1
|
Time-resolved transmission electron microscopy for nanoscale chemical dynamics. Nat Rev Chem 2023; 7:256-272. [PMID: 37117417 DOI: 10.1038/s41570-023-00469-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2023] [Indexed: 02/24/2023]
Abstract
The ability of transmission electron microscopy (TEM) to image a structure ranging from millimetres to Ångströms has made it an indispensable component of the toolkit of modern chemists. TEM has enabled unprecedented understanding of the atomic structures of materials and how structure relates to properties and functions. Recent developments in TEM have advanced the technique beyond static material characterization to probing structural evolution on the nanoscale in real time. Accompanying advances in data collection have pushed the temporal resolution into the microsecond regime with the use of direct-electron detectors and down to the femtosecond regime with pump-probe microscopy. Consequently, studies have deftly applied TEM for understanding nanoscale dynamics, often in operando. In this Review, time-resolved in situ TEM techniques and their applications for probing chemical and physical processes are discussed, along with emerging directions in the TEM field.
Collapse
|
2
|
Weßels T, Däster S, Murooka Y, Zingsem B, Migunov V, Kruth M, Finizio S, Lu PH, Kovács A, Oelsner A, Müller-Caspary K, Acremann Y, Dunin-Borkowski RE. Continuous illumination picosecond imaging using a delay line detector in a transmission electron microscope. Ultramicroscopy 2022; 233:113392. [PMID: 35016129 DOI: 10.1016/j.ultramic.2021.113392] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/04/2021] [Accepted: 09/09/2021] [Indexed: 11/28/2022]
Abstract
Progress towards analysing transitions between steady states demands improvements in time-resolved imaging, both for fundamental research and for applications in information technology. Transmission electron microscopy is a powerful technique for investigating the atomic structure, chemical composition and electromagnetic properties of materials with high spatial resolution and precision. However, the extraction of information about dynamic processes in the ps time regime is often not possible without extensive modification to the instrument while requiring careful control of the operation conditions to not compromise the beam quality. Here, we avoid these drawbacks by combining a delay line detector with continuous illumination in a transmission electron microscope. We visualize the gyration of a magnetic vortex core in real space and show that magnetization dynamics up to frequencies of 2.3 GHz can be resolved with down to ∼122ps temporal resolution by studying the interaction of an electron beam with a microwave magnetic field. In the future, this approach promises to provide access to resonant dynamics by combining high spatial resolution with sub-ns temporal resolution.
Collapse
Affiliation(s)
- Teresa Weßels
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute, Forschungszentrum Jülich, 52425 Jülich, Germany; Lehrstuhl für Experimentalphysik IV E, RWTH Aachen University, 52056 Aachen, Germany.
| | - Simon Däster
- Laboratory for Solid State Physics, ETH Zurich, 8093 Zurich, Switzerland
| | - Yoshie Murooka
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Benjamin Zingsem
- Faculty of Physics and Center for Nanointegration (CENIDE), University of Duisburg-Essen, 47057 Duisburg, Germany
| | - Vadim Migunov
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute, Forschungszentrum Jülich, 52425 Jülich, Germany; Central Facility for Electron Microscopy (GFE), RWTH Aachen University, 52074 Aachen, Germany
| | - Maximilian Kruth
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Simone Finizio
- Swiss Light Source, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
| | - Peng-Han Lu
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - András Kovács
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute, Forschungszentrum Jülich, 52425 Jülich, Germany
| | | | - Knut Müller-Caspary
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute, Forschungszentrum Jülich, 52425 Jülich, Germany; Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, 81377 Munich, Germany
| | - Yves Acremann
- Laboratory for Solid State Physics, ETH Zurich, 8093 Zurich, Switzerland
| | - Rafal E Dunin-Borkowski
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute, Forschungszentrum Jülich, 52425 Jülich, Germany
| |
Collapse
|
3
|
Affiliation(s)
- Katsuya Inoue
- Chirality Research Center (CResCent), and Graduate School of Advanced Science and Engineering, 1-3-1 Kagamiyama, Higashihiroshima, Hiroshima 739-8524, Japan
| |
Collapse
|
4
|
Nakajima H, Kotani A, Harada K, Mori S. Electron diffraction covering a wide angular range from Bragg diffraction to small-angle diffraction. Microscopy (Oxf) 2018; 67:4986978. [PMID: 29701816 DOI: 10.1093/jmicro/dfy019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 03/22/2018] [Indexed: 02/28/2024] Open
Abstract
We construct an electron optical system to investigate Bragg diffraction (the crystal lattice plane, 10-2 to 10-3 rad) with the objective lens turned off by adjusting the current in the intermediate lenses. A crossover was located on the selected-area aperture plane. Thus, the dark-field imaging can be performed by using a selected-area aperture to select Bragg diffraction spots. The camera length can be controlled in the range of 0.8-4 m without exciting the objective lens. Furthermore, we can observe the magnetic-field dependence of electron diffraction using the objective lens under weak excitation conditions. The diffraction mode for Bragg diffraction can be easily switched to a small-angle electron diffraction mode having a camera length of more than 100 m. We propose this experimental method to acquire electron diffraction patterns that depict an extensive angular range from 10-2 to 10-7 rad. This method is applied to analyze the magnetic microstructures in three distinct magnetic materials, i.e. a uniaxial magnetic structure of BaFe10.35Sc1.6Mg0.05O19, a martensite of a Ni-Mn-Ga alloy, and a helical magnetic structure of Ba0.5Sr1.5Zn2Fe12O22.
Collapse
Affiliation(s)
- Hiroshi Nakajima
- Department of Materials Science, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan
| | - Atsuhiro Kotani
- Department of Materials Science, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan
| | - Ken Harada
- Department of Materials Science, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan
- Center for Emergent Matter Science, the Institute of Physical and Chemical Research (RIKEN), Hatoyama, Saitama 350-0395, Japan
| | - Shigeo Mori
- Department of Materials Science, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan
| |
Collapse
|