1
|
Farshbaf A, Mohajertehran F, Sahebkar A, Garmei Y, Sabbagh P, Mohtasham N. The role of altered microRNA expression in premalignant and malignant head and neck lesions with epithelial origin. Health Sci Rep 2022; 5:e921. [PMID: 36381409 PMCID: PMC9637951 DOI: 10.1002/hsr2.921] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 10/06/2022] [Accepted: 10/17/2022] [Indexed: 11/09/2022] Open
Abstract
Background and Aims The premalignant lesions of the oral cavity carry a risk of transformation to malignancy. Hence, early diagnosis followed by timely intervention remarkably affects the prognosis of patients. During tumorigenesis, particular microRNAs (miRNAs) show altered expressions and because of their post transcriptionally regulatory role could provide favorable diagnostic, therapeutic, or prognostic values in head and neck cancers. Methods In this review, we have demonstrated diagnostic, prognostic, and potential therapeutic roles of some miRNAs associated with oral premalignant and malignant lesions based on previous validate studies. Results It is previously documented that dysregulation of miRNAs contributes to cancer development and progression. MiRNAs could be tumor suppressors that normally suppress cell proliferation, differentiation, and apoptosis or play as oncogenes that improved tumorigenesis process. Altered expression of miRNAs has also been reported in premalignant oral epithelial lesions such as leukoplakia, oral submucous fibrosis, oral lichen planus and some malignant carcinoma like oral squamous cell, verrucous, spindle cell, Merkel cell carcinoma and basal cell. Conclusion Some of miRNAs could be new therapeutic candidates in miRNA-based target gene therapy. Although more investigations are required to identify the most favorable miRNA candidate, altered expression of some miRNAs could be used as biomarkers in premalignant lesions and oral cancers with high sensitivity and specificity.
Collapse
Affiliation(s)
- Alieh Farshbaf
- Dental Research CenterMashhad University of Medical SciencesMashhadIran
| | - Farnaz Mohajertehran
- Dental Research CenterMashhad University of Medical SciencesMashhadIran
- Department of Oral and Maxillofacial Pathology, School of DentistryMashhad University of Medical SciencesMashhadIran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology InstituteMashhad University of Medical SciencesMashhadIran
- Applied Biomedical Research CenterMashhad University of Medical SciencesMashhadIran
| | - Yasaman Garmei
- Department of Biology, Faculty of ScienceSistan and Balouchestan UniversityZahedanIran
| | - Parisa Sabbagh
- Department of Oral and Maxillofacial Pathology, School of DentistryMashhad University of Medical SciencesMashhadIran
| | - Nooshin Mohtasham
- Dental Research CenterMashhad University of Medical SciencesMashhadIran
- Department of Oral and Maxillofacial Pathology, School of DentistryMashhad University of Medical SciencesMashhadIran
| |
Collapse
|
2
|
Thomaidou AC, Batsaki P, Adamaki M, Goulielmaki M, Baxevanis CN, Zoumpourlis V, Fortis SP. Promising Biomarkers in Head and Neck Cancer: The Most Clinically Important miRNAs. Int J Mol Sci 2022; 23:ijms23158257. [PMID: 35897831 PMCID: PMC9367895 DOI: 10.3390/ijms23158257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 02/01/2023] Open
Abstract
Head and neck cancers (HNCs) comprise a heterogeneous group of tumors that extend from the oral cavity to the upper gastrointestinal tract. The principal etiologic factors for oral tumors include tobacco smoking and alcohol consumption, while human papillomavirus (HPV) infections have been accused of a high incidence of pharyngeal tumors. Accordingly, HPV detection has been extensively used to categorize carcinomas of the head and neck. The diverse nature of HNC highlights the necessity for novel, sensitive, and precise biomarkers for the prompt diagnosis of the disease, its successful monitoring, and the timely prognosis of patient clinical outcomes. In this context, the identification of certain microRNAs (miRNAs) and/or the detection of alterations in their expression patterns, in a variety of somatic fluids and tissues, could serve as valuable biomarkers for precision oncology. In the present review, we summarize some of the most frequently studied miRNAs (including miR-21, -375, -99, -34a, -200, -31, -125a/b, -196a/b, -9, -181a, -155, -146a, -23a, -16, -29, and let-7), their role as biomarkers, and their implication in HNC pathogenesis. Moreover, we designate the potential of given miRNAs and miRNA signatures as novel diagnostic and prognostic tools for successful patient stratification. Finally, we discuss the currently ongoing clinical trials that aim to identify the diagnostic, prognostic, or therapeutic utility of miRNAs in HNC.
Collapse
Affiliation(s)
- Arsinoe C. Thomaidou
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 11635 Athens, Greece; (A.C.T.); (M.A.)
| | - Panagiota Batsaki
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, 11522 Athens, Greece; (P.B.); (M.G.); (C.N.B.)
| | - Maria Adamaki
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 11635 Athens, Greece; (A.C.T.); (M.A.)
| | - Maria Goulielmaki
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, 11522 Athens, Greece; (P.B.); (M.G.); (C.N.B.)
| | - Constantin N. Baxevanis
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, 11522 Athens, Greece; (P.B.); (M.G.); (C.N.B.)
| | - Vassilis Zoumpourlis
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 11635 Athens, Greece; (A.C.T.); (M.A.)
- Correspondence: (V.Z.); (S.P.F.); Tel.: +30-210-727-3730 (V.Z.); +30-210-640-9462 (S.P.F.)
| | - Sotirios P. Fortis
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, 11522 Athens, Greece; (P.B.); (M.G.); (C.N.B.)
- Correspondence: (V.Z.); (S.P.F.); Tel.: +30-210-727-3730 (V.Z.); +30-210-640-9462 (S.P.F.)
| |
Collapse
|
3
|
Chen P, Liu R, Yu Z, Cui G, Zong W, Wang M, Xie M, Qu W, Wang W, Luo X. MiR196a-5p in extracellular vesicles released from human nasopharyngeal carcinoma enhance the phagocytosis and secretion of microglia by targeting ROCK1. Exp Cell Res 2021; 411:112988. [PMID: 34951996 DOI: 10.1016/j.yexcr.2021.112988] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/15/2021] [Accepted: 12/19/2021] [Indexed: 12/19/2022]
Abstract
The microenvironment of the brain has become increasingly recognized as an essential regulator in metastatic and primary brain tumors. Recent studies demonstrate that circulating tumor-derived exosomes are critical for the brain tumor microenvironment. Nasopharyngeal carcinoma (NPC), a malignant tumor of the head and neck, often invades the skull base but infrequently extends to brain parenchyma. Neurobiological communication between microglia and tumor-derived extracellular vesicles (EVs) has been extensively studied, but how NPC cells regulate the immune microenvironment in the brain remains unknown. Here, we report that NPC derived EVs lead to increased microglial phagocytosis and proliferation, and heightened levels of IL-6, IL-8, CXCL1 and TGF-β1. Analysis of microRNAs in EVs reveal that miR196a-5p is the major effector microRNA. Moreover, we demonstrate an enrichment of miR196a-5p in the plasmatic EVs of NPC patients. Further investigation demonstrated that miR196a-5p was transferred to microglia and regulated microglial structure and functions by downregulating the expression of ROCK1. Therefore, these data indicate that NPC-derived EVs are potent modulators of microglial functions in brain microenvironment. Regardless of brain colonization, EVs-mediated functional changes in microglia may be a universal phenomenon that results in the alteration of the tumor host's microenvironment in the brain.
Collapse
Affiliation(s)
- Peng Chen
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Liberation Avenue, Wuhan, 430030, China
| | - Rui Liu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Liberation Avenue, Wuhan, 430030, China
| | - Zhiyuan Yu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Liberation Avenue, Wuhan, 430030, China
| | - GuoHui Cui
- Department of Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yan Jiang West Road, Guangzhou, 510120, China
| | - Weifeng Zong
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Liberation Avenue, Wuhan, 430030, China
| | - Minghuan Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Liberation Avenue, Wuhan, 430030, China
| | - Minjie Xie
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Liberation Avenue, Wuhan, 430030, China
| | - Wensheng Qu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Liberation Avenue, Wuhan, 430030, China
| | - Wei Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Liberation Avenue, Wuhan, 430030, China
| | - Xiang Luo
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Liberation Avenue, Wuhan, 430030, China.
| |
Collapse
|
4
|
Shaw P, Senthilnathan R, Krishnan S, Suresh D, Shetty S, Muthukaliannan GK, Mani RR, Sivanandy P, Chandramoorthy HCK, Gupta MM, Baxi S, Jayaraj R. A Clinical Update on the Prognostic Effect of microRNA Biomarkers for Survival Outcome in Nasopharyngeal Carcinoma: A Systematic Review and Meta-Analysis. Cancers (Basel) 2021; 13:cancers13174369. [PMID: 34503179 PMCID: PMC8431423 DOI: 10.3390/cancers13174369] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/19/2021] [Accepted: 08/24/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Current estimates by GLOBOCAN now incorporate NPC as a malignancy discrete from other head and neck malignancies among the 36 disease locales assessed. Based on the latest report, the global cancer burden is estimated to have risen to 19.3 million new cases, and 9.6 million malignancies were recorded in 2020 throughout the world. The study has clinical implications and could improve treatment decision-making and post-treatment care. The study could also motivate future clinical research and development in the arena of NPC prognostic biomarkers.ve men and one in every six women develops cancer during their lifetime, and one out of eight men and one in every 11 women progresses to chronic stage. The study has clinical implications and could improve treatment decision-making and post-treatment care. The study could also motivate future clinical research and development in the arena of NPC prognostic biomarkers. Abstract Background: Nasopharyngeal carcinoma (NPC), a relatively uncommon malignancy in the Western world, is highly prevalent in Southeast Asia where the treatment outcomes are poor. Despite recent improvements in diagnosis and treatment locoregional control, distant metastasis and chemoresistance continue to be a significant cause of mortality. Identification of a reliable and comprehensive prognostic biomarker is highly desirable. The potential relevance of microRNAs (miRNAs) as prognostic markers in NPC is assessed in this systematic review and meta-analysis. Methods: A systematic review was performed using the PubMed and Science Direct databases. The search was limited to search results between 2018 and 2020 with the keywords and search strings developed as per the Preferred Reporting Items for Systematic Review and Meta-analysis (PRISMA) guidelines. The recovered articles were carefully screened based on the selection criteria. In the meta-analysis study, high and low expression levels of miRNAs were measured using the hazard ratio (HR) and 95 percent confidence interval (CI) for patients’ survival outcomes. Egger’s bias indicator test and funnel plot symmetry were used to assess the risk of bias. Results: Amongst the 25 studies, 13 fulfilled the conditions of inclusion in this meta-analysis. The researchers further delved into the 21 miRNA expression levels from 3015 NPC patients to ascertain a link between miRNA’s predictive role and survival outcomes. The majority of the articles retrieved during this study were from China, with two studies from Canada and Malaysia. The overall pooled effect size estimation (HR) for dysregulated miRNAs was 1.590 (95% CI: 1.253–2.017), displaying that miRNA marker expression increased the risk of mortality in NPC patients by 59%. Conclusions: This meta-analysis is novel and looks at the prognostic significance of miRNAs as biomarkers in NPC patients using a continuous version pooled meta-analysis. Although our findings are ambiguous, they do show that greater miRNA expression in NPC may be associated with a lower overall survival rate. To acquire clear conclusions, more prospective studies with large cohorts are required to determine the clinical utility of miRNAs as prognostic biomarkers.
Collapse
Affiliation(s)
- Peter Shaw
- Department of Artificial Intelligence, Nanjing University of Information Science and Technology (NUIST), Nanjing 210044, China;
| | - Raghul Senthilnathan
- School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, India; (R.S.); (G.K.M.)
| | - Sunil Krishnan
- Department of Radiation Oncology, Mayo Clinic Florida, Jacksonville, FL 32224, USA;
| | - Deepa Suresh
- Division of Endocrinology, Department of Internal Medicine, Mayo Clinic Florida, Jacksonville, FL 32224, USA;
| | - Sameep Shetty
- Department of Oral and Maxillofacial Surgery, Manipal College of Dental Sciences, Manipal Academy of Higher Education, A Constituent of MAHE, Manipal 576104, India;
| | | | - Ravishankar Ram Mani
- Department of Pharmaceutical Biology, Faculty of Pharmaceutical Sciences, UCSI University, Cheras, Kuala Lumpur 56000, Malaysia;
| | - Palanisamy Sivanandy
- Department of Pharmacy Practice, School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia;
- School of Postgraduate Studies, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia
| | | | - Madan Mohan Gupta
- School of Pharmacy, Faculty of Medical Sciences, The University of the West Indies, St. Augustine 3303, Trinidad and Tobago;
| | - Siddhartha Baxi
- John Flynn Hospital, 42 Inland Drive, Tugun, QLD 4224, Australia;
| | - Rama Jayaraj
- Northern Territory Institute of Research and Training, Darwin, NT 0909, Australia
- Correspondence:
| |
Collapse
|
5
|
Liu Y, Jia J, Song B, Qiu H, Liang G, Zhang B, Wang K. Serum microRNA-365 suppresses non-small-cell lung cancer metastasis and invasion in patients with bone metastasis of lung cancer. J Int Med Res 2021; 48:300060520939718. [PMID: 33121309 PMCID: PMC7604948 DOI: 10.1177/0300060520939718] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Objective In the present investigation, we evaluated the effects of microRNA-365 (miR-365) on non-small-cell lung cancer (NSCLC) cell metastasis and invasion in patients with bone metastasis of lung cancer. Methods Blood samples from patients with NSCLC and healthy controls and the A549 adenocarcinoma cell line were included in this study. Quantitative real-time PCR and microarray were performed on blood samples. The MTT assay, luciferase reporter assay, Transwell assay, ELISA, and western blot were performed to evaluate expression of associated factors. Results Expression of miR-365 was reduced in patients with bone metastasis of NSCLC. Downregulation of miR-365 promoted cell growth, metastasis, and invasion of NSCLC. Upregulation of miR-365 reduced cell growth, metastasis, and invasion of NSCLC. Downregulation of miR-365 induced expression of NKX homeobox-1 (NKX2-1), epidermal growth factor receptor (EGFR), phosphoinositide-3-kinase (PI3K), and p-Akt proteins in an in vitro model of NSCLC. Inhibition of NKX2-1 reduced the effects of miR-365 on cell growth, metastasis, and invasion of NSCLC. Activation of EGFR reduced the effects of miR-365 on cell growth, metastasis, and invasion of NSCLC. Conclusions The study established that the serum miR-365 suppresses NSCLC cell metastasis and invasion in patients with bone metastasis of lung cancer via EGFR/PI3K through NKX2-1.
Collapse
Affiliation(s)
- Yanyan Liu
- Department of Oncology, The First Clinical Hospital, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Junmei Jia
- Department of Oncology, The First Clinical Hospital, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Bin Song
- Department of Oncology, The First Clinical Hospital, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Haile Qiu
- Department of Oncology, The First Clinical Hospital, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Gang Liang
- Department of Pathology, The First Clinical Hospital, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Bo Zhang
- Department of Breast Diseases, Shanxi Cancer Hospital, Taiyuan, Shanxi, China
| | - Kang Wang
- Department of Oncology, The First Clinical Hospital, Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
6
|
E. A. R. ENS, Irekeola AA, Yean Yean C. Diagnostic and Prognostic Indications of Nasopharyngeal Carcinoma. Diagnostics (Basel) 2020; 10:E611. [PMID: 32825179 PMCID: PMC7554987 DOI: 10.3390/diagnostics10090611] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 08/11/2020] [Accepted: 08/18/2020] [Indexed: 02/06/2023] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a disease that is highly associated with the latent infection of Epstein-Barr virus. The absence of obvious clinical signs at the early stage of the disease has made early diagnosis practically impossible, thereby promoting the establishment and progression of the disease. To enhance the stride for a reliable and less invasive tool for the diagnosis and prognosis of NPC, we synopsize biomarkers belonging to the two most implicated biological domains (oncogenes and tumor suppressors) in NPC disease. Since no single biomarker is sufficient for diagnosis and prognosis, coupled with the fact that the known established methods such as methylation-specific polymerase chain reaction (PCR), multiplex methylation-specific PCR, microarray assays, etc., can only accommodate a few biomarkers, we propose a 10-biomarker panel (KIT, LMP1, PIKC3A, miR-141, and miR-18a/b (oncogenic) and p16, RASSF1A, DAP-kinase, miR-9, and miR-26a (tumor suppressors)) based on their diagnostic and prognostic values. This marker set could be explored in a multilevel or single unified assay for the diagnosis and prognosis of NPC. If carefully harnessed and standardized, it is hoped that the proposed marker set would help transform the diagnostic and prognostic realm of NPC, and ultimately, help prevent the life-threatening late-stage NPC disease.
Collapse
Affiliation(s)
- Engku Nur Syafirah E. A. R.
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian 16150, Kelantan, Malaysia; (E.N.S.E.A.R.); (A.A.I.)
| | - Ahmad Adebayo Irekeola
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian 16150, Kelantan, Malaysia; (E.N.S.E.A.R.); (A.A.I.)
- Department of Biological Sciences, Microbiology Unit, College of Natural and Applied Sciences, Summit University Offa, Offa PMB 4412, Kwara State, Nigeria
| | - Chan Yean Yean
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian 16150, Kelantan, Malaysia; (E.N.S.E.A.R.); (A.A.I.)
- Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Health Campus, Kubang Kerian 16150, Kelantan, Malaysia
| |
Collapse
|
7
|
Hu W, Yao W, Li H, Chen L. MiR-30e-5p inhibits the migration and invasion of nasopharyngeal carcinoma via regulating the expression of MTA1. Biosci Rep 2020; 40:BSR20194309. [PMID: 32458989 PMCID: PMC7253402 DOI: 10.1042/bsr20194309] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 04/14/2020] [Accepted: 04/21/2020] [Indexed: 11/17/2022] Open
Abstract
The study explored the effect of miR-30e-5p on nasopharyngeal carcinoma (NPC). MiR-30e-5p levels in NPC cancer and adjacent normal samples, in metastatic and non-metastatic cancer samples of NPC, and in NP69 cell and five NPC cell lines were determined by quantitative real-time polymerase chain reaction (qRT-PCR). The relationship between miR-30e-5p and MTA1 was confirmed by dual-luciferase reporter assay, Western blot and qRT-PCR. The viability, migration and invasion of 5-8F and 6-10B cells were determined by CCK-8, scratch test and transwell assays, respectively. The levels of migration-related proteins (vimentin and Snail) and invasion-related proteins (MMP2 and MMP3) in NPC cells were detected by Western blot. The results showed that low expression of miR-30e-5p was associated with HNSC cancer, NPC, metastasis of NPC and NPC cell lines. Overexpressed miR-30e-5p in HNSC cancer and NPC was predictive of a better prognosis of patients. In addition, the viability, migration and invasion were reduced by up-regulating miR-30e-5p in 5-8F cells, but promoted by down-regulated miR-30e-5p in 6-10B cells. MiR-30e-5p reversed the migration and invasion of NPC cells regulated by MTA1, and inhibited migration and invasion of NPC cells via regulating MTA1 expression.
Collapse
Affiliation(s)
- Weiqun Hu
- Department of Otorhinolaryngology, The Affiliated Hospital of Putian University, China
| | - Wenfeng Yao
- Department of Otorhinolaryngology, Xinxiang First People’s Hospital, China
| | - Haolin Li
- Department of Otorhinolaryngology, Xinxiang First People’s Hospital, China
| | - Li Chen
- Department of Otorhinolaryngology, Zaozhuang Municipal Hospital, China
| |
Collapse
|
8
|
Gao L, Yan SB, Yang J, Kong JL, Shi K, Ma FC, Huang LZ, Luo J, Yin SY, He RQ, Hu XH, Chen G. MiR-182-5p and its target HOXA9 in non-small cell lung cancer: a clinical and in-silico exploration with the combination of RT-qPCR, miRNA-seq and miRNA-chip. BMC Med Genomics 2020; 13:3. [PMID: 31906958 PMCID: PMC6945423 DOI: 10.1186/s12920-019-0648-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 12/19/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND MiR-182-5p, a cancer-related microRNA (miRNA), modulates tumorigenesis and patient outcomes in various human malignances. This study interroted the clinicopathological significance and molecular mechanisms of miR-182-5p in non-small cell lung cancer (NSCLC). METHODS The clinical significance of miR-182-5p in NSCLC subtypes was determined based on an analysis of 124 samples (lung adenocarcinomas [LUADs], n = 101; lung squamous cell carcinomas [LUSCs], n = 23) obtained from NSCLC patients and paired noncancer tissues and an analysis of data obtained from public miRNA-seq database, miRNA-chip database, and the scientific literature. The NSCLC samples (n = 124) were analyzed using the real-time quantitative polymerase chain reaction (RT-qPCR). Potential targets of miR-182-5p were identified using lists generated by miRWalk v.2.0, a comprehensive atlas of predicted and validated targets of miRNA-target interactions. Molecular events of miR-182-5p in NSCLC were unveiled based on a functional analysis of candidate targets. The association of miR-182-5p with one of the candidate target genes, homeobox A9 (HOXA9), was validated using in-house RT-qPCR and dual-luciferase reporter assays. RESULTS The results of the in-house RT-qPCR assays analysis of data obtained from public miRNA-seq databases, miRNA-chip databases, and the scientific literature all supported upregulation of the expression level of miR-182-5p level in NSCLC. Moreover, the in-house RT-qPCR data supported the influence of upregulated miR-182-5p on malignant progression of NSCLC. In total, 774 prospective targets of miR-182-5p were identified. These targets were mainly clustered in pathways associated with biological processes, such as axonogenesis, axonal development, and Ras protein signal transduction, as well as pathways involved in axonal guidance, melanogenesis, and longevity regulation, in multiple species. Correlation analysis of the in-house RT-qPCR data and dual-luciferase reporter assays confirmed that HOXA9 was a direct target of miR-182-5p in NSCLC. CONCLUSIONS The miR-182-5p expression level was upregulated in NSCLC tissues. MiR-182-5p may exert oncogenic influence on NSCLC through regulating target genes such as HOXA9.
Collapse
Affiliation(s)
- Li Gao
- Department of Pathology, the First Affiliated Hospital of Guangxi Medical University, Zhuang Autonomous Region, Nanning, 530021, Guangxi, China
| | - Shi-Bai Yan
- Department of Medical Oncology, the First Affiliated Hospital of Guangxi Medical University, Zhuang Autonomous Region, Nanning, 530021, Guangxi, China
| | - Jie Yang
- Department of Pharmacology, School of Pharmacy, Guangxi Medical University, Zhuang Autonomous Region, Nanning, 530021, Guangxi, China
| | - Jin-Liang Kong
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Guangxi Medical University, Zhuang Autonomous Region, Nanning, 530021, Guangxi, China
| | - Ke Shi
- Department of Pathology, the First Affiliated Hospital of Guangxi Medical University, Zhuang Autonomous Region, Nanning, 530021, Guangxi, China
| | - Fu-Chao Ma
- Department of Medical Oncology, the First Affiliated Hospital of Guangxi Medical University, Zhuang Autonomous Region, Nanning, 530021, Guangxi, China
| | - Lin-Zhen Huang
- Department of Pathology, the First Affiliated Hospital of Guangxi Medical University, Zhuang Autonomous Region, Nanning, 530021, Guangxi, China
| | - Jie Luo
- Department of Medical Oncology, the Second Affiliated Hospital of Guangxi Medical University, Zhuang Autonomous Region, Nanning, 530021, Guangxi, China
| | - Shu-Ya Yin
- Department of Pathology, the First Affiliated Hospital of Guangxi Medical University, Zhuang Autonomous Region, Nanning, 530021, Guangxi, China
| | - Rong-Quan He
- Department of Medical Oncology, the First Affiliated Hospital of Guangxi Medical University, Zhuang Autonomous Region, Nanning, 530021, Guangxi, China
| | - Xiao-Hua Hu
- Department of Medical Oncology, the First Affiliated Hospital of Guangxi Medical University, Zhuang Autonomous Region, Nanning, 530021, Guangxi, China.
| | - Gang Chen
- Department of Pathology, the First Affiliated Hospital of Guangxi Medical University, Zhuang Autonomous Region, Nanning, 530021, Guangxi, China.
| |
Collapse
|
9
|
Zhang S, Yue W, Xie Y, Liu L, Li S, Dang W, Xin S, Yang L, Zhai X, Cao P, Lu J. The four‑microRNA signature identified by bioinformatics analysis predicts the prognosis of nasopharyngeal carcinoma patients. Oncol Rep 2019; 42:1767-1780. [PMID: 31545473 PMCID: PMC6787970 DOI: 10.3892/or.2019.7316] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 07/23/2019] [Indexed: 02/07/2023] Open
Abstract
The aim of the present study was to identify microRNAs (miRNAs) that predict the prognosis of patients with nasopharyngeal carcinoma by integrated bioinformatics analysis. First, the original microarray dataset GSE32960, including 312 nasopharyngeal carcinomas and 18 normal samples, was downloaded from the Gene Expression Omnibus database. In addition, 46 differentially expressed miRNAs (DEMs) were screened. Then, four miRNAs, including hsa-miR-142-3p, hsa-miR-150, hsa-miR-29b, and hsa-miR-29c, were obtained as prognostic markers by combining univariate Cox regression analysis with weighted gene coexpression network analysis (WGCNA). Subsequently, the risk score of 312 NPC patients from the signature of miRNAs was calculated, and patients were divided into high-risk or low-risk groups. Notably, compared with patients with low-risk scores, high-risk groups had shorter disease-free survival (DFS), overall survival (OS), and distant metastasis-free survival (DMFS). Receiver operating characteristic curve (ROC) analysis indicated that the risk score was a very effective prognostic factor. Moreover, the Search Tool for the Database for Annotation, Visualization, and Integrated Discovery (DAVID), Cytoscape, starBase, and Retrieval of Interacting Genes database (STRING) were used to establish the miRNA-mRNA correlation network and the protein-protein interaction (PPI) network. In addition, the shared genes superimposing 888 protein-coding genes targeted by four hub miRNAs and 1,601 upregulated differentially expressed mRNAs accounted for 127 and were used for subsequent gene functional enrichment analysis. In particular, biological pathway analysis indicated that these genes mainly participate in some vital pathways related to cancer pathogenesis, such as the focal adhesion, PI3K/Akt, p53, and mTOR signalling pathways. In summary, the identification of NPC patients with a four-miRNA signature may increase the prognostic value and provide reference information for precision medicine.
Collapse
Affiliation(s)
- Siwei Zhang
- NHC Key Laboratory of Carcinogenesis, Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan 410080, P.R. China
| | - Wenxing Yue
- NHC Key Laboratory of Carcinogenesis, Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan 410080, P.R. China
| | - Yan Xie
- NHC Key Laboratory of Carcinogenesis, Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan 410080, P.R. China
| | - Lingzhi Liu
- NHC Key Laboratory of Carcinogenesis, Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan 410080, P.R. China
| | - Shen Li
- NHC Key Laboratory of Carcinogenesis, Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan 410080, P.R. China
| | - Wei Dang
- NHC Key Laboratory of Carcinogenesis, Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan 410080, P.R. China
| | - Shuyu Xin
- NHC Key Laboratory of Carcinogenesis, Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan 410080, P.R. China
| | - Li Yang
- NHC Key Laboratory of Carcinogenesis, Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan 410080, P.R. China
| | - Xingyu Zhai
- NHC Key Laboratory of Carcinogenesis, Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan 410080, P.R. China
| | - Pengfei Cao
- NHC Key Laboratory of Carcinogenesis, Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan 410080, P.R. China
| | - Jianhong Lu
- NHC Key Laboratory of Carcinogenesis, Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan 410080, P.R. China
| |
Collapse
|
10
|
miR-543 promoted the cell proliferation and invasion of nasopharyngeal carcinoma by targeting the JAM-A. Hum Cell 2019; 32:477-486. [DOI: 10.1007/s13577-019-00274-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 08/06/2019] [Indexed: 02/07/2023]
|
11
|
Yang GH, Zhang C, Wang N, Meng Y, Wang YS. Anacardic acid suppresses fibroblast-like synoviocyte proliferation and invasion and ameliorates collagen-induced arthritis in a mouse model. Cytokine 2018; 111:350-356. [PMID: 30273785 DOI: 10.1016/j.cyto.2018.09.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 09/01/2018] [Accepted: 09/13/2018] [Indexed: 02/07/2023]
Abstract
Anacardic acid, which is abundant in nutshell of Anacardium occidentale, has multiple pharmacological activities. In this study, we examined the therapeutic potential of anacardic acid in treating rheumatoid arthritis (RA). We explored the effects of anacardic acid on collagen-induced arthritis (CIA) in mice and on the proliferation and invasion of RA fibroblast-like synoviocytes (RA-FLSs). The underlying molecular mechanism was investigated. Anacardic acid treatment markedly suppressed paw swelling, joint destruction, and arthritis scores in CIA mice. The serum levels of tumor necrosis factor alpha (TNF- α) and interleutkin-1beta (IL- 1β) were significantly lowered by anacardic acid. In vitro assays demonstrated that anacardic acid impaired the proliferation and invasion abilities of RA-FLSs in the presence of TNF- α or IL- 1β. Western blot analysis revealed the reduction of Akt protein expression and phoshporylation in RA-FLSs by anacardic acid. However, the mRNA level of Akt remained unchanged. Anacardic acid treatment significantly increased the expression of miR-633 in RA-FLSs. Akt was identified as a novel target of miR-633. Overexpression of miR-633 significantly inhibited the proliferation and invasion of RA-FLSs, which was rescued by enforced expression of Akt. Depletion of miR-633 prevented anacardic acid-mediated suppression of proliferation and invasion of RA-FLSs, which was accompanied by increased expression of Akt protein. In conclusion, anacardic acid may serve as a promising agent in the treatment of RA.
Collapse
MESH Headings
- Anacardic Acids/pharmacology
- Animals
- Arthritis, Experimental/chemically induced
- Arthritis, Experimental/drug therapy
- Arthritis, Experimental/metabolism
- Arthritis, Experimental/pathology
- Arthritis, Rheumatoid/chemically induced
- Arthritis, Rheumatoid/drug therapy
- Arthritis, Rheumatoid/metabolism
- Arthritis, Rheumatoid/pathology
- Cell Movement/drug effects
- Cell Proliferation/drug effects
- Cells, Cultured
- Collagen/pharmacology
- Disease Models, Animal
- Fibroblasts/drug effects
- Fibroblasts/metabolism
- Fibroblasts/pathology
- Interleukin-1beta/metabolism
- Mice
- Mice, Inbred DBA
- MicroRNAs/metabolism
- Neoplasm Invasiveness/pathology
- Proto-Oncogene Proteins c-akt/metabolism
- RNA, Messenger/metabolism
- Signal Transduction/drug effects
- Synoviocytes/drug effects
- Synoviocytes/metabolism
- Synoviocytes/pathology
- Tumor Necrosis Factor-alpha/metabolism
Collapse
Affiliation(s)
- Guo-Hui Yang
- Department of Emergency Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chi Zhang
- Department of Orthopedics, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Nan Wang
- Department of Emergency Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yu Meng
- Department of Emergency Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yi-Sheng Wang
- Department of Orthopedics, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
12
|
Zamanian Azodi M, Rezaei Tavirani M, Rezaei Tavirani M, Vafaee R, Rostami-Nejad M. Nasopharyngeal Carcinoma Protein Interaction Mapping Analysis via Proteomic Approaches. Asian Pac J Cancer Prev 2018; 19:845-851. [PMID: 29582644 PMCID: PMC5980865 DOI: 10.22034/apjcp.2018.19.3.845] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC), although not very common in many parts of the world, is a major concern in
some countries, including Iran. Molecular studies are very helpful to provide essential information regarding underlying
carcinogenetic mechanisms. Here, considering NPC proteomic approaches, established biomarkers were designated for
protein-protein interaction network construction and analysis with corresponding plug-ins. A network of reported protein
markers was constructed and topological and biological process features were investigated. Centrality analysis showed
that JUN, CALM1, HSB1, and SOD1 are more important than other differentially expressed proteins in an interacting
pattern. What is more, by extending the network, Tp53, PRDM10, AKT1, ALB, HSP90AA1, and EGFR achieved the
highest values for NPC network strength. It can be concluded that these proteins as well as their contributing processes,
particularly in a second network, may be important for NPC onset and development. Targeting these candidate proteins
may allow novel treatment approaches following appropriate validation.
Collapse
Affiliation(s)
- Mona Zamanian Azodi
- Hearing Disorders Research Center and Department of Biology and Anatomical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | | | | | | | | |
Collapse
|
13
|
Zhou Y, Xia L, Lin J, Wang H, Oyang L, Tan S, Tian Y, Su M, Wang H, Cao D, Liao Q. Exosomes in Nasopharyngeal Carcinoma. J Cancer 2018; 9:767-777. [PMID: 29581754 PMCID: PMC5868140 DOI: 10.7150/jca.22505] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 11/29/2017] [Indexed: 12/21/2022] Open
Abstract
Exosomes are nanosized (30-100nm) membrane microvesicles secreted through a complex cellular process. Exosomes contain a variety of bioactive molecules, such as proteins, microRNAs(miRNAs or miRs) and long non-coding RNAs (lncRNAs), playing an important role in the cell-to-cell substance transportation and signal transduction. Nasopharyngeal carcinoma-related exosomes (NPC-Exo) have been identified in circulating blood and contribute to tumor cell proliferation, angiopoiesis, and immune tolerance through remodeling of tumor microenvironment (TME). Nasopharyngeal carcinoma-related exosomes may also induce epithelial-mesenchymal transition (EMT), thus promoting tumor metastasis and chemoradioresistance. Clinically, the exosomes may serve as novel biomarkers for diagnosis and targeted therapies of nasopharyngeal carcinoma. This review article updates the understanding of exosomes in nasopharyngeal carcinoma(NPC).
Collapse
Affiliation(s)
- Yujuan Zhou
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Longzheng Xia
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Jingguan Lin
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Heran Wang
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Linda Oyang
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Shiming Tan
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Yutong Tian
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Min Su
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Hui Wang
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Deliang Cao
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha 410013, Hunan, China
- Department of Medical Microbiology, Immunology & Cell Biology, Simmons Cancer Institute, Southern Illinois University School of Medicine. 913 N. Rutledge Street, Springfield, IL 62794, USA
| | - Qianjin Liao
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha 410013, Hunan, China
| |
Collapse
|