1
|
Zaffiri L, Chambers ET. Screening and Management of PTLD. Transplantation 2023; 107:2316-2328. [PMID: 36949032 DOI: 10.1097/tp.0000000000004577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
Posttransplant lymphoproliferative disorder (PTLD) represents a heterogeneous group of lymphoproliferative diseases occurring in the setting of immunosuppression following hematopoietic stem cells transplant and solid organ transplantation. Despite its overall low incidence, PTLD is a serious complication following transplantation, with a mortality rate as high as 50% in transplant recipients. Therefore, it is important to establish for each transplant recipient a personalized risk evaluation for the development of PTLD based on the determination of Epstein-Barr virus serostatus and viral load following the initiation of immunosuppression. Due to the dynamic progression of PTLD, reflected in the diverse pathological features, different therapeutic approaches have been used to treat this disorder. Moreover, new therapeutic strategies based on the administration of virus-specific cytotoxic T cells have been developed. In this review, we summarize the available data on screening and treatment to suggest a strategy to identify transplant recipients at a higher risk for PTLD development and to review the current therapeutic options for PTLD.
Collapse
Affiliation(s)
- Lorenzo Zaffiri
- Division of Pulmonary and Critical Care Medicine, Cedars-Sinai Medical Center, Los Angeles, CA
| | | |
Collapse
|
2
|
Lupo J, Truffot A, Andreani J, Habib M, Epaulard O, Morand P, Germi R. Virological Markers in Epstein–Barr Virus-Associated Diseases. Viruses 2023; 15:v15030656. [PMID: 36992365 PMCID: PMC10051789 DOI: 10.3390/v15030656] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/21/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Epstein–Barr virus (EBV) is an oncogenic virus infecting more than 95% of the world’s population. After primary infection—responsible for infectious mononucleosis in young adults—the virus persists lifelong in the infected host, especially in memory B cells. Viral persistence is usually without clinical consequences, although it can lead to EBV-associated cancers such as lymphoma or carcinoma. Recent reports also suggest a link between EBV infection and multiple sclerosis. In the absence of vaccines, research efforts have focused on virological markers applicable in clinical practice for the management of patients with EBV-associated diseases. Nasopharyngeal carcinoma is an EBV-associated malignancy for which serological and molecular markers are widely used in clinical practice. Measuring blood EBV DNA load is additionally, useful for preventing lymphoproliferative disorders in transplant patients, with this marker also being explored in various other EBV-associated lymphomas. New technologies based on next-generation sequencing offer the opportunity to explore other biomarkers such as the EBV DNA methylome, strain diversity, or viral miRNA. Here, we review the clinical utility of different virological markers in EBV-associated diseases. Indeed, evaluating existing or new markers in EBV-associated malignancies or immune-mediated inflammatory diseases triggered by EBV infection continues to be a challenge.
Collapse
Affiliation(s)
- Julien Lupo
- Institut de Biologie Structurale, Université Grenoble Alpes, UMR 5075 CEA/CNRS/UGA, 71 Avenue des Martyrs, 38000 Grenoble, France
- Laboratoire de Virologie, CHU Grenoble Alpes, CS 10217, CEDEX 09, 38043 Grenoble, France
- Correspondence:
| | - Aurélie Truffot
- Institut de Biologie Structurale, Université Grenoble Alpes, UMR 5075 CEA/CNRS/UGA, 71 Avenue des Martyrs, 38000 Grenoble, France
- Laboratoire de Virologie, CHU Grenoble Alpes, CS 10217, CEDEX 09, 38043 Grenoble, France
| | - Julien Andreani
- Institut de Biologie Structurale, Université Grenoble Alpes, UMR 5075 CEA/CNRS/UGA, 71 Avenue des Martyrs, 38000 Grenoble, France
- Laboratoire de Virologie, CHU Grenoble Alpes, CS 10217, CEDEX 09, 38043 Grenoble, France
| | - Mohammed Habib
- Institut de Biologie Structurale, Université Grenoble Alpes, UMR 5075 CEA/CNRS/UGA, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Olivier Epaulard
- Institut de Biologie Structurale, Université Grenoble Alpes, UMR 5075 CEA/CNRS/UGA, 71 Avenue des Martyrs, 38000 Grenoble, France
- Service de Maladies Infectieuses, CHU Grenoble Alpes, CS 10217, CEDEX 09, 38043 Grenoble, France
| | - Patrice Morand
- Institut de Biologie Structurale, Université Grenoble Alpes, UMR 5075 CEA/CNRS/UGA, 71 Avenue des Martyrs, 38000 Grenoble, France
- Laboratoire de Virologie, CHU Grenoble Alpes, CS 10217, CEDEX 09, 38043 Grenoble, France
| | - Raphaële Germi
- Institut de Biologie Structurale, Université Grenoble Alpes, UMR 5075 CEA/CNRS/UGA, 71 Avenue des Martyrs, 38000 Grenoble, France
- Laboratoire de Virologie, CHU Grenoble Alpes, CS 10217, CEDEX 09, 38043 Grenoble, France
| |
Collapse
|
3
|
Co-Infection of the Epstein-Barr Virus and the Kaposi Sarcoma-Associated Herpesvirus. Viruses 2022; 14:v14122709. [PMID: 36560713 PMCID: PMC9782805 DOI: 10.3390/v14122709] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/07/2022] Open
Abstract
The two human tumor viruses, Epstein-Barr virus (EBV) and Kaposi sarcoma-associated herpesvirus (KSHV), have been mostly studied in isolation. Recent studies suggest that co-infection with both viruses as observed in one of their associated malignancies, namely primary effusion lymphoma (PEL), might also be required for KSHV persistence. In this review, we discuss how EBV and KSHV might support each other for persistence and lymphomagenesis. Moreover, we summarize what is known about their innate and adaptive immune control which both seem to be required to ensure asymptomatic persistent co-infection with these two human tumor viruses. A better understanding of this immune control might allow us to prepare for vaccination against EBV and KSHV in the future.
Collapse
|
4
|
Thieme CJ, Schulz M, Wehler P, Anft M, Amini L, Blàzquez-Navarro A, Stervbo U, Hecht J, Nienen M, Stittrich AB, Choi M, Zgoura P, Viebahn R, Schmueck-Henneresse M, Reinke P, Westhoff TH, Roch T, Babel N. In vitro and in vivo evidence that the switch from calcineurin to mTOR inhibitors may be a strategy for immunosuppression in Epstein-Barr virus-associated post-transplant lymphoproliferative disorder. Kidney Int 2022; 102:1392-1408. [PMID: 36103953 DOI: 10.1016/j.kint.2022.08.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 08/02/2022] [Accepted: 08/12/2022] [Indexed: 01/12/2023]
Abstract
Post-transplant lymphoproliferative disorder is a life-threatening complication of immunosuppression following transplantation mediated by failure of T cells to control Epstein-Barr virus (EBV)-infected and transformed B cells. Typically, a modification or reduction of immunosuppression is recommended, but insufficiently defined thus far. In order to help delineate this, we characterized EBV-antigen-specific T cells and lymphoblastoid cell lines from healthy donors and in patients with a kidney transplant in the absence or presence of the standard immunosuppressants tacrolimus, cyclosporin A, prednisolone, rapamycin, and mycophenolic acid. Phenotypes of lymphoblastoid cell-lines and T cells, T cell-receptor-repertoire diversity, and T-cell reactivity upon co-culture with autologous lymphoblastoid cell lines were analyzed. Rapamycin and mycophenolic acid inhibited lymphoblastoid cell-line proliferation. T cells treated with prednisolone and rapamycin showed nearly normal cytokine production. Proliferation and the viability of T cells were decreased by mycophenolic acid, while tacrolimus and cyclosporin A were strong suppressors of T-cell function including their killing activity. Overall, our study provides a basis for the clinical decision for the modification and reduction of immunosuppression and adds information to the complex balance of maintaining anti-viral immunity while preventing acute rejection. Thus, an immunosuppressive regime based on mTOR inhibition and reduced or withdrawn calcineurin inhibitors could be a promising strategy for patients with increased risk of or manifested EBV-associated post-transplant lymphoproliferative disorder.
Collapse
Affiliation(s)
- Constantin J Thieme
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany; Berlin Center for Advanced Therapies (BeCAT), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Malissa Schulz
- Hochschule für Technik und Wirtschaft Berlin (HTW), Berlin, Germany
| | - Patrizia Wehler
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Moritz Anft
- Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, Ruhr-University Bochum, Herne, Germany
| | - Leila Amini
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany; Berlin Center for Advanced Therapies (BeCAT), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Arturo Blàzquez-Navarro
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany; Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, Ruhr-University Bochum, Herne, Germany
| | - Ulrik Stervbo
- Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, Ruhr-University Bochum, Herne, Germany
| | - Jochen Hecht
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain; Experimental and Health Sciences Department, Universitat Pompeu Fabra, Barcelona, Spain
| | - Mikalai Nienen
- Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | | - Mira Choi
- Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Panagiota Zgoura
- Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, Ruhr-University Bochum, Herne, Germany
| | - Richard Viebahn
- Department of Surgery, University Hospital Knappschaftskrankenhaus Bochum, Ruhr-University Bochum, Bochum, Germany
| | - Michael Schmueck-Henneresse
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany; Berlin Center for Advanced Therapies (BeCAT), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Petra Reinke
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany; Berlin Center for Advanced Therapies (BeCAT), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Timm H Westhoff
- Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, Ruhr-University Bochum, Herne, Germany
| | - Toralf Roch
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany; Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, Ruhr-University Bochum, Herne, Germany
| | - Nina Babel
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany; Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, Ruhr-University Bochum, Herne, Germany.
| |
Collapse
|
5
|
Lupo J, Wielandts AS, Buisson M, Consortium CRYOSTEM, Habib M, Hamoudi M, Morand P, Verduyn-Lunel F, Caillard S, Drouet E. High Predictive Value of the Soluble ZEBRA Antigen (Epstein-Barr Virus Trans-Activator Zta) in Transplant Patients with PTLD. Pathogens 2022; 11:pathogens11080928. [PMID: 36015048 PMCID: PMC9413454 DOI: 10.3390/pathogens11080928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/28/2022] [Accepted: 08/03/2022] [Indexed: 11/16/2022] Open
Abstract
The ZEBRA (Z EBV replication activator) protein is the major transcription factor of EBV, expressed upon EBV lytic cycle activation. An increasing body of studies have highlighted the critical role of EBV lytic infection as a risk factor for lymphoproliferative disorders, such as post-transplant lymphoproliferative disease (PTLD). We studied 108 transplanted patients (17 PTLD and 91 controls), retrospectively selected from different hospitals in France and in the Netherlands. The majority of PTLD were EBV-positive diffuse large B-cell lymphomas, five patients experienced atypical PTLD forms (EBV-negative lymphomas, Hodgkin’s lymphomas, and T-cell lymphomas). Fourteen patients among the seventeen who developed a pathologically confirmed PTLD were sZEBRA positive (soluble ZEBRA, plasma level above 20 ng/mL, measured by an ELISA test). The specificity and positive predictive value (PPV) of the sZEBRA detection in plasma were 98% and 85%, respectively. Considering a positivity threshold of 20 ng/mL, the sensitivity of the sZEBRA was 82.35% and the specificity was 94.51%. The mean of the sZEBRA values in the PTLD cases were significantly higher than in the controls (p < 0.0001). The relevance of the lytic cycle and, particularly, the role of ZEBRA in lymphomagenesis is a new paradigm pertaining to the prevention and treatment strategies for PTLD. Given the high-specificity and the predictive values of this test, it now appears relevant to investigate the lytic EBV infection in transplanted patients as a prognostic biomarker.
Collapse
Affiliation(s)
- Julien Lupo
- Institut de Biologie Structurale, Université Grenoble-Alpes, 38000 Grenoble, France
- Laboratoire de Virologie, Institut de Biologie-Pathologie, Centre Hospitalier Universitaire Grenoble Alpes, 38000 Grenoble, France
| | - Anne-Sophie Wielandts
- Laboratoire de Virologie, Institut de Biologie-Pathologie, Centre Hospitalier Universitaire Grenoble Alpes, 38000 Grenoble, France
| | - Marlyse Buisson
- Institut de Biologie Structurale, Université Grenoble-Alpes, 38000 Grenoble, France
- Laboratoire de Virologie, Institut de Biologie-Pathologie, Centre Hospitalier Universitaire Grenoble Alpes, 38000 Grenoble, France
| | - CRYOSTEM Consortium
- CRYOSTEM Consortium: Marseille Innovation—Hôtel Technologique, 13382 Marseille, France
| | - Mohammed Habib
- Laboratoire de Virologie, Institut de Biologie-Pathologie, Centre Hospitalier Universitaire Grenoble Alpes, 38000 Grenoble, France
| | - Marwan Hamoudi
- Institut de Biologie Structurale, Université Grenoble-Alpes, 38000 Grenoble, France
| | - Patrice Morand
- Institut de Biologie Structurale, Université Grenoble-Alpes, 38000 Grenoble, France
- Laboratoire de Virologie, Institut de Biologie-Pathologie, Centre Hospitalier Universitaire Grenoble Alpes, 38000 Grenoble, France
| | | | - Sophie Caillard
- Département de Néphrologie et de Transplantation Centre, Hospitalier Universitaire de Strasbourg, 67091 Strasbourg, France
| | - Emmanuel Drouet
- Institut de Biologie Structurale, Université Grenoble-Alpes, 38000 Grenoble, France
- Correspondence:
| |
Collapse
|
6
|
Dias MHF, Guimarães LFF, Barcelos MG, Moreira EUM, do Nascimento MFA, de Souza TN, Pires CV, Monteiro TAF, Middeldorp JM, Soares IS, Fontes CJF, Ntumngia FB, Adams JH, Kano FS, Carvalho LH. Impact of Epstein-Barr virus co-infection on natural acquired Plasmodium vivax antibody response. PLoS Negl Trop Dis 2022; 16:e0010305. [PMID: 35921373 PMCID: PMC9377613 DOI: 10.1371/journal.pntd.0010305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 08/15/2022] [Accepted: 07/22/2022] [Indexed: 11/18/2022] Open
Abstract
Background
The simultaneous infection of Plasmodium falciparum and Epstein-Barr virus (EBV) could promote the development of the aggressive endemic Burkitt’s Lymphoma (eBL) in children living in P. falciparum holoendemic areas. While it is well-established that eBL is not related to other human malaria parasites, the impact of EBV infection on the generation of human malaria immunity remains largely unexplored. Considering that this highly prevalent herpesvirus establishes a lifelong persistent infection on B-cells with possible influence on malaria immunity, we hypothesized that EBV co-infection could have impact on the naturally acquired antibody responses to P. vivax, the most widespread human malaria parasite.
Methodology/Principal findings
The study design involved three cross-sectional surveys at six-month intervals (baseline, 6 and 12 months) among long-term P. vivax exposed individuals living in the Amazon rainforest. The approach focused on a group of malaria-exposed individuals whose EBV-DNA (amplification of balf-5 gene) was persistently detected in the peripheral blood (PersVDNA, n = 27), and an age-matched malaria-exposed group whose EBV-DNA could never be detected during the follow-up (NegVDNA, n = 29). During the follow-up period, the serological detection of EBV antibodies to lytic/ latent viral antigens showed that IgG antibodies to viral capsid antigen (VCA-p18) were significantly different between groups (PersVDNA > NegVDNA). A panel of blood-stage P. vivax antigens covering a wide range of immunogenicity confirmed that in general PersVDNA group showed low levels of antibodies as compared with NegVDNA. Interestingly, more significant differences were observed to a novel DBPII immunogen, named DEKnull-2, which has been associated with long-term neutralizing antibody response. Differences between groups were less pronounced with blood-stage antigens (such as MSP1-19) whose levels can fluctuate according to malaria transmission.
Conclusions/Significance
In a proof-of-concept study we provide evidence that a persistent detection of EBV-DNA in peripheral blood of adults in a P. vivax semi-immune population may impact the long-term immune response to major malaria vaccine candidates.
Collapse
Affiliation(s)
| | | | | | | | | | - Taís N. de Souza
- Instituto René Rachou/FIOCRUZ Minas, Belo Horizonte, Minas Gerais, Brazil
| | - Camilla V. Pires
- Center for Global Health and Infectious Diseases Research, Department of Global Health, College of Public Health, University of South Florida, Tampa, Florida, United States of America
| | - Talita A. F. Monteiro
- Instituto Evandro Chagas, Secretaria de Vigilância em Saúde, Ministério da Saúde (IEC/SVS/MS), Belém, Pará, Brazil
| | - Jaap M. Middeldorp
- Department of Pathology, Free University Medical Center, Amsterdam, The Netherlands
| | - Irene S. Soares
- Faculdade de Ciências Farmacêuticas, Universidade de São Paulo (USP), São Paulo, Brazil
| | - Cor J. F. Fontes
- Julio Müller School Hospital, Faculdade de Medicina, Universidade Federal de Mato Grosso, Cuiabá, Mato Grosso, Brazil
| | - Francis B. Ntumngia
- Center for Global Health and Infectious Diseases Research, Department of Global Health, College of Public Health, University of South Florida, Tampa, Florida, United States of America
| | - John H. Adams
- Center for Global Health and Infectious Diseases Research, Department of Global Health, College of Public Health, University of South Florida, Tampa, Florida, United States of America
| | - Flora S. Kano
- Instituto René Rachou/FIOCRUZ Minas, Belo Horizonte, Minas Gerais, Brazil
| | - Luzia H. Carvalho
- Instituto René Rachou/FIOCRUZ Minas, Belo Horizonte, Minas Gerais, Brazil
- * E-mail:
| |
Collapse
|
7
|
Abstract
The complex interplay between host and EBV has made it difficult to elaborate useful vaccines protecting against EBV diseases. It is encouraging to see that EBV vaccine programs have started to incorporate different arms of the immune system. An array of argument calls for a realistic goal for vaccine strategies which should be preventing EBV diseases, rather than EBV infection. EBV is the primary cause of infectious mononucleosis and is associated with epithelial cell carcinomas, as well as lymphoid malignancies. Parallel to this need, one could propose priorities for future research: (i) identification of surrogate predictive markers for the development of EBV diseases (ii) determination of immune correlates of protection in animal models and humans.
Collapse
|
8
|
Santisteban-Espejo A, Perez-Requena J, Atienza-Cuevas L, Moran-Sanchez J, Fernandez-Valle MDC, Bernal-Florindo I, Romero-Garcia R, Garcia-Rojo M. Prognostic Role of the Expression of Latent-Membrane Protein 1 of Epstein–Barr Virus in Classical Hodgkin Lymphoma. Viruses 2021; 13:v13122523. [PMID: 34960792 PMCID: PMC8706848 DOI: 10.3390/v13122523] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/12/2021] [Accepted: 12/13/2021] [Indexed: 11/16/2022] Open
Abstract
The prognostic impact of the presence of Epstein–Barr virus (EBV) in classical Hodgkin lymphoma (cHL) is controversial. Previous studies reported heterogeneous results, rendering difficult the clinical validation of EBV as a prognostic biomarker in this lymphoma. The objective of this study was to evaluate the survival impact of the expression of EBV Latent-Membrane Protein 1 (EBV-LMP1) in tumoral Hodgkin–Reed–Sternberg (HRS) cells of primary diagnostic samples of cHL. Formalin-Fixed Paraffin-Embedded (FFPE) lymph node samples from 88 patients with cHL were analyzed. Patients were treated with the standard first-line chemotherapy (CT) with Adriamycin, Bleomycin, Vinblastine and Dacarbazine (ABVD) followed by radiotherapy. The Kaplan–Meier method and the Cox proportional hazards model were used for carrying out the survival analysis. In order to investigate whether the influence of EBV was age-dependent, analyses were performed both for patients of all ages and for age-stratified subgroups. In bivariate analysis, the expression of EBV was associated with older age (p = 0.011), mixed cellularity subtype cHL (p < 0.001) and high risk International Prognostic Score (IPS) (p = 0.023). Overall survival (OS) and progression-free survival (PFS) were associated with the presence of bulky disease (p = 0.009) and advanced disease at diagnosis (p = 0.016). EBV-positive cases did not present a significantly lower OS and PFS in comparison with EBV-negative cases, for all ages and when stratifying for age. When adjusted for covariates, absence of bulky disease at diagnosis (HR: 0.102, 95% CI: 0.02–0.48, p = 0.004) and limited disease stages (I–II) (HR: 0.074, 95% CI: 0.01–0.47, p = 0.006) were associated with a significant better OS. For PFS, limited-disease stages also retained prognostic impact in the multivariate Cox regression (HR: 0.145, 95% CI: 0.04–0.57, p = 0.006). These results are of importance as the early identification of prognostic biomarkers in cHL is critical for guiding and personalizing therapeutic decisions. The prognostic role of EBV in cHL could be modulated by the type of CT protocol employed and interact with the rest of presenting features.
Collapse
Affiliation(s)
- Antonio Santisteban-Espejo
- Department of Pathology, Puerta del Mar University Hospital, 11009 Cadiz, Spain; (J.P.-R.); (L.A.-C.); (M.G.-R.)
- Institute of Research and Innovation in Biomedical Sciences of the Province of Cadiz (INiBICA), 11009 Cadiz, Spain; (I.B.-F.); (R.R.-G.)
- Department of Medicine, Faculty of Medicine, University of Cadiz, 11003 Cadiz, Spain;
- Correspondence:
| | - Jose Perez-Requena
- Department of Pathology, Puerta del Mar University Hospital, 11009 Cadiz, Spain; (J.P.-R.); (L.A.-C.); (M.G.-R.)
| | - Lidia Atienza-Cuevas
- Department of Pathology, Puerta del Mar University Hospital, 11009 Cadiz, Spain; (J.P.-R.); (L.A.-C.); (M.G.-R.)
| | - Julia Moran-Sanchez
- Department of Medicine, Faculty of Medicine, University of Cadiz, 11003 Cadiz, Spain;
- Department of Hematology and Hemotherapy, Puerta del Mar University Hospital, 11009 Cadiz, Spain;
| | | | - Irene Bernal-Florindo
- Institute of Research and Innovation in Biomedical Sciences of the Province of Cadiz (INiBICA), 11009 Cadiz, Spain; (I.B.-F.); (R.R.-G.)
| | - Raquel Romero-Garcia
- Institute of Research and Innovation in Biomedical Sciences of the Province of Cadiz (INiBICA), 11009 Cadiz, Spain; (I.B.-F.); (R.R.-G.)
| | - Marcial Garcia-Rojo
- Department of Pathology, Puerta del Mar University Hospital, 11009 Cadiz, Spain; (J.P.-R.); (L.A.-C.); (M.G.-R.)
- Institute of Research and Innovation in Biomedical Sciences of the Province of Cadiz (INiBICA), 11009 Cadiz, Spain; (I.B.-F.); (R.R.-G.)
| |
Collapse
|
9
|
Ahmed EH, Brooks E, Sloan S, Schlotter S, Jeney F, Hale C, Mao C, Zhang X, McLaughlin E, Shindiapina P, Shire S, Das M, Prouty A, Lozanski G, Mamuye AT, Abebe T, Alinari L, Caligiuri MA, Baiocchi RA. Targeted Delivery of BZLF1 to DEC205 Drives EBV-Protective Immunity in a Spontaneous Model of EBV-Driven Lymphoproliferative Disease. Vaccines (Basel) 2021; 9:555. [PMID: 34073261 PMCID: PMC8228306 DOI: 10.3390/vaccines9060555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/14/2021] [Accepted: 05/20/2021] [Indexed: 12/14/2022] Open
Abstract
Epstein-Barr virus (EBV) is a human herpes virus that infects over 90% of the world's population and is linked to development of cancer. In immune-competent individuals, EBV infection is mitigated by a highly efficient virus-specific memory T-cell response. Risk of EBV-driven cancers increases with immune suppression (IS). EBV-seronegative recipients of solid organ transplants are at high risk of developing post-transplant lymphoproliferative disease (PTLD) due to iatrogenic IS. While reducing the level of IS may improve EBV-specific immunity and regression of PTLD, patients are at high risk for allograft rejection and need for immune-chemotherapy. Strategies to prevent PTLD in this vulnerable patient population represents an unmet need. We have previously shown that BZLF1-specific cytotoxic T-cell (CTL) expansion following reduced IS correlated with immune-mediated PTLD regression and improved patient survival. We have developed a vaccine to bolster EBV-specific immunity to the BZLF1 protein and show that co-culture of dendritic cells (DCs) loaded with a αDEC205-BZLF1 fusion protein with peripheral blood mononuclear cells (PMBCs) leads to expansion and increased cytotoxic activity of central-effector memory CTLs against EBV-transformed B-cells. Human-murine chimeric Hu-PBL-SCID mice were vaccinated with DCs loaded with αDEC205-BZLF1 or control to assess prevention of fatal human EBV lymphoproliferative disease. Despite a profoundly immunosuppressive environment, vaccination with αDEC205-BZLF1 stimulated clonal expansion of antigen-specific T-cells that produced abundant IFNγ and significantly prolonged survival. These results support preclinical and clinical development of vaccine approaches using BZLF1 as an immunogen to harness adaptive cellular responses and prevent PTLD in vulnerable patient populations.
Collapse
Affiliation(s)
- Elshafa Hassan Ahmed
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA; (E.H.A.); (S.S.)
- Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA; (E.B.); (S.S.); (F.J.); (C.M.); (P.S.); (M.D.); (A.P.); (L.A.)
| | - Eric Brooks
- Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA; (E.B.); (S.S.); (F.J.); (C.M.); (P.S.); (M.D.); (A.P.); (L.A.)
| | - Shelby Sloan
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA; (E.H.A.); (S.S.)
- Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA; (E.B.); (S.S.); (F.J.); (C.M.); (P.S.); (M.D.); (A.P.); (L.A.)
| | - Sarah Schlotter
- Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA; (E.B.); (S.S.); (F.J.); (C.M.); (P.S.); (M.D.); (A.P.); (L.A.)
| | - Frankie Jeney
- Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA; (E.B.); (S.S.); (F.J.); (C.M.); (P.S.); (M.D.); (A.P.); (L.A.)
| | - Claire Hale
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, OH 43210, USA;
| | - Charlene Mao
- Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA; (E.B.); (S.S.); (F.J.); (C.M.); (P.S.); (M.D.); (A.P.); (L.A.)
| | - Xiaoli Zhang
- Department of Biomedical Informatics/Center for Biostatistics, The Ohio State University, Columbus, OH 43210, USA; (X.Z.); (E.M.)
| | - Eric McLaughlin
- Department of Biomedical Informatics/Center for Biostatistics, The Ohio State University, Columbus, OH 43210, USA; (X.Z.); (E.M.)
| | - Polina Shindiapina
- Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA; (E.B.); (S.S.); (F.J.); (C.M.); (P.S.); (M.D.); (A.P.); (L.A.)
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Salma Shire
- College of Education and Human Ecology, The Ohio State University, Columbus, OH 43210, USA;
| | - Manjusri Das
- Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA; (E.B.); (S.S.); (F.J.); (C.M.); (P.S.); (M.D.); (A.P.); (L.A.)
| | - Alexander Prouty
- Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA; (E.B.); (S.S.); (F.J.); (C.M.); (P.S.); (M.D.); (A.P.); (L.A.)
| | - Gerard Lozanski
- Department of Pathology, The Ohio State University, Columbus, OH 43210, USA;
| | - Admasu T. Mamuye
- Department of Internal Medicine, Black Lion Hospital, Addis Ababa University, Addis Ababa 3614, Ethiopia;
| | - Tamrat Abebe
- Department of Microbiology, Black Lion Hospital, Addis Ababa University, Addis Ababa 3614, Ethiopia;
| | - Lapo Alinari
- Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA; (E.B.); (S.S.); (F.J.); (C.M.); (P.S.); (M.D.); (A.P.); (L.A.)
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | | | - Robert A. Baiocchi
- Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA; (E.B.); (S.S.); (F.J.); (C.M.); (P.S.); (M.D.); (A.P.); (L.A.)
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
10
|
Biomarkers for PTLD diagnosis and therapies. Pediatr Nephrol 2020; 35:1173-1181. [PMID: 31240394 DOI: 10.1007/s00467-019-04284-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/14/2019] [Accepted: 05/31/2019] [Indexed: 02/08/2023]
Abstract
Post-transplant lymphoproliferative disorder (PTLD) represents a spectrum of lymphoproliferative disorders and is a serious complication of pediatric transplantation. The majority of PTLD are associated with Epstein Barr virus (EBV) and the characteristic EBV+ B cell lymphomas are the leading post-transplant malignancy in children. EBV+ PTLD remains a formidable issue in pediatric transplantation and is thought to result from impaired immunity to EBV as a result of immunosuppression. However, the key viral and immune factors that determine whether EBV+ PTLD develops remain unknown. Recently, there has been much interest in developing biomarkers in order to improve and achieve more personalized approaches, in the clinical diagnosis, management, and treatment of EBV+ PTLD. Here, we review the status of immune-, viral-, and B cell lymphoma-derived candidates for biomarkers of EBV+ PTLD.
Collapse
|
11
|
Germini D, Sall FB, Shmakova A, Wiels J, Dokudovskaya S, Drouet E, Vassetzky Y. Oncogenic Properties of the EBV ZEBRA Protein. Cancers (Basel) 2020; 12:E1479. [PMID: 32517128 PMCID: PMC7352903 DOI: 10.3390/cancers12061479] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 12/14/2022] Open
Abstract
Epstein Barr Virus (EBV) is one of the most common human herpesviruses. After primary infection, it can persist in the host throughout their lifetime in a latent form, from which it can reactivate following specific stimuli. EBV reactivation is triggered by transcriptional transactivator proteins ZEBRA (also known as Z, EB-1, Zta or BZLF1) and RTA (also known as BRLF1). Here we discuss the structural and functional features of ZEBRA, its role in oncogenesis and its possible implication as a prognostic or diagnostic marker. Modulation of host gene expression by ZEBRA can deregulate the immune surveillance, allow the immune escape, and favor tumor progression. It also interacts with host proteins, thereby modifying their functions. ZEBRA is released into the bloodstream by infected cells and can potentially penetrate any cell through its cell-penetrating domain; therefore, it can also change the fate of non-infected cells. The features of ZEBRA described in this review outline its importance in EBV-related malignancies.
Collapse
Affiliation(s)
- Diego Germini
- CNRS UMR9018, Université Paris-Saclay, Institut Gustave Roussy, 94805 Villejuif, France; (D.G.); (F.B.S.); (A.S.); (J.W.); (S.D.)
| | - Fatimata Bintou Sall
- CNRS UMR9018, Université Paris-Saclay, Institut Gustave Roussy, 94805 Villejuif, France; (D.G.); (F.B.S.); (A.S.); (J.W.); (S.D.)
- Laboratory of Hematology, Aristide Le Dantec Hospital, Cheikh Anta Diop University, Dakar 12900, Senegal
| | - Anna Shmakova
- CNRS UMR9018, Université Paris-Saclay, Institut Gustave Roussy, 94805 Villejuif, France; (D.G.); (F.B.S.); (A.S.); (J.W.); (S.D.)
| | - Joëlle Wiels
- CNRS UMR9018, Université Paris-Saclay, Institut Gustave Roussy, 94805 Villejuif, France; (D.G.); (F.B.S.); (A.S.); (J.W.); (S.D.)
| | - Svetlana Dokudovskaya
- CNRS UMR9018, Université Paris-Saclay, Institut Gustave Roussy, 94805 Villejuif, France; (D.G.); (F.B.S.); (A.S.); (J.W.); (S.D.)
| | - Emmanuel Drouet
- CIBB-IBS UMR 5075 Université Grenoble Alpes, 38044 Grenoble, France;
| | - Yegor Vassetzky
- CNRS UMR9018, Université Paris-Saclay, Institut Gustave Roussy, 94805 Villejuif, France; (D.G.); (F.B.S.); (A.S.); (J.W.); (S.D.)
- Koltzov Institute of Developmental Biology, 117334 Moscow, Russia
| |
Collapse
|
12
|
Baloche V, Ferrand FR, Makowska A, Even C, Kontny U, Busson P. Emerging therapeutic targets for nasopharyngeal carcinoma: opportunities and challenges. Expert Opin Ther Targets 2020; 24:545-558. [PMID: 32249657 DOI: 10.1080/14728222.2020.1751820] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Abstract
Introduction: Nasopharyngeal carcinoma (NPC) is a major public health problem in several countries, especially those in Southeast Asia and North Africa. In its typical poorly differentiated form, the Epstein-Barr virus (EBV) genome is present in the nuclei of all malignant cells with restricted expression of a few viral genes. The malignant phenotype of NPC cells results from the influence of these viral products in combination with cellular genetic, epigenetic and functional alterations. With regard to host/tumor interactions, NPC is a remarkable example of immune escape in the context of a hot tumor.Areas covered: This article has an emphasis on emerging therapeutic targets that are considered upstream or at an early stage of clinical application. It examines targets related to cellular oncogenic alterations, latent EBV infection and tumor interactions with the immune system.Expert opinion: There is a remarkable emergence of new agents that target EBV products. The clinical application of these agents would benefit from a systematic and comprehensive molecular classification of NPCs and from easy access to pre-clinical models in public repositories. There is a strong rationale for more investigations on the potential of immune modulators, especially those related to NK cells.
Collapse
Affiliation(s)
- Valentin Baloche
- CNRS, UMR 9018, Gustave Roussy and Uuniversité Paris-Saclay, 39, rue Camille Desmoulins, Villejuif, France
| | | | - Anna Makowska
- Division of Pediatric Hematology, Oncology and Stem Cell Transplantation, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Caroline Even
- Département de cancérologie cervico-faciale, Gustave Roussy and université Paris-Saclay, 39, rue Camille Desmoulins, F-94805, Villejuif, France
| | - Udo Kontny
- Division of Pediatric Hematology, Oncology and Stem Cell Transplantation, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Pierre Busson
- CNRS, UMR 9018, Gustave Roussy and Uuniversité Paris-Saclay, 39, rue Camille Desmoulins, Villejuif, France
| |
Collapse
|
13
|
Kerr JR. Epstein-Barr virus (EBV) reactivation and therapeutic inhibitors. J Clin Pathol 2019; 72:651-658. [DOI: 10.1136/jclinpath-2019-205822] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 05/19/2019] [Accepted: 06/10/2019] [Indexed: 12/11/2022]
Abstract
Epstein-Barr virus (EBV) is a ubiquitous human virus which infects almost all humans during their lifetime and following the acute phase, persists for the remainder of the life of the individual. EBV infects B lymphocytes leading to their immortalisation, with persistence of the EBV genome as an episome. In the latent phase, EBV is prevented from reactivating through efficient cytotoxic cellular immunity. EBV reactivates (lytic phase) under conditions of psychological stress with consequent weakening of cellular immunity, and EBV reactivation has been shown to occur in a subset of individuals with each of a variety of cancers, autoimmune diseases, the autoimmune-like disease, chronic fatigue syndrome/myalgic encephalitis and under other circumstances such as being an inpatient in an intensive care unit. Chronic EBV reactivation is an important mechanism in the pathogenesis of many such diseases, yet is rarely tested for in immunocompetent individuals. This review summarises the pathogenesis of EBV infection, EBV reactivation and its role in disease, and methods which may be used to detect it. Known inhibitors of EBV reactivation and replication are discussed, including drugs licensed for treatment of other herpesviruses, licensed or experimental drugs for various other indications, compounds at an early stage of drug development and nutritional constituents such as vitamins and dietary supplements.
Collapse
|
14
|
Samiei RN, Mahmoudvand S, Shokri S, Makvandi M, Shahbazian H, Pirmoradi R, Shayanpur S, Makvandi K, Nowrozi S. The frequency of Epstein-Barr virus among hemodialysis patients, Ahvaz, Iran. IRANIAN JOURNAL OF MICROBIOLOGY 2019; 11:75-79. [PMID: 30996835 PMCID: PMC6462267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND AND OBJECTIVES Epstein-Barr virus (EBV) has infected more than 90% of adults worldwide. EBV infection is asymptomatic in healthy individuals and is controlled by a robust immune response while in individuals with weakened immunesystems including Hemodialysis (HD) patients and transplant recipients leads to serious illnesses. This study was aimed to investigate the frequency of EBV among the HD patients. MATERIALS AND METHODS The cross-sectional study was carried out on 84 HD patients. These sera were checked for anti-EBV (VCA) IgG Ab assessment using enzyme-linked immunosorbent assay (ELISA). The DNA was extracted from the sera samples and tested for EBV DNA using nested PCR. RESULTS 52/84 (61.9%) of HD were males and 32/84 (38.1%) were females. The average age of participants was varying from 18 to 85 years while the mean age was 52 ± 1.57 SD years. 81 of 84 (96.42%); including 49/52 (94.23%) male and 32/32 (100%) female, were positive for anti-EBV (VCA) IgG antibody while 3 (3.58%) were negative. No significant differences were observed between the subjects regarding gender (P=0.28). EBV DNA was detected in 7 (8.33%) individuals, including 6 (11.53%) and 1 (3.12%) in male and female, respectively (P=0.24). CONCLUSION Our study results showed that high prevalence of anti-EBV (VCA) IgG antibody (96.42%) were observed among the HD patients. Although the status of EBV latency was not performed, but it seems many of these patients are at risk of EBV-reactivation during the organ transplantation. As a result, it is recommended that the detection of EBNA-1 gene as a marker of EBV latency should be implemented for all HD patients to prevent EBV reactivation during organ transplantation.
Collapse
Affiliation(s)
- Rahil Nahid Samiei
- Department of Virology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Shahab Mahmoudvand
- Department of Virology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Somayeh Shokri
- Department of Virology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Manoochehr Makvandi
- Department of Virology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran,Infectious and Tropical Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran,Corresponding author: Prof. Manoochehr Makvandi, Department of Virology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Infectious and Tropical Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran. Tel: +98-9166181683, Fax: +98-6133738313,
| | - Heshmatollah Shahbazian
- Department of Nephrology, Golestan Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Roya Pirmoradi
- Department of Virology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Shokouh Shayanpur
- Nephrology Department, Imam Khomeini Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Kimia Makvandi
- School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sepideh Nowrozi
- School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|