1
|
Cherif Y, Azzi H, Sridharan K, Ji S, Choi H, Allan MG, Benaissa S, Saidi-Bendahou K, Damptey L, Ribeiro CS, Krishnamurthy S, Nagarajan S, Maroto-Valer MM, Kuehnel MF, Pitchaimuthu S. Facile Synthesis of Gram-Scale Mesoporous Ag/TiO 2 Photocatalysts for Pharmaceutical Water Pollutant Removal and Green Hydrogen Generation. ACS OMEGA 2023; 8:1249-1261. [PMID: 36643558 PMCID: PMC9835632 DOI: 10.1021/acsomega.2c06657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
This work demonstrates a two-step gram-scale synthesis of presynthesized silver (Ag) nanoparticles impregnated with mesoporous TiO2 and evaluates their feasibility for wastewater treatment and hydrogen gas generation under natural sunlight. Paracetamol was chosen as the model pharmaceutical pollutant for evaluating photocatalytic performance. A systematic material analysis (morphology, chemical environment, optical bandgap energy) of the Ag/TiO2 photocatalyst powder was carried out, and the influence of material properties on the performance is discussed in detail. The experimental results showed that the decoration of anatase TiO2 nanoparticles (size between 80 and 100 nm) with 5 nm Ag nanoparticles (1 wt %) induced visible-light absorption and enhanced charge carrier separation. As a result, 0.01 g/L Ag/TiO2 effectively removed 99% of 0.01 g/L paracetamol in 120 min and exhibited 60% higher photocatalytic removal than pristine TiO2. Alongside paracetamol degradation, Ag/TiO2 led to the generation of 1729 μmol H2 g-1 h-1. This proof-of-concept approach for tandem pollutant degradation and hydrogen generation was further evaluated with rare earth metal (lanthanum)- and nonmetal (nitrogen)-doped TiO2, which also showed a positive response. Using a combination of ab initio calculations and our new theory model, we revealed that the enhanced photocatalytic performance of Ag/TiO2 was due to the surface Fermi-level change of TiO2 and lowered surface reaction energy barrier for water pollutant oxidation. This work opens new opportunities for exploiting tandem photocatalytic routes beyond water splitting and understanding the simultaneous reactions in metal-doped metal oxide photocatalyst systems under natural sunlight.
Collapse
Affiliation(s)
- Yassine Cherif
- Laboratoire
de Catalyse et Synthèse en Chimie Organique, Université de Tlemcen, BP 119, Tlemcen13000, Algeria
| | - Hajer Azzi
- Laboratoire
de Catalyse et Synthèse en Chimie Organique, Université de Tlemcen, BP 119, Tlemcen13000, Algeria
- Institut
des Sciences et de la Technologie, Université d’Ain
Témouchent, BP
284, 46000Ain Témouchent, Algeria
| | - Kishore Sridharan
- Department
of Nanoscience and Technology, School of Physical Sciences, University of Calicut, P. O. Thenhipalam673635, India
| | - Seulgi Ji
- Theoretical
Materials & Chemistry Group, Institute of Inorganic Chemistry, University of Cologne, Greinstr. 6, 50939Cologne, Germany
| | - Heechae Choi
- Theoretical
Materials & Chemistry Group, Institute of Inorganic Chemistry, University of Cologne, Greinstr. 6, 50939Cologne, Germany
| | - Michael G. Allan
- Department
of Chemistry, Swansea University, Singleton Park, SwanseaSA2 8PP, United Kingdom
| | - Sihem Benaissa
- Institut
des Sciences et de la Technologie, Université d’Ain
Témouchent, BP
284, 46000Ain Témouchent, Algeria
| | - Karima Saidi-Bendahou
- Laboratoire
de Catalyse et Synthèse en Chimie Organique, Université de Tlemcen, BP 119, Tlemcen13000, Algeria
| | - Lois Damptey
- School of
Engineering & Innovation, The Open University, Walton Hall, Milton KeynesMK7 6AA, United Kingdom
| | - Camila Silva Ribeiro
- School of
Engineering & Innovation, The Open University, Walton Hall, Milton KeynesMK7 6AA, United Kingdom
| | - Satheesh Krishnamurthy
- School of
Engineering & Innovation, The Open University, Walton Hall, Milton KeynesMK7 6AA, United Kingdom
| | - Sanjay Nagarajan
- Department
of Chemical Engineering, University of Bath, BathBA2 7AY, United Kingdom
| | - M. Mercedes Maroto-Valer
- Research
Centre for Carbon Solutions, Institute of Mechanical and Processing
Engineering, School of Engineering & Physical Science, Heriot-Watt University, EdinburghEH14 4AS, United Kingdom
| | - Moritz F. Kuehnel
- Department
of Chemistry, Swansea University, Singleton Park, SwanseaSA2 8PP, United Kingdom
- Fraunhofer
Institute for Wind Energy Systems IWES, Am Haupttor 4310, 06237Leuna, Germany
| | - Sudhagar Pitchaimuthu
- Research
Centre for Carbon Solutions, Institute of Mechanical and Processing
Engineering, School of Engineering & Physical Science, Heriot-Watt University, EdinburghEH14 4AS, United Kingdom
| |
Collapse
|
2
|
Peerakiatkhajohn P, Yun JH, Butburee T, Nisspa W, Thaweesak S. Surface plasmon-driven photoelectrochemical water splitting of a Ag/TiO 2 nanoplate photoanode. RSC Adv 2022; 12:2652-2661. [PMID: 35425299 PMCID: PMC8979192 DOI: 10.1039/d1ra09070d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/05/2022] [Indexed: 01/09/2023] Open
Abstract
A silver/titanium dioxide nanoplate (Ag/TiO2 NP) photoelectrode was designed and fabricated from vertically aligned TiO2 nanoplates (NP) decorated with silver nanoparticles (NPs) through a simple hydrothermal synthesis and electrodeposition route. The electrodeposition times of Ag NPs on the TiO2 NP were crucial for surface plasmon-driven photoelectrochemical (PEC) water splitting performance. The Ag/TiO2 NP at the optimal deposition time of 5 min with a Ag element content of 0.53 wt% demonstrated a remarkably high photocurrent density of 0.35 mA cm-2 at 1.23 V vs. RHE under AM 1.5G illumination, which was 5 fold higher than that of the pristine TiO2 NP. It was clear that the enhanced light absorption properties and PEC performance for Ag/TiO2 NP could be effectively adjusted by simply controlling the loading amounts of metallic Ag NPs (average size of 10-30 nm) at different electrodeposition times. The superior PEC performance of the Ag/TiO2 NP photoanode was attributed to the synergistic effects of the plasmonic Ag NPs and the TiO2 nanoplate. Interestingly, the plasmonic effect of Ag NPs not only increased the visible-light response (λ max = 570 nm) of TiO2 but also provided hot electrons to promote photocurrent generation and suppress charge recombination. Importantly, this study offers a potentially efficient strategy for the design and fabrication of a new type of TiO2 hybrid nanostructure with a plasmonic enhancement for PEC water splitting.
Collapse
Affiliation(s)
| | - Jung-Ho Yun
- Nanomaterials Centre, School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland St Lucia QLD 4123 Australia
| | - Teera Butburee
- National Nanotechnology Center, National Science and Technology Development Agency 111 Thailand Science Park Pathum Thani 12120 Thailand
| | - Waraporn Nisspa
- Division of Science and Technology, Faculty of Science and Technology, Phetchaburi Rajabhat University Phetchaburi 76000 Thailand
| | - Supphasin Thaweesak
- Department of Chemical Engineering, Faculty of Engineering, Burapha University Chon Buri 20131 Thailand
| |
Collapse
|
3
|
Highly Photoactive Titanium Dioxide Supported Platinum Catalyst: Synthesis Using Cleaner Ultrasound Approach. Catalysts 2022. [DOI: 10.3390/catal12010078] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Catalysts increase reaction rates; however, the surface area to volume ratio of catalysts has a vital role in catalytic activity. The noble metals such as platinum (Pt) and gold (Au) are expensive; despite this, they have proven their existence in catalysis, motivating the synthesis of supported metal catalysts. Metal catalysts need to be highly dispersed onto the support. In this investigation, an ultrasound approach has been attempted to synthesise highly photoactive titanium dioxide (TiO2) nanoparticles by the hydrolysis of titanium tetraisopropoxide in an acetone/methanol mixture. To enhance its photocatalytic activity, TiO2 was doped with Pt. The synthesised photocatalyst was characterised by techniques such as particle size analysis (PSA), XRD, FE-SEM, TEM, and EDX. The enhancement in the surface characteristics of Pt-doped TiO2 compared with bare TiO2 support was confirmed with Brunauer–Emmett–Teller (BET) analysis. The enhanced surface area and uniformity in particle size distribution at the nanoscale level were due to the effects of ultrasonic irradiation. The obtained results corroborated the size and composition of the synthesised catalysts. The size of the catalysts is in the nanometre range, and good dispersion of Pt catalysts over the TiO2 support was observed. The UV-Visible spectroscopy analysis was performed to study the optical properties of the synthesised TiO2 and Pt/TiO2 photocatalysts. An increase in the absorbance was noted when Pt was added to TiO2, which is due to the decrease in the band gap energy.
Collapse
|
4
|
Singh J, Soni R. Efficient charge separation in Ag nanoparticles functionalized ZnO nanoflakes/CuO nanoflowers hybrids for improved photocatalytic and SERS activity. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
5
|
Pinedo-Escobar JA, Fan J, Moctezuma E, Gomez-Solís C, Carrillo Martinez CJ, Gracia-Espino E. Nanoparticulate Double-Heterojunction Photocatalysts Comprising TiO 2(Anatase)/WO 3/TiO 2(Rutile) with Enhanced Photocatalytic Activity toward the Degradation of Methyl Orange under Near-Ultraviolet and Visible Light. ACS OMEGA 2021; 6:11840-11848. [PMID: 34056338 PMCID: PMC8154020 DOI: 10.1021/acsomega.0c06054] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 04/21/2021] [Indexed: 05/14/2023]
Abstract
Nanoparticulate double-heterojunction photocatalysts comprising TiO2(Anatase)/WO3/TiO2(Rutile) were produced by a sol-gel method. The resulting photocatalysts exhibit clear synergistic effects when tested toward the degradation of methyl orange under both UV and visible light. Kinetic studies indicate that the degradation rate on the best double-heterojunction photocatalyst (10 wt % WO3-TiO2) depends mainly on the amount of dye concentration, contrary to pure oxides in which the degradation rate is limited by diffusion-controlled processes. The synergistic effects were confirmed through systematic and careful studies including holes and OH radical formation, X-ray diffraction, electron microscopy, elemental analysis, UV-vis diffuse reflectance spectroscopy, and surface area analysis. Our results indicate that the successful formation of a double heterojunction in the TiO2(Anatase)/WO3/TiO2(Rutile) system leads to enhanced photoactivity when compared to individual oxides and commercial TiO2 P25.
Collapse
Affiliation(s)
- José Alfonso Pinedo-Escobar
- Unidad
Académica de Ciencias Químicas, Universidad Autónoma de Zacatecas, Campus Universitario Siglo XXI, km. 6 Carr. Zacatecas-Guadalajara
s/n Ejido La Escondida, Zacatecas 98160 Zacatecas, México
| | - Junpeng Fan
- Department
of Physics, Umeå University, Umeå 90187, Sweden
| | - Edgar Moctezuma
- Facultad
de Ciencias Químicas, Universidad
Aut́noma de San Luis Potosí, Av. Manuel Nava #6, San
Luis Potosí 78290 San Luis Potosí, México
| | - Christian Gomez-Solís
- División
de Ciencias e Ingenieŕa, Universidad
de Guanajuato, León 37150, Guanajuato, México
| | - Cristina Jared Carrillo Martinez
- Unidad
Académica de Ciencias Químicas, Universidad Autónoma de Zacatecas, Campus Universitario Siglo XXI, km. 6 Carr. Zacatecas-Guadalajara
s/n Ejido La Escondida, Zacatecas 98160 Zacatecas, México
| | | |
Collapse
|
6
|
Manuel AP, Shankar K. Hot Electrons in TiO 2-Noble Metal Nano-Heterojunctions: Fundamental Science and Applications in Photocatalysis. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1249. [PMID: 34068571 PMCID: PMC8151081 DOI: 10.3390/nano11051249] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/03/2021] [Accepted: 05/05/2021] [Indexed: 01/06/2023]
Abstract
Plasmonic photocatalysis enables innovation by harnessing photonic energy across a broad swathe of the solar spectrum to drive chemical reactions. This review provides a comprehensive summary of the latest developments and issues for advanced research in plasmonic hot electron driven photocatalytic technologies focusing on TiO2-noble metal nanoparticle heterojunctions. In-depth discussions on fundamental hot electron phenomena in plasmonic photocatalysis is the focal point of this review. We summarize hot electron dynamics, elaborate on techniques to probe and measure said phenomena, and provide perspective on potential applications-photocatalytic degradation of organic pollutants, CO2 photoreduction, and photoelectrochemical water splitting-that benefit from this technology. A contentious and hitherto unexplained phenomenon is the wavelength dependence of plasmonic photocatalysis. Many published reports on noble metal-metal oxide nanostructures show action spectra where quantum yields closely follow the absorption corresponding to higher energy interband transitions, while an equal number also show quantum efficiencies that follow the optical response corresponding to the localized surface plasmon resonance (LSPR). We have provided a working hypothesis for the first time to reconcile these contradictory results and explain why photocatalytic action in certain plasmonic systems is mediated by interband transitions and in others by hot electrons produced by the decay of particle plasmons.
Collapse
Affiliation(s)
- Ajay P. Manuel
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada;
| | - Karthik Shankar
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada;
- Future Energy Systems Research Institute, University of Alberta, Edmonton, AB T6G 1K4, Canada
| |
Collapse
|
7
|
Singh J, Juneja S, Soni R, Bhattacharya J. Sunlight mediated enhanced photocatalytic activity of TiO2 nanoparticles functionalized CuO-Cu2O nanorods for removal of methylene blue and oxytetracycline hydrochloride. J Colloid Interface Sci 2021; 590:60-71. [DOI: 10.1016/j.jcis.2021.01.022] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/07/2021] [Accepted: 01/09/2021] [Indexed: 01/10/2023]
|
8
|
Misra S, Wang H. Review on the growth, properties and applications of self-assembled oxide-metal vertically aligned nanocomposite thin films-current and future perspectives. MATERIALS HORIZONS 2021; 8:869-884. [PMID: 34821319 DOI: 10.1039/d0mh01111h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Self-assembled oxide-metal nanocomposite thin films have aroused great research interest owing to their wide range of functionalities, including metamaterials with plasmonic and hyperbolic optical properties, and ferromagnetic, ferroelectric and multiferroic behaviors. Oxide-metal nanocomposites typically self-assemble as metal particles in an oxide matrix or as a vertically aligned nanocomposite (VAN) with metal nanopillars embedded in an oxide matrix. Among them, the VAN architecture is particularly interesting due to the vertical strain control and highly anisotropic structure, enabling the epitaxial growth of materials with large lattice mismatch. In this review, the driving forces behind the formation of self-assembled oxide-metal VAN structures are discussed. Specifically, an updated in-plane strain compensation model based on the areal strain compensation concept has been proposed in this review, inspired by the prior linear strain compensation model. It provides a guideline for material selection for designing VAN systems, especially those involving complex orientation matching relationships. Based on the model, several case studies are discussed, comparing the microstructure and morphology of different oxide-metal nanocomposites by varying the oxide phase. Specific examples highlighting the coupling between the electrical, magnetic and optical properties are also discussed in the context of oxide-metal nanocomposites. Future research directions and needs are also discussed.
Collapse
Affiliation(s)
- Shikhar Misra
- School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907, USA.
| | | |
Collapse
|
9
|
Zhao ZJ, Ko J, Ahn J, Bok M, Gao M, Hwang SH, Kang HJ, Jeon S, Park I, Jeong JH. 3D Layer-By-Layer Pd-Containing Nanocomposite Platforms for Enhancing the Performance of Hydrogen Sensors. ACS Sens 2020; 5:2367-2377. [PMID: 32321242 DOI: 10.1021/acssensors.0c00211] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Herein, a nanowelding technique is adopted to fabricate three-dimensional layer-by-layer Pd-containing nanocomposite structures with special properties. Nanowires fabricated from noble metals (Pd, Pt, Au, and Ag) were used to prepare Pd-Pd nanostructures and Pd-Au, Pd-Pt, Pd-Ag, and Pd-Pt-Au nanocomposite structures by controlling the welding temperature. The recrystallization behavior of the welded composite materials was observed and analyzed. In addition, their excellent mechanical and electrical properties were confirmed by performing 10,000 bending test cycles and measuring the resistances. Finally, flexible and wearable nanoheaters and gas sensors were fabricated using our proposed method. In comparison with conventional techniques, our proposed method can not only easily achieve sensors with a large surface area and flexibility but also improve their performance through the addition of catalyst metals. A gas sensor fabricated using the Pd-Au nanocomposites demonstrated 3.9-fold and 1.1-fold faster H2 recovery and response, respectively, than a pure Pd-Pd gas sensor device. Moreover, the Pd-Ag nanocomposite exhibited a high sensitivity of 5.5% (better than that of other fabricated gas sensors) for 1.6% H2 concentration. Therefore, we believe that the fabricated nanocomposites appear promising for wide applications in wearable gas sensors, flexible optical devices, and flexible catalytic devices.
Collapse
Affiliation(s)
- Zhi-Jun Zhao
- Nano-Convergence Mechanical System Research Center, Korea Institute of Machinery and Materials, 156, Gajeongbuk-ro, Yuseong-gu, Daejeon 34113, South Korea
| | - Jiwoo Ko
- Nano-Convergence Mechanical System Research Center, Korea Institute of Machinery and Materials, 156, Gajeongbuk-ro, Yuseong-gu, Daejeon 34113, South Korea
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Deajeon 34141, Republic of Korea
| | - Junseong Ahn
- Nano-Convergence Mechanical System Research Center, Korea Institute of Machinery and Materials, 156, Gajeongbuk-ro, Yuseong-gu, Daejeon 34113, South Korea
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Deajeon 34141, Republic of Korea
| | - Moonjeong Bok
- Nano-Convergence Mechanical System Research Center, Korea Institute of Machinery and Materials, 156, Gajeongbuk-ro, Yuseong-gu, Daejeon 34113, South Korea
| | - Min Gao
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Deajeon 34141, Republic of Korea
| | - Soon Hyoung Hwang
- Nano-Convergence Mechanical System Research Center, Korea Institute of Machinery and Materials, 156, Gajeongbuk-ro, Yuseong-gu, Daejeon 34113, South Korea
| | - Hyeok-Joong Kang
- Nano-Convergence Mechanical System Research Center, Korea Institute of Machinery and Materials, 156, Gajeongbuk-ro, Yuseong-gu, Daejeon 34113, South Korea
| | - Sohee Jeon
- Nano-Convergence Mechanical System Research Center, Korea Institute of Machinery and Materials, 156, Gajeongbuk-ro, Yuseong-gu, Daejeon 34113, South Korea
| | - Inkyu Park
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Deajeon 34141, Republic of Korea
| | - Jun-Ho Jeong
- Nano-Convergence Mechanical System Research Center, Korea Institute of Machinery and Materials, 156, Gajeongbuk-ro, Yuseong-gu, Daejeon 34113, South Korea
- Department of Nano Mechatronics, University of Science and Technology, 217, Gajeongbuk-ro, Yuseong-gu, Daejeon 34113, South Korea
| |
Collapse
|
10
|
Enhanced solar light–driven photocatalytic degradation of tetracycline and organic pollutants by novel one–dimensional ZnWO4 nanorod–decorated two–dimensional Bi2WO6 nanoflakes. J Taiwan Inst Chem Eng 2020. [DOI: 10.1016/j.jtice.2020.03.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
11
|
Shi X, Ma J, Zheng L, Yue X, Liu L. On the interface crystallography of heat induced self-welded TiO 2 nanofibers grown by oriented attachment. CrystEngComm 2020. [DOI: 10.1039/d0ce00392a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The TiO2 (B)–TiO2 (B), TiO2 (B)–anatase and anatase–anatase self-welded nanofibers have been investigated by TEM. The different exposed facets lead to the formation of different interface structures during the oriented attachment growth process.
Collapse
Affiliation(s)
- Xiaokai Shi
- College of Environmental Science and Engineering
- Taiyuan University of Technology
- Taiyuan
- China
| | - Juanjuan Ma
- College of Water Resource Science and Engineering
- Taiyuan University of Technology
- Taiyuan
- China
| | - Lijian Zheng
- College of Water Resource Science and Engineering
- Taiyuan University of Technology
- Taiyuan
- China
| | - Xiuping Yue
- College of Environmental Science and Engineering
- Taiyuan University of Technology
- Taiyuan
- China
| | - Lijun Liu
- Shanxi Academy of Environmental Research
- Taiyuan 030024
- China
| |
Collapse
|
12
|
Highly effective visible light-activated cobalt-doped TiO2 nanoparticles for antibacterial coatings against Campylobacter jejuni. APPLIED NANOSCIENCE 2019. [DOI: 10.1007/s13204-019-01193-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Zhao ZJ, Hwang S, Bok M, Kang H, Jeon S, Park SH, Jeong JH. Nanopattern-Embedded Micropillar Structures for Security Identification. ACS APPLIED MATERIALS & INTERFACES 2019; 11:30401-30410. [PMID: 31353886 DOI: 10.1021/acsami.9b07308] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A novel method was developed for fabricating nanopatterns embedded on micropillar-structured surfaces using nanowelding technology for security identification. Commonly used substrates, that is, polyethylene films, glass wafers, Si wafers, and curved surfaces, were employed and their characteristics were evaluated. Cr was deposited onto the selected substrate to strengthen the adhesion force, and an adhesive layer of ultra-thin metal was deposited on top of the Cr layer. Lastly, nanopatterns were embedded on the substrates by nanowelding. The morphologies, cross sections, and three-dimensional (3D) images of the fabricated nanostructures were evaluated, and their crystalline structures and compositions were analyzed. Using the same method, nanopatterns embedded on micropillar-structured surfaces were fabricated for the first time as security patterns to improve security identification. The fabricated security patterns were characterized in three stages. First, micropillar structures and structural color were simply observed via optical microscopy to achieve a preliminary judgment. The appearance of structural color was due to the nanostructures fabricated on the micropillar surface. Next, the designed nanopatterns on the micropillar-structured surfaces were observed by scanning electron microscopy. Lastly, the changes in the spectral peaks were precisely observed using a spectrometer to achieve an enhanced security pattern. The fabricated security patterns can be suitable for valuable products, such as branded wines, watches, and bags. In addition, the proposed method offers a simple approach for transferring metal nanopatterns to common substrates. Moreover, the fabricated security patterns can have potential applications in semiconductor electrodes, transparent electrodes, and security identification codes.
Collapse
Affiliation(s)
- Zhi-Jun Zhao
- Department of Nano Manufacturing Technology , Korea Institute of Machinery and Materials , Daejeon 305-343 , South Korea
| | - SoonHyoung Hwang
- Department of Nano Manufacturing Technology , Korea Institute of Machinery and Materials , Daejeon 305-343 , South Korea
| | - Moonjeong Bok
- Department of Nano Manufacturing Technology , Korea Institute of Machinery and Materials , Daejeon 305-343 , South Korea
| | - Hyeokjung Kang
- Department of Nano Manufacturing Technology , Korea Institute of Machinery and Materials , Daejeon 305-343 , South Korea
| | - Sohee Jeon
- Department of Nano Manufacturing Technology , Korea Institute of Machinery and Materials , Daejeon 305-343 , South Korea
| | - Sang-Hu Park
- School of Mechanical Engineering , Pusan National University , Busandaehak-ro 63beon-gil , Geumjeong-gu, Busan 609-735 , Republic of Korea
| | - Jun-Ho Jeong
- Department of Nano Manufacturing Technology , Korea Institute of Machinery and Materials , Daejeon 305-343 , South Korea
| |
Collapse
|
14
|
Parangi T, Mishra MK. Titania Nanoparticles as Modified Photocatalysts: A Review on Design and Development. COMMENT INORG CHEM 2019. [DOI: 10.1080/02603594.2019.1592751] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Tarun Parangi
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, Gujarat, India
| | - Manish Kumar Mishra
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, Gujarat, India
| |
Collapse
|
15
|
Singh J, Tripathi N, Mohapatra S. Synthesis of Ag–TiO2 hybrid nanoparticles with enhanced photocatalytic activity by a facile wet chemical method. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.nanoso.2019.100266] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
16
|
Zhao ZJ, Gao M, Hwang S, Jeon S, Park I, Park SH, Jeong JH. Heterogeneous Nanostructures Fabricated via Binding Energy-Controlled Nanowelding. ACS APPLIED MATERIALS & INTERFACES 2019; 11:7261-7271. [PMID: 30672280 DOI: 10.1021/acsami.8b18405] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A novel concept for fabricating heterogeneous nanostructures based on different melting temperatures is developed. Au-Ag composite cross-structures are fabricated by nanowelding technologies. During the fabrication of Au-Ag composite cross-structures, Ag nanowires transform into ordered particles decorating the Au nanowire surfaces with an increase in the welding temperature because of the different melting temperatures of Au and Ag. To compare and explain the melting temperatures, the thicknesses of Au and Ag nanowires as parameters are analyzed. Scanning electron microscopy and focused ion beam imaging are used to observe the morphologies and cross sections of the fabricated samples. The evolution of 3D nanostructures is observed by atomic force microscopy, whereas the compositions and binding energies of the nanostructures are determined by X-ray diffraction and X-ray photoelectron spectroscopies. In addition, the atomic structures are analyzed by transmission electron microscopy, and the optical properties of the fabricated nanostructures are evaluated by spectrometry. Furthermore, color filter electrodes are fabricated, and their polarization properties are evaluated by sheet resistance measurements and observing the color and brightness of light-emitting diodes. The proposed method is suitable for application in various fields such as biosensors, optics, and medicine.
Collapse
Affiliation(s)
- Zhi-Jun Zhao
- Department of Nano Manufacturing Technology , Korea Institute of Machinery and Materials , 156, Gajeongbuk-ro , Yuseong-gu, Daejeon 34113 , South Korea
| | - Min Gao
- Department of Mechanical Engineering , Korea Advanced Institute of Technology , Deajeon 34141 , Korea
| | - SoonHyoung Hwang
- Department of Nano Manufacturing Technology , Korea Institute of Machinery and Materials , 156, Gajeongbuk-ro , Yuseong-gu, Daejeon 34113 , South Korea
| | - Sohee Jeon
- Department of Nano Manufacturing Technology , Korea Institute of Machinery and Materials , 156, Gajeongbuk-ro , Yuseong-gu, Daejeon 34113 , South Korea
| | - Inkyu Park
- Department of Mechanical Engineering , Korea Advanced Institute of Technology , Deajeon 34141 , Korea
| | - Sang-Hu Park
- School of Mechanical Engineering , Pusan National University , Busandaehak-ro 63 beon-gil , Geumjeong-gu, Busan 609-735 , Republic of Korea
| | - Jun-Ho Jeong
- Department of Nano Manufacturing Technology , Korea Institute of Machinery and Materials , 156, Gajeongbuk-ro , Yuseong-gu, Daejeon 34113 , South Korea
| |
Collapse
|
17
|
Garusinghe UM, Raghuwanshi VS, Batchelor W, Garnier G. Water Resistant Cellulose - Titanium Dioxide Composites for Photocatalysis. Sci Rep 2018; 8:2306. [PMID: 29396459 PMCID: PMC5797173 DOI: 10.1038/s41598-018-20569-w] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 01/17/2018] [Indexed: 11/30/2022] Open
Abstract
Novel water resistant photocatalytic composites of microfibrillated cellulose (MFC)-polyamide-amine-epichlorohydrin (PAE)-TiO2 nanoparticles (NPs) were prepared by a simple two-step mixing process. The composites produced are flexible, uniform, reproducible and reusable; they can readily be removed from the pollutant once used. Small amount of TiO2 NPs are required for the loaded composites to exhibit a remarkable photocatalytic activity which is quantified here as achieving at least 95% of methyl orange degradation under 150 min of UV light irradiation for the composite with best combination. The cellulose network combined with PAE strongly retains NPs and hinders their release in the environment. PAE dosage (10 and 50 mg/g MFC) controls the NP retention in the cellulose fibrous matrix. As TiO2 content increases, the photocatalytic activity of the composites levels off to a constant; this is reached at 2wt% TiO2 NPs for 10 mg/g PAE and 20wt% for 50 mg/g PAE. SEM and SAXS analysis confirms the uniform distribution of NPs and their formation of aggregates in the cellulose fibre network. These economical and water resistant photocatalytic paper composites made by a simple, robust and easily scalable process are ideal for applications such as waste water treatment where efficiency, reusability and recyclability are important.
Collapse
Affiliation(s)
- Uthpala M Garusinghe
- BioResource Processing Research Institute of Australia (BioPRIA), Department of Chemical Engineering, Monash University, Clayton, 3800, Victoria, Australia
| | - Vikram S Raghuwanshi
- BioResource Processing Research Institute of Australia (BioPRIA), Department of Chemical Engineering, Monash University, Clayton, 3800, Victoria, Australia
| | - Warren Batchelor
- BioResource Processing Research Institute of Australia (BioPRIA), Department of Chemical Engineering, Monash University, Clayton, 3800, Victoria, Australia.
| | - Gil Garnier
- BioResource Processing Research Institute of Australia (BioPRIA), Department of Chemical Engineering, Monash University, Clayton, 3800, Victoria, Australia.
| |
Collapse
|
18
|
Lu N, Wang Y, Ning S, Zhao W, Qian M, Ma Y, Wang J, Fan L, Guan J, Yuan X. Design of plasmonic Ag-TiO 2/H 3PW 12O 40 composite film with enhanced sunlight photocatalytic activity towards o-chlorophenol degradation. Sci Rep 2017; 7:17298. [PMID: 29229975 PMCID: PMC5725600 DOI: 10.1038/s41598-017-17221-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 11/23/2017] [Indexed: 11/20/2022] Open
Abstract
A series of plasmonic Ag-TiO2/H3PW12O40 composite films were fabricated and immobilized by validated preparation technique. The chemical composition and phase, optical, SPR effect and pore-structure properties together with the morphology of as-prepared composite film are well-characterized. The multi-synergies of as-prepared composite films were gained by combined action of electron-capture action via H3PW12O40, visible-response induced by Ag, and Schottky-junction formed between TiO2-Ag. Under simulated sunlight, the maximal Kapp of o-chlorophenol (o-CP) reached 0.0075 min−1 which was 3.95-fold larger than that of TiO2 film, while it was restrained obviously under acid condition. In the photocatalytic degradation process, ·OH and ·O2− attacked preferentially ortho and para position of o-CP molecule, and accordingly the specific degradation pathways were speculated. The novel composite film exhibited an excellent applicability due to self-regeneration of H3PW12O40, well-protection of metal Ag° and favorable immobilization.
Collapse
Affiliation(s)
- Nan Lu
- School of Environment, Northeast Normal University, Changchun, 130117, P.R. China
| | - Yaqi Wang
- School of Environment, Northeast Normal University, Changchun, 130117, P.R. China
| | - Shiqi Ning
- School of Environment, Northeast Normal University, Changchun, 130117, P.R. China
| | - Wenjing Zhao
- School of Environment, Northeast Normal University, Changchun, 130117, P.R. China
| | - Min Qian
- College of Chemistry, Northeast Normal University, Changchun, 130117, P.R. China
| | - Ying Ma
- School of Environment, Northeast Normal University, Changchun, 130117, P.R. China
| | - Jia Wang
- School of Environment, Northeast Normal University, Changchun, 130117, P.R. China
| | - Lingyun Fan
- School of Environment, Northeast Normal University, Changchun, 130117, P.R. China
| | - Jiunian Guan
- School of Environment, Northeast Normal University, Changchun, 130117, P.R. China.
| | - Xing Yuan
- School of Environment, Northeast Normal University, Changchun, 130117, P.R. China.
| |
Collapse
|
19
|
Milosevic I, Jayaprakash A, Greenwood B, van Driel B, Rtimi S, Bowen P. Synergistic Effect of Fluorinated and N Doped TiO₂ Nanoparticles Leading to Different Microstructure and Enhanced Photocatalytic Bacterial Inactivation. NANOMATERIALS 2017; 7:nano7110391. [PMID: 29140308 PMCID: PMC5707608 DOI: 10.3390/nano7110391] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 11/09/2017] [Accepted: 11/10/2017] [Indexed: 11/10/2022]
Abstract
This work focuses on the development of a facile and scalable wet milling method followed by heat treatment to prepare fluorinated and/or N-doped TiO2 nanopowders with improved photocatalytic properties under visible light. The structural and electronic properties of doped particles were investigated by various techniques. The successful doping of TiO2 was confirmed by X-ray photoelectron spectroscopy (XPS), and the atoms appeared to be mainly located in interstitial positions for N whereas the fluorination is located at the TiO2 surface. The formation of intragap states was found to be responsible for the band gap narrowing leading to the faster bacterial inactivation dynamics observed for the fluorinated and N doped TiO2 particles compared to N-doped TiO2. This was attributed to a synergistic effect. The results presented in this study confirmed the suitability of the preparation approach for the large-scale production of cost-efficient doped TiO2 for effective bacterial inactivation.
Collapse
Affiliation(s)
- Irena Milosevic
- Ecole Polytechnique Fédérale de Lausanne, EPFL-STI-IMX-LTP, Station 12, CH-1015 Lausanne, Switzerland.
| | - Amarnath Jayaprakash
- Ecole Polytechnique Fédérale de Lausanne, EPFL-STI-IMX-LTP, Station 12, CH-1015 Lausanne, Switzerland.
| | - Brigitte Greenwood
- Ecole Polytechnique Fédérale de Lausanne, EPFL-STI-IMX-LTP, Station 12, CH-1015 Lausanne, Switzerland.
| | - Birgit van Driel
- Ecole Polytechnique Fédérale de Lausanne, EPFL-STI-IMX-LTP, Station 12, CH-1015 Lausanne, Switzerland.
| | - Sami Rtimi
- Ecole Polytechnique Fédérale de Lausanne, EPFL-STI-IMX-LTP, Station 12, CH-1015 Lausanne, Switzerland.
- Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-GPAO, Station 6, CH-1015 Lausanne, Switzerland.
| | - Paul Bowen
- Ecole Polytechnique Fédérale de Lausanne, EPFL-STI-IMX-LTP, Station 12, CH-1015 Lausanne, Switzerland.
| |
Collapse
|