1
|
Fehring DJ, Yokoo S, Abe H, Buckley MJ, Miyamoto K, Jaberzadeh S, Yamamori T, Tanaka K, Rosa MGP, Mansouri FA. Direct current stimulation modulates prefrontal cell activity and behaviour without inducing seizure-like firing. Brain 2024; 147:3751-3763. [PMID: 39166526 PMCID: PMC11531852 DOI: 10.1093/brain/awae273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/16/2024] [Accepted: 07/26/2024] [Indexed: 08/23/2024] Open
Abstract
Transcranial direct current stimulation (tDCS) has garnered significant interest for its potential to enhance cognitive functions and as a therapeutic intervention in various cognitive disorders. However, the clinical application of tDCS has been hampered by significant variability in its cognitive outcomes. Furthermore, the widespread use of tDCS has raised concerns regarding its safety and efficacy, particularly in light of our limited understanding of its underlying neural mechanisms at the cellular level. We still do not know 'where', 'when' and 'how' tDCS modulates information encoding by neurons, in order to lead to the observed changes in cognitive functions. Without elucidating these fundamental unknowns, the root causes of its outcome variability and long-term safety remain elusive, challenging the effective application of tDCS in clinical settings. Addressing this gap, our study investigates the effects of tDCS, applied over the dorsolateral prefrontal cortex, on cognitive abilities and individual neuron activity in macaque monkeys performing cognitive tasks. Like humans performing a delayed match-to-sample task, monkeys exhibited practice-related slowing in their responses (within-session behavioural adaptation). Concurrently, there were practice-related changes in simultaneously recorded activity of prefrontal neurons (within-session neuronal adaptation). Anodal tDCS attenuated both these behavioural and neuronal adaptations when compared with sham stimulation. Furthermore, tDCS abolished the correlation between response time of monkeys and neuronal firing rate. At a single-cell level, we also found that following tDCS, neuronal firing rate was more likely to exhibit task-specific modulation than after sham stimulation. These tDCS-induced changes in both behaviour and neuronal activity persisted even after the end of tDCS stimulation. Importantly, multiple applications of tDCS did not alter burst-like firing rates of individual neurons when compared with sham stimulation. This suggests that tDCS modulates neural activity without enhancing susceptibility to epileptiform activity, confirming a potential for safe use in clinical settings. Our research contributes unprecedented insights into the 'where', 'when' and 'how' of tDCS effects on neuronal activity and cognitive functions by showing that modulation of the behaviour of monkeys by the tDCS of the prefrontal cortex is accompanied by alterations in prefrontal cortical cell activity ('where') during distinct trial phases ('when'). Importantly, tDCS led to task-specific and state-dependent alterations in prefrontal cell activities ('how'). Our findings suggest a significant shift from the view that the effects of tDCS are merely attributable to polarity-specific shifts in cortical excitability and instead propose a more complex mechanism of action for tDCS that encompasses various aspects of cortical neuronal activity without increasing burst-like epileptiform susceptibility.
Collapse
Affiliation(s)
- Daniel J Fehring
- Department of Physiology and Neuroscience Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
- RIKEN Center for Brain Science, RIKEN Institute, Wako-shi, 351-0198, Japan
| | - Seiichirou Yokoo
- RIKEN Center for Brain Science, RIKEN Institute, Wako-shi, 351-0198, Japan
| | - Hiroshi Abe
- RIKEN Center for Brain Science, RIKEN Institute, Wako-shi, 351-0198, Japan
| | - Mark J Buckley
- Department of Experimental Psychology, Oxford University, Oxford OX1 3UD, UK
| | - Kentaro Miyamoto
- RIKEN Center for Brain Science, RIKEN Institute, Wako-shi, 351-0198, Japan
| | - Shapour Jaberzadeh
- Department of Physiotherapy, Monash University, Clayton, VIC 3199, Australia
| | - Tetsuo Yamamori
- RIKEN Center for Brain Science, RIKEN Institute, Wako-shi, 351-0198, Japan
| | - Keiji Tanaka
- RIKEN Center for Brain Science, RIKEN Institute, Wako-shi, 351-0198, Japan
| | - Marcello G P Rosa
- Department of Physiology and Neuroscience Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Farshad A Mansouri
- Department of Physiology and Neuroscience Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
2
|
Diedrich L, Kolhoff HI, Chakalov I, Vékony T, Németh D, Antal A. Prefrontal theta-gamma transcranial alternating current stimulation improves non-declarative visuomotor learning in older adults. Sci Rep 2024; 14:4955. [PMID: 38418511 PMCID: PMC10901881 DOI: 10.1038/s41598-024-55125-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 02/20/2024] [Indexed: 03/01/2024] Open
Abstract
The rise in the global population of older adults underscores the significance to investigate age-related cognitive disorders and develop early treatment modalities. Previous research suggests that non-invasive transcranial Alternating Current Stimulation (tACS) can moderately improve cognitive decline in older adults. However, non-declarative cognition has received relatively less attention. This study investigates whether repeated (16-day) bilateral theta-gamma cross-frequency tACS targeting the Dorsolateral Prefrontal Cortex (DLPFC) enhances non-declarative memory. Computerized cognitive training was applied alongside stimulation to control for the state-of-the-brain. The Alternating Serial Reaction Time (ASRT) task was employed to assess non-declarative functions such as visuomotor skill and probabilistic sequence learning. Results from 35 participants aged 55-82 indicated that active tACS led to more substantial improvements in visuomotor skills immediately after treatment, which persisted 3 months later, compared to sham tACS. Treatment benefit was more pronounced in older adults of younger age and those with pre-existing cognitive decline. However, neither intervention group exhibited modulation of probabilistic sequence learning. These results suggest that repeated theta-gamma tACS can selectively improve distinct non-declarative cognitive aspects when targeting the DLPFC. Our findings highlight the therapeutic potential of tACS in addressing deficits in learning and retaining general skills, which could have a positive impact on the quality of life for cognitively impaired older individuals by preserving independence in daily activities.
Collapse
Affiliation(s)
- Lukas Diedrich
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany.
| | - Hannah I Kolhoff
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Ivan Chakalov
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
- Department of Anesthesiology, University Medical Center Göttingen, Göttingen, Germany
| | - Teodóra Vékony
- Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, INSERM, CNRS, Université Claude Bernard Lyon 1, Bron, France
- Department of Education and Psychology, Faculty of Social Sciences, University of Atlántico Medio, Las Palmas de Gran Canaria, Spain
| | - Dezső Németh
- Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, INSERM, CNRS, Université Claude Bernard Lyon 1, Bron, France
- BML-NAP Research Group, Institute of Psychology, Eötvös Loránd University and Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary
- Department of Education and Psychology, Faculty of Social Sciences, University of Atlántico Medio, Las Palmas de Gran Canaria, Spain
| | - Andrea Antal
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
3
|
De Laet C, Herman B, Riga A, Bihin B, Regnier M, Leeuwerck M, Raymackers JM, Vandermeeren Y. Bimanual motor skill learning after stroke: Combining robotics and anodal tDCS over the undamaged hemisphere: An exploratory study. Front Neurol 2022; 13:882225. [PMID: 36061986 PMCID: PMC9433746 DOI: 10.3389/fneur.2022.882225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundSince a stroke can impair bimanual activities, enhancing bimanual cooperation through motor skill learning may improve neurorehabilitation. Therefore, robotics and neuromodulation with transcranial direct current stimulation (tDCS) are promising approaches. To date, tDCS has failed to enhance bimanual motor control after stroke possibly because it was not integrating the hypothesis that the undamaged hemisphere becomes the major poststroke hub for bimanual control.ObjectiveWe tested the following hypotheses: (I) In patients with chronic hemiparetic stroke training on a robotic device, anodal tDCS applied over the primary motor cortex of the undamaged hemisphere enhances bimanual motor skill learning compared to sham tDCS. (II) The severity of impairment correlates with the effect of tDCS on bimanual motor skill learning. (III) Bimanual motor skill learning is less efficient in patients than in healthy individuals (HI).MethodsA total of 17 patients with chronic hemiparetic stroke and 7 healthy individuals learned a complex bimanual cooperation skill on the REAplan® neurorehabilitation robot. The bimanual speed/accuracy trade-off (biSAT), bimanual coordination (biCo), and bimanual force (biFOP) scores were computed for each performance. In patients, real/sham tDCS was applied in a crossover, randomized, double-blind approach.ResultsCompared to sham, real tDCS did not enhance bimanual motor skill learning, retention, or generalization in patients, and no correlation with impairment was noted. The healthy individuals performed better than patients on bimanual motor skill learning, but generalization was similar in both groups.ConclusionA short motor skill learning session with a robotic device resulted in the retention and generalization of a complex skill involving bimanual cooperation. The tDCS strategy that would best enhance bimanual motor skill learning after stroke remains unknown.Clinical trial registrationhttps://clinicaltrials.gov/ct2/show/NCT02308852, identifier: NCT02308852.
Collapse
Affiliation(s)
- Chloë De Laet
- Stroke Unit/NeuroModulation Unit (NeMU), Department of Neurology, CHU UCL Namur (Mont-Godinne), UCLouvain, Yvoir, Belgium
| | - Benoît Herman
- Louvain Bionics, UCLouvain, Louvain-la-Neuve, Belgium
- Materials and Civil Engineering (iMMC), Institute of Mechanics, UCLouvain, Louvain-la-Neuve, Belgium
| | - Audrey Riga
- Stroke Unit/NeuroModulation Unit (NeMU), Department of Neurology, CHU UCL Namur (Mont-Godinne), UCLouvain, Yvoir, Belgium
- Louvain Bionics, UCLouvain, Louvain-la-Neuve, Belgium
- Clinical Division (NEUR), Institute of NeuroScience (IoNS), UCLouvain, Brussels, Belgium
| | - Benoît Bihin
- Scientific Support Unit, CHU UCL Namur (Mont-Godinne), UCLouvain, Yvoir, Belgium
| | - Maxime Regnier
- Scientific Support Unit, CHU UCL Namur (Mont-Godinne), UCLouvain, Yvoir, Belgium
| | - Maria Leeuwerck
- Department of Physical Medicine and Rehabilitation, CHU UCL Namur (Mont-Godinne), UCLouvain, Yvoir, Belgium
| | - Jean-Marc Raymackers
- Department of Neurology and Neurosurgery, Clinique Saint-Pierre, Ottignies-Louvain-la-Neuve, Belgium
| | - Yves Vandermeeren
- Stroke Unit/NeuroModulation Unit (NeMU), Department of Neurology, CHU UCL Namur (Mont-Godinne), UCLouvain, Yvoir, Belgium
- Louvain Bionics, UCLouvain, Louvain-la-Neuve, Belgium
- Clinical Division (NEUR), Institute of NeuroScience (IoNS), UCLouvain, Brussels, Belgium
- *Correspondence: Yves Vandermeeren
| |
Collapse
|
4
|
Esposito M, Ferrari C, Fracassi C, Miniussi C, Brignani D. Responsiveness to left-prefrontal tDCS varies according to arousal levels. Eur J Neurosci 2022; 55:762-777. [PMID: 34978110 PMCID: PMC9302688 DOI: 10.1111/ejn.15584] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 12/03/2021] [Accepted: 12/21/2021] [Indexed: 12/01/2022]
Abstract
Over the past two decades, the postulated modulatory effects of transcranial direct current stimulation (tDCS) on the human brain have been extensively investigated. However, recent concerns on reliability of tDCS effects have been raised, principally due to reduced replicability and to interindividual variability in response to tDCS. These inconsistencies are likely due to the interplay between the level of induced cortical excitability and unaccounted structural and state‐dependent functional factors. On these grounds, we aimed at verifying whether the behavioural effects induced by a common tDCS montage (F3‐rSOA) were influenced by the participants' arousal levels, as part of a broader mechanism of state‐dependency. Pupillary dynamics were recorded during an auditory oddball task while applying either a sham or real tDCS. The tDCS effects were evaluated as a function of subjective and physiological arousal predictors (STAI‐Y State scores and pre‐stimulus pupil size, respectively). We showed that prefrontal tDCS hindered task learning effects on response speed such that performance improvement occurred during sham, but not real stimulation. Moreover, both subjective and physiological arousal predictors significantly explained performance during real tDCS, with interaction effects showing performance improvement only with moderate arousal levels; likewise, pupil response was affected by real tDCS according to the ongoing levels of arousal, with reduced dilation during higher arousal trials. These findings highlight the potential role of arousal in shaping the neuromodulatory outcome, thus emphasizing a more careful interpretation of null or negative results while also encouraging more individually tailored tDCS applications based on arousal levels, especially in clinical populations.
Collapse
Affiliation(s)
- Marco Esposito
- Neurophysiology Lab, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Clarissa Ferrari
- Unit of Statistics, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Claudia Fracassi
- Neurophysiology Lab, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Carlo Miniussi
- Center for Mind/Brain Sciences CIMeC, University of Trento, Rovereto, Italy
| | - Debora Brignani
- Neurophysiology Lab, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.,Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| |
Collapse
|
5
|
Prutean N, Martín-Arévalo E, Leiva A, Jiménez L, Vallesi A, Lupiáñez J. The causal role of DLPFC top-down control on the acquisition and the automatic expression of implicit learning: State of the art. Cortex 2021; 141:293-310. [PMID: 34116383 DOI: 10.1016/j.cortex.2021.04.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/19/2020] [Accepted: 04/20/2021] [Indexed: 11/17/2022]
Abstract
Implicit learning refers to the incidental acquisition and expression of knowledge that is not accompanied by full awareness of its contents. Implicit sequence learning (ISL) represents one of the most useful paradigms to investigate these processes. In this paradigm, participants are usually instructed to respond to the location of a target that moves regularly through a set of possible locations. Although participants are not informed about the existence of a sequence, they eventually learn it implicitly, as attested by the costs observed when this sequence is violated in a reduced set of control trials. Interestingly, the expression of this learning decreases immediately after a control trial, in a way that resembles the adjustments triggered in response to incongruent trials in interference tasks. These effects have been attributed to a control network involving dorsolateral prefrontal cortex (DLPFC) and cingulate (ACC) structures. In the present work, we reviewed a group of recent studies which had inhibited DLPFC top-down control by means of non-invasive brain stimulation to increase the acquisition of ISL. In addition, as no previous study has investigated the effect of inhibiting top-down control on releasing the automatic expression of ISL, we present a pre-registered - yet exploratory - study in which an inhibitory continuous theta burst stimulation protocol was applied over an anterior-ventral portion of the dorsolateral prefrontal cortex (DLPFC) highly interconnected with the ACC, and whose activity has been specifically linked to motor control (i.e., Right DLPFC, n = 10 or the Left DLPFC, n = 10), compared to active Vertex stimulation (n = 10). Contrary to our hypotheses, the results did not show evidence for the involvement of such region in the expression of ISL. We discussed the results in the context of the set of contradictory findings reported in the systematic review.
Collapse
Affiliation(s)
- Nicoleta Prutean
- Department of Experimental Psychology and Mind, Brain and Behaviour Research Center, University of Granada, Spain; Department of Neuroscience & Padova Neuroscience Center, University of Padova, Italy.
| | - Elisa Martín-Arévalo
- Department of Experimental Psychology and Mind, Brain and Behaviour Research Center, University of Granada, Spain.
| | - Alicia Leiva
- Department of Experimental Psychology and Mind, Brain and Behaviour Research Center, University of Granada, Spain.
| | - Luis Jiménez
- Department of Psychology, University of Santiago de Compostela, Spain.
| | - Antonino Vallesi
- Department of Neuroscience & Padova Neuroscience Center, University of Padova, Italy; Brain Imaging & Neural Dynamics Research Group, IRCCS San Camillo Hospital, Venice, Italy.
| | - Juan Lupiáñez
- Department of Experimental Psychology and Mind, Brain and Behaviour Research Center, University of Granada, Spain.
| |
Collapse
|
6
|
Using high-definition transcranial direct current stimulation to investigate the role of the dorsolateral prefrontal cortex in explicit sequence learning. PLoS One 2021; 16:e0246849. [PMID: 33735211 PMCID: PMC7971701 DOI: 10.1371/journal.pone.0246849] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 01/26/2021] [Indexed: 11/19/2022] Open
Abstract
Though we have a general understanding of the brain areas involved in motor sequence learning, there is more to discover about the neural mechanisms underlying skill acquisition. Skill acquisition may be subserved, in part, by interactions between the cerebellum and prefrontal cortex through a cerebello-thalamo-prefrontal network. In prior work, we investigated this network by targeting the cerebellum; here, we explored the consequence of stimulating the dorsolateral prefrontal cortex using high-definition transcranial direct current stimulation (HD-tDCS) before administering an explicit motor sequence learning paradigm. Using a mixed within- and between- subjects design, we employed anodal (n = 24) and cathodal (n = 25) HD-tDCS (relative to sham) to temporarily alter brain function and examine effects on skill acquisition. The results indicate that both anodal and cathodal prefrontal stimulation impedes motor sequence learning, relative to sham. These findings suggest an overall negative influence of active prefrontal stimulation on the acquisition of a sequential pattern of finger movements. Collectively, this provides novel insight on the role of the dorsolateral prefrontal cortex in initial skill acquisition, when cognitive processes such as working memory are used. Exploring methods that may improve motor learning is important in developing therapeutic strategies for motor-related diseases and rehabilitation.
Collapse
|
7
|
Nguemeni C, Stiehl A, Hiew S, Zeller D. No Impact of Cerebellar Anodal Transcranial Direct Current Stimulation at Three Different Timings on Motor Learning in a Sequential Finger-Tapping Task. Front Hum Neurosci 2021; 15:631517. [PMID: 33613217 PMCID: PMC7892471 DOI: 10.3389/fnhum.2021.631517] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/13/2021] [Indexed: 11/21/2022] Open
Abstract
Background: Recently, attention has grown toward cerebellar neuromodulation in motor learning using transcranial direct current stimulation (tDCS). An important point of discussion regarding this modulation is the optimal timing of tDCS, as this parameter could significantly influence the outcome. Hence, this study aimed to investigate the effects of the timing of cerebellar anodal tDCS (ca-tDCS) on motor learning using a sequential finger-tapping task (FTT). Methods: One hundred and twenty two healthy young, right-handed subjects (96 females) were randomized into four groups (Duringsham, Before, Duringreal, After). They performed 2 days of FTT with their non-dominant hand on a custom keyboard. The task consisted of 40 s of typing followed by 20 s rest. Each participant received ca-tDCS (2 mA, sponge electrodes of 25 cm2, 20 min) at the appropriate timing and performed 20 trials on the first day (T1, 20 min). On the following day, only 10 trials of FTT were performed without tDCS (T2, 10 min). Motor skill performance and retention were assessed. Results: All participants showed a time-dependent increase in learning. Motor performance was not different between groups at the end of T1 (p = 0.59). ca-tDCS did not facilitate the retention of the motor skill in the FTT at T2 (p = 0.27). Thus, our findings indicate an absence of the effect of ca-tDCS on motor performance or retention of the FTT independently from the timing of stimulation. Conclusion: The present results suggest that the outcome of ca-tDCS is highly dependent on the task and stimulation parameters. Future studies need to establish a clear basis for the successful and reproducible clinical application of ca-tDCS.
Collapse
Affiliation(s)
- Carine Nguemeni
- Department of Neurology, University Hospital of Würzburg, Würzburg, Germany
| | - Annika Stiehl
- Department of Neurology, University Hospital of Würzburg, Würzburg, Germany
| | - Shawn Hiew
- Department of Neurology, University Hospital of Würzburg, Würzburg, Germany
| | - Daniel Zeller
- Department of Neurology, University Hospital of Würzburg, Würzburg, Germany
| |
Collapse
|
8
|
Dubravac M, Meier B. Stimulating the parietal cortex by transcranial direct current stimulation (tDCS): no effects on attention and memory. AIMS Neurosci 2021; 8:33-46. [PMID: 33490371 PMCID: PMC7815482 DOI: 10.3934/neuroscience.2021002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 11/11/2020] [Indexed: 01/02/2023] Open
Abstract
Selective attention is relevant for goal directed behavior as it allows people to attend to task-relevant target stimuli and to ignore task-irrelevant distractors. Attentional focus at encoding affects subsequent memory for target and distractor stimuli. Remembering selectively more targets than distractors represents memory selectivity. Brain imaging studies suggest that the superior parietal cortex is associated with the dorsal attentional network supporting top-down control of selective attention while the inferior parietal cortex is associated with the ventral attentional network supporting bottom-up attentional orienting. To investigate the roles of the dorsal and ventral networks in the effect of selective attention during encoding on long-term memory, we stimulated the left superior and the right inferior parietal cortex. Building on previous work, we applied transcranial direct current stimulation (tDCS) during a study phase where pictures and words were presented simultaneously and participants had to switch between a picture and a word decision. A subsequent recognition test assessed memory for target and distractor pictures and words. We hypothesized that a relative increase in activity in the dorsal network would boost selective attention while increased activity in the ventral network would impair selective attention. We also expected to find corresponding effects on memory. Enhanced selective attention should lead to higher memory selectivity, while impaired selective attention should lead to lower memory selectivity. Our results replicated that task switching reduced memory selectivity. However, we found no significant effects of tDCS. Thus, the present study questions the effectiveness of the present tDCS protocol for modulating attention during task switching and subsequent memory.
Collapse
Affiliation(s)
- Mirela Dubravac
- Institute of Psychology, University of Bern, Bern, Switzerland
| | - Beat Meier
- Institute of Psychology, University of Bern, Bern, Switzerland
| |
Collapse
|
9
|
Hartmann M, Singer S, Savic B, Müri RM, Mast FW. Anodal High-definition Transcranial Direct Current Stimulation over the Posterior Parietal Cortex Modulates Approximate Mental Arithmetic. J Cogn Neurosci 2019; 32:862-876. [PMID: 31851594 DOI: 10.1162/jocn_a_01514] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
The representation and processing of numerosity is a crucial cognitive capacity. Converging evidence points to the posterior parietal cortex (PPC) as primary "number" region. However, the exact role of the left and right PPC for different types of numerical and arithmetic tasks remains controversial. In this study, we used high-definition transcranial direct current stimulation (HD-tDCS) to further investigate the causal involvement of the PPC during approximative, nonsymbolic mental arithmetic. Eighteen healthy participants received three sessions of anodal HD-tDCS at 1-week intervals in counterbalanced order: left PPC, right PPC, and sham stimulation. Results showed an improved performance during online parietal HD-tDCS (vs. sham) for subtraction problems. Specifically, the general tendency to underestimate the results of subtraction problems (i.e., the "operational momentum effect") was reduced during online parietal HD-tDCS. There was no difference between left and right stimulation. This study thus provides new evidence for a causal involvement of the left and right PPC for approximate nonsymbolic arithmetic and advances the promising use of noninvasive brain stimulation in increasing cognitive functions.
Collapse
|
10
|
Savic B, Müri R, Meier B. High Definition Transcranial Direct Current Stimulation Does Not Modulate Implicit Task Sequence Learning and Consolidation. Neuroscience 2019; 414:77-87. [DOI: 10.1016/j.neuroscience.2019.06.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 06/24/2019] [Accepted: 06/25/2019] [Indexed: 12/31/2022]
|
11
|
Transcranial static magnetic stimulation over the primary motor cortex alters sequential implicit motor learning. Neurosci Lett 2018; 696:33-37. [PMID: 30552943 DOI: 10.1016/j.neulet.2018.12.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 11/20/2018] [Accepted: 12/07/2018] [Indexed: 01/25/2023]
Abstract
Transcranial static magnetic stimulation (tSMS) is a recently introduced noninvasive brain stimulation technique that can modulate brain excitability. Here, we investigated a hypothesis that motor learning would be altered by tSMS applied to the primary motor cortex (M1). For motor task, we chose a serial reaction time task consisting of sequential trials and random trials in which the visual cue doesn't play out a repeating pattern of positions to evaluate an implicit motor learning, where the M1 is a key structure for skill acquisition and early consolidation. Forty-four healthy right-handed volunteers participated in the present study. TSMS was placed over the right M1 or dorsolateral prefrontal cortex (DLPFC). The control group received Sham stimulation over the right M1. Reaction times (RTs) of left hand were analyzed before (Pre session) and after (Post session) practice to examine online learning, and were also assessed 24 h later to examine offline learning (Cons session). The results showed that the RTs became faster in Post than Pre session regardless of the stimulation location. Interestingly, the RTs were significantly faster with the M1 stimulation than the DLPFC or Sham stimulation in Cons session. There was not significant difference in error rate among sessions or stimulation locations. These findings suggest that the modulation of the M1 using tSMS can enhance offline motor learning in an implicit task.
Collapse
|
12
|
Meier B, Sauter P. Boosting Memory by tDCS to Frontal or Parietal Brain Regions? A Study of the Enactment Effect Shows No Effects for Immediate and Delayed Recognition. Front Psychol 2018; 9:867. [PMID: 29915551 PMCID: PMC5994422 DOI: 10.3389/fpsyg.2018.00867] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 05/14/2018] [Indexed: 12/12/2022] Open
Abstract
Boosting memory with transcranial direct current stimulation (tDCS) seems to be an elegant way to optimize learning. Here we tested whether tDCS to the left dorsolateral prefrontal cortex or to the left posterior parietal cortex would boost recognition memory in general and/or particularly for action phrases enacted at study. During study, 48 young adults either read or enacted simple action phrases. Memory for the action phrases was assessed after a retention interval of 45 min and again after 7-days to investigate the long-term consequences of brain stimulation. The results showed a robust enactment effect in both test sessions. Moreover, the decrease in performance was more pronounced for reading than for enacting the phrases at study. However, tDCS did not reveal any effect on subsequent recognition memory performance. We conclude that memory benefits of tDCS are not easily replicated. In contrast, enactment at study reliably boosts subsequent memory.
Collapse
Affiliation(s)
- Beat Meier
- Institute of Psychology, University of Bern, Bern, Switzerland
| | - Philipp Sauter
- Institute of Psychology, University of Bern, Bern, Switzerland
| |
Collapse
|
13
|
Imburgio MJ, Orr JM. Effects of prefrontal tDCS on executive function: Methodological considerations revealed by meta-analysis. Neuropsychologia 2018; 117:156-166. [PMID: 29727626 DOI: 10.1016/j.neuropsychologia.2018.04.022] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 04/17/2018] [Accepted: 04/20/2018] [Indexed: 02/04/2023]
Abstract
A meta-analysis of studies using single-session transcranial direct current stimulation (tDCS) to target the dorsolateral prefrontal cortex (DLPFC) was undertaken to examine the effect of stimulation on executive function (EF) in healthy samples. 27 studies were included in analyses, yielding 71 effect sizes. The most relevant measure for each task was determined a priori and used to calculate Hedge's g. Methodological characteristics of each study were examined individually as potential moderators of effect size. Stimulation effects on three domains of EF (inhibition of prepotent responses, mental set shifting, and information updating and monitoring) were analyzed separately. In line with previous work, the current study found no significant effect of anodal unilateral tDCS, cathodal unilateral tDCS, or bilateral tDCS on EF. Further moderator and subgroup analyses were only carried out for anodal unilateral montages due to the small number of studies using other montages. Subgroup analyses revealed a significant effect of anodal unilateral tDCS on updating tasks, but not on inhibition or set-shifting tasks. Cathode location significantly moderated the effect of anodal unilateral tDCS. Extracranial cathodes yielded a significant effect on EF while cranial cathodes yielded no effect. Anode size also significantly moderated effect of anodal unilateral tDCS, with smaller anodes being more effective than larger anodes. In summary, anodal DLPFC stimulation is more effective at improving updating ability than inhibition and set-shifting ability, but anodal stimulation can significantly improve general executive function when extracranial cathodes or small anodes are used. Future meta-analyses may examine how stimulation's effects on specific behavioral tasks, rather than broader domains, might be affected by methodological moderators.
Collapse
Affiliation(s)
- Michael J Imburgio
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, USA.
| | - Joseph M Orr
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, USA; Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX, USA.
| |
Collapse
|