Preliminary demonstration of a persistent Josephson phase-slip memory cell with topological protection.
Nat Commun 2021;
12:5200. [PMID:
34465775 PMCID:
PMC8408200 DOI:
10.1038/s41467-021-25209-y]
[Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 07/09/2021] [Indexed: 11/08/2022] Open
Abstract
Superconducting computing promises enhanced computational power in both classical and quantum approaches. Yet, scalable and fast superconducting memories are not implemented. Here, we propose a fully superconducting memory cell based on the hysteretic phase-slip transition existing in long aluminum nanowire Josephson junctions. Embraced by a superconducting ring, the memory cell codifies the logic state in the direction of the circulating persistent current, as commonly defined in flux-based superconducting memories. But, unlike the latter, the hysteresis here is a consequence of the phase-slip occurring in the long weak link and associated to the topological transition of its superconducting gap. This disentangles our memory scheme from the large-inductance constraint, thus enabling its miniaturization. Moreover, the strong activation energy for phase-slip nucleation provides a robust topological protection against stochastic phase-slips and magnetic-flux noise. These properties make the Josephson phase-slip memory a promising solution for advanced superconducting classical logic architectures or flux qubits.
Superconducting computing promises enhanced computational power, but scalable and fast superconducting memories are still not implemented. Here, the authors demonstrate a superconducting memory cell based on hysteretic phase-slip transition, without degradation up to ~1 K over several days.
Collapse