1
|
Xie L, Zhang X. Dynamic Leadership Mechanism in Homing Pigeon Flocks. Biomimetics (Basel) 2024; 9:88. [PMID: 38392134 PMCID: PMC10887064 DOI: 10.3390/biomimetics9020088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/14/2024] [Accepted: 01/29/2024] [Indexed: 02/24/2024] Open
Abstract
In recent years, an increasing number of studies have focused on exploring the principles and mechanisms underlying the emergence of collective intelligence in biological populations, aiming to provide insights for human society and the engineering field. Pigeon flock behavior garners significant attention as a subject of study. Collective homing flight is a commonly observed behavioral pattern in pigeon flocks. The study analyzes GPS data during the homing process and utilizes acceleration information, which better reflects the flock's movement tendencies during turns, to describe the leadership relationships within the group. By examining the evolution of acceleration during turning, the study unveils a dynamic leadership mechanism before and after turns, employing a more intricate dynamic model to depict the flock's motion. Specifically, during stable flight, pigeon flocks tend to rely on fixed leaders to guide homing flight, whereas during turns, individuals positioned in the direction of the flock's turn experience a notable increase in their leadership status. These findings suggest the existence of a dynamic leadership mechanism within pigeon flocks, enabling adaptability and stability under diverse flight conditions. From an engineering perspective, this leadership mechanism may offer novel insights for coordinating industrial multi-robot systems and controlling drone formations.
Collapse
Affiliation(s)
- Lin Xie
- Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China
- Engineering Research Center of Digital Community, Ministry of Education, Beijing 100124, China
| | - Xiangyin Zhang
- Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China
- Engineering Research Center of Digital Community, Ministry of Education, Beijing 100124, China
| |
Collapse
|
2
|
Chen D, Sun Y, Shao G, Yu W, Zhang HT, Lin W. Coordinating directional switches in pigeon flocks: the role of nonlinear interactions. ROYAL SOCIETY OPEN SCIENCE 2021; 8:210649. [PMID: 34631121 PMCID: PMC8479334 DOI: 10.1098/rsos.210649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
The mechanisms inducing unpredictably directional switches in collective and moving biological entities are largely unclear. Deeply understanding such mechanisms is beneficial to delicate design of biologically inspired devices with particular functions. Here, articulating a framework that integrates data-driven, analytical and numerical methods, we investigate the underlying mechanism governing the coordinated rotational flight of pigeon flocks with unpredictably directional switches. Particularly using the sparse Bayesian learning method, we extract the inter-agent interactional dynamics from the high-resolution GPS data of three pigeon flocks, which reveals that the decision-making process in rotational switching flight performs in a more nonlinear manner than in smooth coordinated flight. To elaborate the principle of this nonlinearity of interactions, we establish a data-driven particle model with two potential wells and estimate the mean switching time of rotational direction. Our model with its analytical and numerical results renders the directional switches of moving biological groups more interpretable and predictable. Actually, an appropriate combination of natures, including high density, stronger nonlinearity in interactions, and moderate strength of noise, can enhance such highly ordered, less frequent switches.
Collapse
Affiliation(s)
- Duxin Chen
- School of Mathematics, Southeast University, Nanjing 211096, People’s Republic of China
| | - Yongzheng Sun
- School of Mathematics, China University of Mining and Technology, Xuzhou 221116, People’s Republic of China
| | - Guanbo Shao
- School of Mathematics, Southeast University, Nanjing 211096, People’s Republic of China
| | - Wenwu Yu
- School of Mathematics, Southeast University, Nanjing 211096, People’s Republic of China
| | - Hai-Tao Zhang
- School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan 430074, People’s Republic of China
| | - Wei Lin
- Research Institute of Intelligent Complex Systems and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200433, People’s Republic of China
- School of Mathematical Sciences, LMNS, and SCMS, Fudan University, Shanghai 200433, People’s Republic of China
| |
Collapse
|
3
|
|
4
|
Behavioural plasticity and the transition to order in jackdaw flocks. Nat Commun 2019; 10:5174. [PMID: 31729384 PMCID: PMC6858344 DOI: 10.1038/s41467-019-13281-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 10/25/2019] [Indexed: 12/04/2022] Open
Abstract
Collective behaviour is typically thought to arise from individuals following fixed interaction rules. The possibility that interaction rules may change under different circumstances has thus only rarely been investigated. Here we show that local interactions in flocks of wild jackdaws (Corvus monedula) vary drastically in different contexts, leading to distinct group-level properties. Jackdaws interact with a fixed number of neighbours (topological interactions) when traveling to roosts, but coordinate with neighbours based on spatial distance (metric interactions) during collective anti-predator mobbing events. Consequently, mobbing flocks exhibit a dramatic transition from disordered aggregations to ordered motion as group density increases, unlike transit flocks where order is independent of density. The relationship between group density and group order during this transition agrees well with a generic self-propelled particle model. Our results demonstrate plasticity in local interaction rules and have implications for both natural and artificial collective systems. Modelling collective behaviour in different circumstances remains a challenge because of uncertainty related to interaction rule changes. Here, the authors report plasticity in local interaction rules in flocks of wild jackdaws with implications for both natural and artificial collective systems.
Collapse
|
5
|
Ling H, Mclvor GE, Westley J, van der Vaart K, Yin J, Vaughan RT, Thornton A, Ouellette NT. Collective turns in jackdaw flocks: kinematics and information transfer. J R Soc Interface 2019; 16:20190450. [PMID: 31640502 PMCID: PMC6833319 DOI: 10.1098/rsif.2019.0450] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 10/01/2019] [Indexed: 11/12/2022] Open
Abstract
The rapid, cohesive turns of bird flocks are one of the most vivid examples of collective behaviour in nature, and have attracted much research. Three-dimensional imaging techniques now allow us to characterize the kinematics of turning and their group-level consequences in precise detail. We measured the kinematics of flocks of wild jackdaws executing collective turns in two contexts: during transit to roosts and anti-predator mobbing. All flocks reduced their speed during turns, probably because of constraints on individual flight capability. Turn rates increased with the angle of the turn so that the time to complete turns remained constant. We also find that context may alter where turns are initiated in the flocks: for transit flocks in the absence of predators, initiators were located throughout the flocks, but for mobbing flocks with a fixed ground-based predator, they were always located at the front. Moreover, in some transit flocks, initiators were far apart from each other, potentially because of the existence of subgroups and variation in individual interaction ranges. Finally, we find that as the group size increased the information transfer speed initially increased, but rapidly saturated to a constant value. Our results highlight previously unrecognized complexity in turning kinematics and information transfer in social animals.
Collapse
Affiliation(s)
- Hangjian Ling
- Department of Civil and Environmental Engineering, Stanford University, Stanford, CA, USA
- Department of Mechanical Engineering, University of Massachusetts Dartmouth, North Dartmouth, MA, USA
| | - Guillam E. Mclvor
- Centre for Ecology and Conservation, University of Exeter, Penryn, UK
| | - Joseph Westley
- Centre for Ecology and Conservation, University of Exeter, Penryn, UK
| | - Kasper van der Vaart
- Department of Civil and Environmental Engineering, Stanford University, Stanford, CA, USA
| | - Jennifer Yin
- Department of Civil and Environmental Engineering, Stanford University, Stanford, CA, USA
| | - Richard T. Vaughan
- School of Computing Science, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Alex Thornton
- Centre for Ecology and Conservation, University of Exeter, Penryn, UK
| | - Nicholas T. Ouellette
- Department of Civil and Environmental Engineering, Stanford University, Stanford, CA, USA
| |
Collapse
|
6
|
Ling H, Mclvor GE, van der Vaart K, Vaughan RT, Thornton A, Ouellette NT. Local interactions and their group-level consequences in flocking jackdaws. Proc Biol Sci 2019; 286:20190865. [PMID: 31266425 PMCID: PMC6650722 DOI: 10.1098/rspb.2019.0865] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 06/07/2019] [Indexed: 11/12/2022] Open
Abstract
As one of nature's most striking examples of collective behaviour, bird flocks have attracted extensive research. However, we still lack an understanding of the attractive and repulsive forces that govern interactions between individuals within flocks and how these forces influence neighbours' relative positions and ultimately determine the shape of flocks. We address these issues by analysing the three-dimensional movements of wild jackdaws ( Corvus monedula) in flocks containing 2-338 individuals. We quantify the social interaction forces in large, airborne flocks and find that these forces are highly anisotropic. The long-range attraction in the direction perpendicular to the movement direction is stronger than that along it, and the short-range repulsion is generated mainly by turning rather than changing speed. We explain this phenomenon by considering wingbeat frequency and the change in kinetic and gravitational potential energy during flight, and find that changing the direction of movement is less energetically costly than adjusting speed for birds. Furthermore, our data show that collision avoidance by turning can alter local neighbour distributions and ultimately change the group shape. Our results illustrate the macroscopic consequences of anisotropic interaction forces in bird flocks, and help to draw links between group structure, local interactions and the biophysics of animal locomotion.
Collapse
Affiliation(s)
- Hangjian Ling
- Department of Civil and Environmental Engineering, Stanford University, Stanford, CA, USA
| | - Guillam E. Mclvor
- Center for Ecology and Conservation, University of Exeter, Penryn, UK
| | - Kasper van der Vaart
- Department of Civil and Environmental Engineering, Stanford University, Stanford, CA, USA
| | | | - Alex Thornton
- Center for Ecology and Conservation, University of Exeter, Penryn, UK
| | - Nicholas T. Ouellette
- Department of Civil and Environmental Engineering, Stanford University, Stanford, CA, USA
| |
Collapse
|