1
|
Premnath VA, Lee KS, Chang CH. Designing optical anisotropy in low-index nanolattices. OPTICS EXPRESS 2025; 33:15304-15315. [PMID: 40219444 DOI: 10.1364/oe.554138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 03/12/2025] [Indexed: 04/14/2025]
Abstract
This research investigates the optical anisotropy and structure-induced birefringence in low-index nanolattices. By designing the unit-cell geometry using 3-dimentional (3D) colloidal lithography, nanolattices can exhibit different refractive indices along orthogonal directions due to the structure geometry. The out-of-plane and in-plane indices are characterized using spectroscopic ellipsometry and agree well with the anisotropic Cauchy material model. Exhibit positive-uniaxial birefringence, the nanolattices can have up to Δn = 0.003 for nanolattices with low indices that range from 1.04 to 1.12. The birefringence is modeled using the finite-difference-time-domain (FDTD) method, where the reflectance of an anisotropic film is calculated to iteratively solve for the indices. The theoretical model and experimental data indicate that the birefringence can be controlled by the unit-cell geometry based on the relative length scale of the particle diameter to the exposure wavelength. This work demonstrates that it is possible to precisely design optical birefringence in 3D nanolattices, which can find applications in polarizing optics, nanophotonics, and wearable electronics.
Collapse
|
2
|
Gao X, Li J, Zhong Z, Li X. Global alignment reference strategy for laser interference lithography pattern arrays. MICROSYSTEMS & NANOENGINEERING 2025; 11:41. [PMID: 40038302 DOI: 10.1038/s41378-025-00889-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 01/23/2025] [Accepted: 01/23/2025] [Indexed: 03/06/2025]
Abstract
Large-area gratings play a crucial role in various engineering fields. However, traditional interference lithography is limited by the size of optical component apertures, making large-area fabrication a challenging task. Here, a method for fabricating laser interference lithography pattern arrays with a global alignment reference strategy is proposed. This approach enables alignment of each area of the laser interference lithography pattern arrays, including phase, period, and tilt angle. Two reference gratings are utilized: one is detached from the substrate, while the other remains fixed to it. To achieve global alignment, the exposure area is adjusted by alternating between moving the beam and the substrate. In our experiment, a 3 × 3 regions grating array was fabricated, and the -1st-order diffraction wavefront measured by the Fizeau interferometer exhibited good continuity. This technique enables effective and efficient alignment with high accuracy across any region in an interference lithography pattern array on large substrates. It can also serve as a common technique for fabricating various types of periodic structures by rotating the substrate.
Collapse
Affiliation(s)
- Xiang Gao
- Shenzhen International Graduate School, Tsinghua University, University Town of Shenzhen, Shenzhen, 518055, Guangdong, China
| | - Jingwen Li
- Shenzhen International Graduate School, Tsinghua University, University Town of Shenzhen, Shenzhen, 518055, Guangdong, China
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, University Town of Shenzhen, Shenzhen, 518055, Guangdong, China
| | - Zijian Zhong
- Shenzhen International Graduate School, Tsinghua University, University Town of Shenzhen, Shenzhen, 518055, Guangdong, China
| | - Xinghui Li
- Shenzhen International Graduate School, Tsinghua University, University Town of Shenzhen, Shenzhen, 518055, Guangdong, China.
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, University Town of Shenzhen, Shenzhen, 518055, Guangdong, China.
| |
Collapse
|
3
|
Chen IT, Premnath VA, Chang CH. Multilayer dielectric reflector using low-index nanolattices. OPTICS LETTERS 2024; 49:1093-1096. [PMID: 38359261 DOI: 10.1364/ol.516147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 01/30/2024] [Indexed: 02/17/2024]
Abstract
Dielectric mirrors based on Bragg reflection and photonic crystals have broad application in controlling light reflection with low optical losses. One key parameter in the design of these optical multilayers is the refractive index contrast, which controls the reflector performance. This work reports the demonstration of a high-reflectivity multilayer photonic reflector that consists of alternating layers of TiO2 films and nanolattices with low refractive index. The use of nanolattices enables high-index contrast between the high- and low-index layers, allowing high reflectivity with fewer layers. The broadband reflectance of the nanolattice reflectors with one to three layers has been characterized with peak reflectance of 91.9% at 527 nm and agrees well with theoretical optical models. The high-index contrast induced by the nanolattice layer enables a normalize reflectance band of Δλ/λo of 43.6%, the broadest demonstrated to date. The proposed nanolattice reflectors can find applications in nanophotonics, radiative cooling, and thermal insulation.
Collapse
|
4
|
Kagias M, Lee S, Friedman AC, Zheng T, Veysset D, Faraon A, Greer JR. Metasurface-Enabled Holographic Lithography for Impact-Absorbing Nanoarchitected Sheets. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209153. [PMID: 36649979 DOI: 10.1002/adma.202209153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/30/2022] [Indexed: 06/17/2023]
Abstract
Nanoarchitected materials represent a class of structural meta-materials that utilze nanoscale features to achieve unconventional material properties such as ultralow density and high energy absorption. A dearth of fabrication methods capable of producing architected materials with sub-micrometer resolution over large areas in a scalable manner exists. A fabrication technique is presented that employs holographic patterns generated by laser exposure of phase metasurface masks in negative-tone photoresists to produce 30-40 µm-thick nanoarchitected sheets with 2.1 × 2.4 cm2 lateral dimensions and ≈500 nm-wide struts organized in layered 3D brick-and-mortar-like patterns to result in ≈50-70% porosity. Nanoindentation arrays over the entire sample area reveal the out-of-plane elastic modulus to vary between 300 MPa and 4 GPa, with irrecoverable post-elastic material deformation commencing via individual nanostrut buckling, densification within layers, shearing along perturbation perimeter, and tensile cracking. Laser induced particle impact tests (LIPIT) indicate specific inelastic energy dissipation of 0.51-2.61 MJ kg-1 , which is comparable to other high impact energy absorbing composites and nanomaterials, such as Kevlar/poly(vinyl butyral) (PVB) composite, polystyrene, and pyrolized carbon nanolattices with 23% relative density. These results demonstrate that holographic lithography offers a promising platform for scalable manufacturing of nanoarchitected materials with impact resistant capabilities.
Collapse
Affiliation(s)
- Matias Kagias
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, 91125, USA
- Kavli Nanoscience Institute, Caltech, Pasadena, CA, 91125, USA
| | - Seola Lee
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Andrew C Friedman
- Kavli Nanoscience Institute, Caltech, Pasadena, CA, 91125, USA
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Tianzhe Zheng
- Kavli Nanoscience Institute, Caltech, Pasadena, CA, 91125, USA
- Thomas J. Watson, Sr., Laboratory of Applied Physics, California Institute of Technology, Pasadena, CA, 91125, USA
| | - David Veysset
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Andrei Faraon
- Kavli Nanoscience Institute, Caltech, Pasadena, CA, 91125, USA
- Thomas J. Watson, Sr., Laboratory of Applied Physics, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Julia R Greer
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, 91125, USA
- Kavli Nanoscience Institute, Caltech, Pasadena, CA, 91125, USA
| |
Collapse
|
5
|
Anelasticity in thin-shell nanolattices. Proc Natl Acad Sci U S A 2022; 119:e2201589119. [PMID: 36095191 PMCID: PMC9499526 DOI: 10.1073/pnas.2201589119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In this work, we investigate the anelastic deformation behavior of periodic three-dimensional (3D) nanolattices with extremely thin shell thicknesses using nanoindentation. The results show that the nanolattice continues to deform with time under a constant load. In the case of 30-nm-thick aluminum oxide nanolattices, the anelastic deformation accounts for up to 18.1% of the elastic deformation for a constant load of 500 μN. The nanolattices also exhibit up to 15.7% recovery after unloading. Finite element analysis (FEA) coupled with diffusion of point defects is conducted, which is in qualitative agreement with the experimental results. The anelastic behavior can be attributed to the diffusion of point defects in the presence of a stress gradient and is reversible when the deformation is removed. The FEA model quantifies the evolution of the stress gradient and defect concentration and demonstrates the important role of a wavy tube profile in the diffusion of point defects. The reported anelastic deformation behavior can shed light on time-dependent response of nanolattice materials with implication for energy dissipation applications.
Collapse
|
6
|
Jiang Z, Pikul JH. Centimetre-scale crack-free self-assembly for ultra-high tensile strength metallic nanolattices. NATURE MATERIALS 2021; 20:1512-1518. [PMID: 34140654 DOI: 10.1038/s41563-021-01039-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 05/14/2021] [Indexed: 06/12/2023]
Abstract
Nanolattices exhibit attractive mechanical, energy conversion and optical properties, but it is challenging to fabricate large nanolattices while maintaining the dense regular nanometre features that enable their properties. Here we report a crack-free self-assembly approach for fabricating centimetre-scale nickel nanolattices with much larger crack-free areas than prior self-assembled nanolattices and many more unit cells than three-dimensionally printed nanolattices. These nickel nanolattices have a feature size of 100 nm, a grain size of 30 nm and a tensile strength of 260 MPa, which approaches the theoretical strength limit for porous nickel. The self-assembly method and porous metal mechanics reported in this work may advance the fabrication and applications of high-strength multifunctional porous materials.
Collapse
Affiliation(s)
- Zhimin Jiang
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA, USA
| | - James H Pikul
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
7
|
Surdo S, Duocastella M, Diaspro A. Nanopatterning with Photonic Nanojets: Review and Perspectives in Biomedical Research. MICROMACHINES 2021; 12:256. [PMID: 33802351 PMCID: PMC8000863 DOI: 10.3390/mi12030256] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/26/2021] [Accepted: 02/26/2021] [Indexed: 12/21/2022]
Abstract
Nanostructured surfaces and devices offer astounding possibilities for biomedical research, including cellular and molecular biology, diagnostics, and therapeutics. However, the wide implementation of these systems is currently limited by the lack of cost-effective and easy-to-use nanopatterning tools. A promising solution is to use optical methods based on photonic nanojets, namely, needle-like beams featuring a nanometric width. In this review, we survey the physics, engineering strategies, and recent implementations of photonic nanojets for high-throughput generation of arbitrary nanopatterns, along with applications in optics, electronics, mechanics, and biosensing. An outlook of the potential impact of nanopatterning technologies based on photonic nanojets in several relevant biomedical areas is also provided.
Collapse
Affiliation(s)
- Salvatore Surdo
- Nanoscopy, Istituto Italiano di Tecnologia, Via Enrico Melen 83, Building B, 16152 Genoa, Italy
| | - Martí Duocastella
- Nanoscopy, Istituto Italiano di Tecnologia, Via Enrico Melen 83, Building B, 16152 Genoa, Italy
- Department of Applied Physics, University of Barcelona, C/Martí i Franquès 1, 08028 Barcelona, Spain
| | - Alberto Diaspro
- Nanoscopy, Istituto Italiano di Tecnologia, Via Enrico Melen 83, Building B, 16152 Genoa, Italy
- Department of Physics, University of Genoa, Via Dodecaneso 33, 16146 Genova, Italy
| |
Collapse
|
8
|
Chen IT, Schappell E, Zhang X, Chang CH. Continuous roll-to-roll patterning of three-dimensional periodic nanostructures. MICROSYSTEMS & NANOENGINEERING 2020; 6:22. [PMID: 34567637 PMCID: PMC8433208 DOI: 10.1038/s41378-020-0133-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 12/09/2019] [Accepted: 01/06/2020] [Indexed: 05/08/2023]
Abstract
In this work, we introduce a roll-to-roll system that can continuously print three-dimensional (3D) periodic nanostructures over large areas. This approach is based on Langmuir-Blodgett assembly of colloidal nanospheres, which diffract normal incident light to create a complex intensity pattern for near-field nanolithography. The geometry of the 3D nanostructure is defined by the Talbot effect and can be precisely designed by tuning the ratio of the nanosphere diameter to the exposure wavelength. Using this system, we have demonstrated patterning of 3D photonic crystals with a 500 nm period on a 50 × 200 mm2 flexible substrate, with a system throughput of 3 mm/s. The patterning yield is quantitatively analyzed by an automated electron beam inspection method, demonstrating long-term repeatability of an up to 88% yield over a 4-month period. The inspection method can also be employed to examine pattern uniformity, achieving an average yield of up to 78.6% over full substrate areas. The proposed patterning method is highly versatile and scalable as a nanomanufacturing platform and can find application in nanophotonics, nanoarchitected materials, and multifunctional nanostructures.
Collapse
Affiliation(s)
- I-Te Chen
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695 USA
- Walker Department of Mechanical Engineering, University of Texas at Austin, Austin, TX 78712 USA
| | - Elizabeth Schappell
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695 USA
| | - Xiaolong Zhang
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695 USA
| | - Chih-Hao Chang
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695 USA
- Walker Department of Mechanical Engineering, University of Texas at Austin, Austin, TX 78712 USA
| |
Collapse
|
9
|
Zhang XA, Chen IT, Chang CH. Recent progress in near-field nanolithography using light interactions with colloidal particles: from nanospheres to three-dimensional nanostructures. NANOTECHNOLOGY 2019; 30:352002. [PMID: 31100738 DOI: 10.1088/1361-6528/ab2282] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The advance of nanotechnology is firmly rooted in the development of cost-effective, versatile, and easily accessible nanofabrication techniques. The ability to pattern complex two-dimensional and three-dimensional nanostructured materials are particularly desirable, since they can have novel physical properties that are not found in bulk materials. This review article will report recent progress in utilizing self-assembly of colloidal particles for nanolithography. In these techniques, the near-field interactions of light and colloids are the sole mechanisms employed to generate the intensity distributions for patterning. Based on both 'bottom-up' self-assembly and 'top-down' lithography approaches, these processes are highly versatile and can take advantage of a number of optical effects, allowing the complex 3D nanostructures to be patterned using single exposures. There are several key advantages including low equipment cost, facile structure design, and patterning scalability, which will be discussed in detail. We will outline the underlying optical effects, review the geometries that can be fabricated, discuss key limitations, and highlight potential applications in nanophotonics, optoelectronic devices, and nanoarchitectured materials.
Collapse
Affiliation(s)
- Xu A Zhang
- Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA 19104, United States of America
| | | | | |
Collapse
|
10
|
Yee DW, Lifson ML, Edwards BW, Greer JR. Additive Manufacturing of 3D-Architected Multifunctional Metal Oxides. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1901345. [PMID: 31231919 PMCID: PMC8063598 DOI: 10.1002/adma.201901345] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 06/07/2019] [Indexed: 06/01/2023]
Abstract
Additive manufacturing (AM) of complex three-dimensional (3D) metal oxides at the micro- and nanoscales has attracted considerable attention in recent years. State-of-the-art techniques that use slurry-based or organic-inorganic photoresins are often hampered by challenges in resin preparation and synthesis, and/or by the limited resolution of patterned features. A facile process for fabricating 3D-architected metal oxides via the use of an aqueous metal-ion-containing photoresin is presented. The efficacy of this process, which is termed photopolymer complex synthesis, is demonstrated by creating nanoarchitected zinc oxide (ZnO) architectures with feature sizes of 250 nm, by first patterning a zinc-ion-containing aqueous photoresin using two-photon lithography and subsequently calcining them at 500 ºC. Transmission electron microscopy (TEM) analysis reveals their microstructure to be nanocrystalline ZnO with grain sizes of 5.1 ± 1.6 nm. In situ compression experiments conducted in a scanning electron microscope show an emergent electromechanical response: a 200 nm mechanical compression of an architected ZnO structure results in a voltage drop of 0.52 mV. This photopolymer complex synthesis provides a pathway to easily create arbitrarily shaped 3D metal oxides that could enable previously impossible devices and smart materials.
Collapse
Affiliation(s)
| | | | - Bryce W. Edwards
- Division of Engineering and Applied Science, California Institute of Technology, CA 91125, USA
| | - Julia R. Greer
- Division of Engineering and Applied Science, California Institute of Technology, CA 91125, USA
| |
Collapse
|
11
|
Atomic Layer Deposition of Inorganic Thin Films on 3D Polymer Nanonetworks. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9101990] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Atomic layer deposition (ALD) is a unique tool for conformally depositing inorganic thin films with precisely controlled thickness at nanoscale. Recently, ALD has been used in the manufacture of inorganic thin films using a three-dimensional (3D) nanonetwork structure made of polymer as a template, which is pre-formed by advanced 3D nanofabrication techniques such as electrospinning, block-copolymer (BCP) lithography, direct laser writing (DLW), multibeam interference lithography (MBIL), and phase-mask interference lithography (PMIL). The key technical requirement of this polymer template-assisted ALD is to perform the deposition process at a lower temperature, preserving the nanostructure of the polymer template during the deposition process. This review focuses on the successful cases of conformal deposition of inorganic thin films on 3D polymer nanonetworks using thermal ALD or plasma-enhanced ALD at temperatures below 200 °C. Recent applications and prospects of nanostructured polymer–inorganic composites or hollow inorganic materials are also discussed.
Collapse
|