY5Y cells and in dopaminergic neurons. Moreover, BMP2 treatment promoted neurite growth in both SH-SY5Y cells and VM neurons, treated with the neurotoxins 6-OHDA or MPP+. Furthermore, BMP2 promoted neurite growth in cells overexpressing wild-type or A53T-α-synuclein. CONCLUSION These findings are important given that clinical trials of two neurotrophic factors, GDNF and neurturin, have failed to meet their primary endpoints. Our findings are a key first step in rationalising the further study of BMP2 as a potential neurotrophic factor in α-synuclein-based translational models of Parkinson's disease.
Collapse
Affiliation(s)
- Susan R Goulding
- Department of Biological Sciences, Cork Institute of Technology, Cork, Ireland; Department of Anatomy and Neuroscience & Cork Neuroscience Centre, University College Cork, Cork, Ireland
| | - Aideen M Sullivan
- Department of Anatomy and Neuroscience & Cork Neuroscience Centre, University College Cork, Cork, Ireland
| | - Gerard W O'Keeffe
- Department of Anatomy and Neuroscience & Cork Neuroscience Centre, University College Cork, Cork, Ireland.
| | - Louise M Collins
- Department of Anatomy and Neuroscience & Cork Neuroscience Centre, University College Cork, Cork, Ireland; Department of Physiology, University College Cork, Cork, Ireland.
| |
Collapse
|
13
|
Epifanova E, Babaev A, Newman AG, Tarabykin V. Role of Zeb2/Sip1 in neuronal development. Brain Res 2018; 1705:24-31. [PMID: 30266271 DOI: 10.1016/j.brainres.2018.09.034] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 09/04/2018] [Accepted: 09/25/2018] [Indexed: 11/28/2022]
Abstract
Zeb2 (Sip1, Zfhx1b) is a transcription factor that plays essential role in neuronal development. Sip1 mutation in humans was shown to cause Mowat-Wilson syndrome, a syndromic form of Hirschprung's disease. Affected individuals exhibit multiple severe neurodevelopmental defects. Zeb2 can act as both transcriptional repressor and activator. It controls expression of a wide number of genes that regulate various aspects of neuronal development. This review addresses the molecular pathways acting downstream of Zeb2 that cause brain development disorders.
Collapse
Affiliation(s)
- Ekaterina Epifanova
- Institute of Cell Biology and Neurobiology, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany; Lobachevsky State University of Nizhny Novgorod, Gagarina ave 23, 603950 Nizhny Novgorod, Russia
| | - Alexey Babaev
- Lobachevsky State University of Nizhny Novgorod, Gagarina ave 23, 603950 Nizhny Novgorod, Russia
| | - Andrew G Newman
- Institute of Cell Biology and Neurobiology, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Victor Tarabykin
- Institute of Cell Biology and Neurobiology, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany; Lobachevsky State University of Nizhny Novgorod, Gagarina ave 23, 603950 Nizhny Novgorod, Russia.
| |
Collapse
|
14
|
Yang S, Toledo EM, Rosmaninho P, Peng C, Uhlén P, Castro DS, Arenas E. A Zeb2-miR-200c loop controls midbrain dopaminergic neuron neurogenesis and migration. Commun Biol 2018; 1:75. [PMID: 30271956 PMCID: PMC6123725 DOI: 10.1038/s42003-018-0080-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 05/31/2018] [Indexed: 12/16/2022] Open
Abstract
Zeb2 is a homeodomain transcription factor that plays pleiotropic functions during embryogenesis, but its role for midbrain dopaminergic (mDA) neuron development is unknown. Here we report that Zeb2 is highly expressed in progenitor cells in the ventricular zone of the midbrain floor plate and downregulated in postmitotic neuroblasts. Functional experiments show that Zeb2 expression in the embryonic ventral midbrain is dynamically regulated by a negative feedback loop that involves miR-200c. We also find that Zeb2 overexpression reduces the levels of CXCR4, NR4A2, and PITX3 in the developing ventral midbrain in vivo, resulting in migration and mDA differentiation defects. This phenotype was recapitulated by miR-200c knockdown, suggesting that the Zeb2-miR-200c loop prevents the premature differentiation of mDA progenitors into postmitotic cells and their migration. Together, our study establishes Zeb2 and miR-200c as critical regulators that maintain the balance between mDA progenitor proliferation and neurogenesis.
Collapse
Affiliation(s)
- Shanzheng Yang
- Laboratory for Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solnavägen 9, 17177, Stockholm, Sweden
| | - Enrique M Toledo
- Laboratory for Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solnavägen 9, 17177, Stockholm, Sweden
| | - Pedro Rosmaninho
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2780-156, Oeiras, Portugal
| | - Changgeng Peng
- Laboratory for Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solnavägen 9, 17177, Stockholm, Sweden
| | - Per Uhlén
- Laboratory for Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solnavägen 9, 17177, Stockholm, Sweden
| | - Diogo S Castro
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2780-156, Oeiras, Portugal
| | - Ernest Arenas
- Laboratory for Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solnavägen 9, 17177, Stockholm, Sweden.
| |
Collapse
|
15
|
Inhibition of miR-181a promotes midbrain neuronal growth through a Smad1/5-dependent mechanism: implications for Parkinson's disease. Neuronal Signal 2018; 2:NS20170181. [PMID: 32714583 PMCID: PMC7371012 DOI: 10.1042/ns20170181] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 12/22/2017] [Accepted: 01/10/2018] [Indexed: 12/14/2022] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease, and is characterized by the progressive degeneration of nigrostriatal dopaminergic (DA) neurons. Current PD treatments are symptomatic, wear off over time and do not protect against DA neuronal loss. Finding a way to re-grow midbrain DA (mDA) neurons is a promising disease-modifying therapeutic strategy for PD. However, reliable biomarkers are required to allow such growth-promoting approaches to be applied early in the disease progression. miR-181a has been shown to be dysregulated in PD patients, and has been identified as a potential biomarker for PD. Despite studies demonstrating the enrichment of miR-181a in the brain, specifically in neurites of postmitotic neurons, the role of miR-181a in mDA neurons remains unknown. Herein, we used cell culture models of human mDA neurons to investigate a potential role for miR-181a in mDA neurons. We used a bioninformatics analysis to identify that miR-181a targets components of the bone morphogenetic protein (BMP) signalling pathway, including the transcription factors Smad1 and Smad5, which we find are expressed by rat mDA neurons and are required for BMP-induced neurite growth. We also found that inhibition of neuronal miR-181a, resulted in increased Smad signalling, and induced neurite growth in SH-SY5Y cells. Finally, using embryonic rat cultures, we demonstrated that miR-181a inhibition induces ventral midbrain (VM) and cortical neuronal growth. These data describe a new role for miR-181a in mDA neurons, and provide proof of principle that miR-181a dysresgulation in PD may alter the activation state of signalling pathways important for neuronal growth in neurons affected in PD.
Collapse
|
16
|
Sullivan A, O'Keeffe G, Hegarty S. Targeting transcriptional regulators to regenerate midbrain dopaminergic axons in Parkinson's disease. Neural Regen Res 2017; 12:1814-1815. [PMID: 29239326 PMCID: PMC5745834 DOI: 10.4103/1673-5374.219039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|