1
|
Zhang S, Xu B, Elsayed M, Nan F, Liang W, Valley JK, Liu L, Huang Q, Wu MC, Wheeler AR. Optoelectronic tweezers: a versatile toolbox for nano-/micro-manipulation. Chem Soc Rev 2022; 51:9203-9242. [DOI: 10.1039/d2cs00359g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review covers the fundamentals, recent progress and state-of-the-art applications of optoelectronic tweezers technology, and demonstrates that optoelectronic tweezers technology is a versatile and powerful toolbox for nano-/micro-manipulation.
Collapse
Affiliation(s)
- Shuailong Zhang
- School of Mechatronical Engineering, Beijing Institute of Technology, Room 711, Building No 6, Science and Technology Park, 5 Zhongguancun South St, Haidian District, Beijing, 100081, China
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, Beijing Institute of Technology, Beijing, 100081, China
- Key Laboratory of Biomimetic Robots and Systems (Beijing Institute of Technology), Ministry of Education, Beijing 100081, China
| | - Bingrui Xu
- School of Mechatronical Engineering, Beijing Institute of Technology, Room 711, Building No 6, Science and Technology Park, 5 Zhongguancun South St, Haidian District, Beijing, 100081, China
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, Beijing Institute of Technology, Beijing, 100081, China
| | - Mohamed Elsayed
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3G9, Canada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Fan Nan
- Institute of Nanophotonics, Jinan University, Guangzhou 511443, China
| | - Wenfeng Liang
- School of Mechanical Engineering, Shenyang Jianzhu University, Shenyang, 110168, China
| | - Justin K. Valley
- Berkeley Lights, Inc, 5858 Horton Street #320, Emeryville, CA 94608, USA
| | - Lianqing Liu
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110016, China
| | - Qiang Huang
- School of Mechatronical Engineering, Beijing Institute of Technology, Room 711, Building No 6, Science and Technology Park, 5 Zhongguancun South St, Haidian District, Beijing, 100081, China
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, Beijing Institute of Technology, Beijing, 100081, China
- Key Laboratory of Biomimetic Robots and Systems (Beijing Institute of Technology), Ministry of Education, Beijing 100081, China
| | - Ming C. Wu
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California 94720, USA
| | - Aaron R. Wheeler
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3G9, Canada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada
- Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada
| |
Collapse
|
2
|
Recent Achievements on Photovoltaic Optoelectronic Tweezers Based on Lithium Niobate. CRYSTALS 2018. [DOI: 10.3390/cryst8020065] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
This review presents an up-dated summary of the fundamentals and applications of optoelectronic photovoltaic tweezers for trapping and manipulation of nano-objects on the surface of lithium niobate crystals. It extends the contents of previous reviews to cover new topics and developments which have emerged in recent years and are marking the trends for future research. Regarding the theoretical description of photovoltaic tweezers, detailed simulations of the electrophoretic and dielectrophoretic forces acting on different crystal configurations are discussed in relation to the structure of the obtained trapping patterns. As for the experimental work, we will pay attention to the manipulation and patterning of micro-and nanoparticles that has experimented an outstanding progress and relevant applications have been reported. An additional focus is now laid on recent work about micro-droplets, which is a central topic in microfluidics and optofluidics. New developments in biology and biomedicine also constitute a relevant part of the review. Finally, some topics partially related with photovoltaic tweezers and a discussion on future prospects and challenges are included.
Collapse
|
3
|
Wang X, Chen K, Liu L, Xiang N, Ni Z. Dielectrophoresis-based multi-step nanowire assembly on a flexible superstrate. NANOTECHNOLOGY 2018; 29:025301. [PMID: 29130902 DOI: 10.1088/1361-6528/aa9a22] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Nanowire assembly based on dielectrophoresis (DEP) could be a useful and efficient tool for fabricating nanowire-based devices. Although there have been extensive reports on the DEP nanowire assembly, the new approaches that make DEP more facile and affordable are still desirable. Herein, we present an approach using the reusable electrodes to assemble silver nanowires onto a removable, independent polyethylene terephthalate (PET) film. The PET film is placed on the reusable electrodes, and a sinusoidal AC voltage is applied to the electrodes to induce DEP force for nanowire assembly upon the flexible film. We explore the influences of voltage, frequency and film thickness on nanowire assembly and further realize the assembly of silver nanowire arrays. In addition, the induced electric field is rotated in two consecutive steps to assemble the rectangular mesh-like nanowire networks. This reusable and facile approach for DEP nanowire assembly could provide a low-cost, precise, rapid and convenient tool for applications in the fields of flexible electronics.
Collapse
Affiliation(s)
- Xin Wang
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, People's Republic of China
| | | | | | | | | |
Collapse
|