1
|
Lee WS, Lee SJ, Lee HJ, Yang H, Go EJ, Gansukh E, Song KH, Xiang X, Park DG, Alain T, Chon HJ, Kim C. Oral reovirus reshapes the gut microbiome and enhances antitumor immunity in colon cancer. Nat Commun 2024; 15:9092. [PMID: 39438458 PMCID: PMC11496807 DOI: 10.1038/s41467-024-53347-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 10/02/2024] [Indexed: 10/25/2024] Open
Abstract
The route of oncolytic virotherapy is pivotal for immunotherapeutic efficacy in advanced cancers. In this preclinical study, an oncolytic reovirus (RC402) is orally administered to induce antitumor immunity. Oral reovirus treatment shows no gross toxicities and effectively suppresses multifocal tumor lesions. Orally administered reovirus interacts with the host immune system in the Peyer's patch of the terminal ileum, increases IgA+ antibody-secreting cells in the lamina propria through MAdCAM-1+ blood vessels, and reshapes the gut microbiome. Oral reovirus promotes antigen presentation, type I/II interferons, and T cell activation within distant tumors, but does not reach or directly infect tumor cells beyond the gastrointestinal tract. In contrast to intratumoral reovirus injection, the presence of the gut microbiome, Batf3+ dendritic cells, type I interferons, and CD8+ T cells are indispensable for orally administered reovirus-induced antitumor immunity. Oral reovirus treatment is most effective when combined with αPD-1(L1) and/or αCTLA-4, leading to complete colon tumor regression and protective immune memory. Collectively, oral reovirus virotherapy is a feasible and effective immunotherapeutic strategy in preclinical studies.
Collapse
Affiliation(s)
- Won Suk Lee
- Medical Oncology, Department of Internal Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Gyeonggi-do, Republic of Korea
- Laboratory of Translational Immuno-Oncology, CHA University, Seongnam, Gyeonggi-do, Republic of Korea
| | - Seung Joon Lee
- Medical Oncology, Department of Internal Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Gyeonggi-do, Republic of Korea
- Laboratory of Translational Immuno-Oncology, CHA University, Seongnam, Gyeonggi-do, Republic of Korea
| | - Hye Jin Lee
- Medical Oncology, Department of Internal Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Gyeonggi-do, Republic of Korea
- Laboratory of Translational Immuno-Oncology, CHA University, Seongnam, Gyeonggi-do, Republic of Korea
| | - Hannah Yang
- Medical Oncology, Department of Internal Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Gyeonggi-do, Republic of Korea
- Laboratory of Translational Immuno-Oncology, CHA University, Seongnam, Gyeonggi-do, Republic of Korea
| | - Eun-Jin Go
- Medical Oncology, Department of Internal Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Gyeonggi-do, Republic of Korea
- Laboratory of Translational Immuno-Oncology, CHA University, Seongnam, Gyeonggi-do, Republic of Korea
| | | | | | - Xiao Xiang
- Department of Biochemistry, Microbiology, and Immunology, Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Dong Guk Park
- Virocure Inc., Seoul, Republic of Korea
- Department of Surgery, School of Medicine, Dankook University, Cheonan, Republic of Korea
| | - Tommy Alain
- Department of Biochemistry, Microbiology, and Immunology, Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Hong Jae Chon
- Medical Oncology, Department of Internal Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Gyeonggi-do, Republic of Korea.
- Laboratory of Translational Immuno-Oncology, CHA University, Seongnam, Gyeonggi-do, Republic of Korea.
| | - Chan Kim
- Medical Oncology, Department of Internal Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Gyeonggi-do, Republic of Korea.
- Laboratory of Translational Immuno-Oncology, CHA University, Seongnam, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
2
|
He L, Wang Q, Wang X, Zhou F, Yang C, Li Y, Liao L, Zhu Z, Ke F, Wang Y. Liquid-liquid phase separation is essential for reovirus viroplasm formation and immune evasion. J Virol 2024; 98:e0102824. [PMID: 39194247 PMCID: PMC11406895 DOI: 10.1128/jvi.01028-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 07/19/2024] [Indexed: 08/29/2024] Open
Abstract
Grass carp reovirus (GCRV) is the most virulent pathogen in the genus Aquareovirus, belonging to the family Spinareoviridae. Members of the Spinareoviridae family are known to replicate and assemble in cytoplasmic inclusion bodies termed viroplasms; however, the detailed mechanism underlying GCRV viroplasm formation and its specific roles in virus infection remains largely unknown. Here, we demonstrate that GCRV viroplasms form through liquid-liquid phase separation (LLPS) of the nonstructural protein NS80 and elucidate the specific role of LLPS during reovirus infection and immune evasion. We observe that viroplasms coalesce within the cytoplasm of GCRV-infected cells. Immunofluorescence and transmission electron microscopy indicate that GCRV viroplasms are membraneless structures. Live-cell imaging and fluorescence recovery after photobleaching assay reveal that GCRV viroplasms exhibit liquid-like properties and are highly dynamic structures undergoing fusion and fission. Furthermore, by using a reagent to inhibit the LLPS process and constructing an NS80 mutant defective in LLPS, we confirm that the liquid-like properties of viroplasms are essential for recruiting viral dsRNA, viral RdRp, and viral proteins to participate in viral genome replication and virion assembly, as well as for sequestering host antiviral factors for immune evasion. Collectively, our findings provide detailed insights into reovirus viroplasm formation and reveal the specific functions of LLPS during virus infection and immune evasion, identifying potential targets for the prevention and control of this virus. IMPORTANCE Grass carp reovirus (GCRV) poses a significant threat to the aquaculture industry, particularly in China, where grass carp is a vital commercial fish species. However, detailed information regarding how GCRV viroplasms form and their specific roles in GCRV infection remains largely unknown. We discovered that GCRV viroplasms exhibit liquid-like properties and are formed through a physico-chemical biological phenomenon known as liquid-liquid phase separation (LLPS), primarily driven by the nonstructural protein NS80. Furthermore, we confirmed that the liquid-like properties of viroplasms are essential for virus replication, assembly, and immune evasion. Our study not only contributes to a deeper understanding of GCRV infection but also sheds light on broader aspects of viroplasm biology. Given that viroplasms are a universal feature of reovirus infection, inhibiting LLPS and then blocking viroplasms formation may serve as a potential pan-reovirus inhibition strategy.
Collapse
Affiliation(s)
- Libo He
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qian Wang
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xuyang Wang
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Fang Zhou
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Cheng Yang
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Yongming Li
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Lanjie Liao
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Zuoyan Zhu
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Fei Ke
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yaping Wang
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
3
|
Barkley RJR, Crowley JC, Brodrick AJ, Zipfel WR, Parker JSL. Fluorescent protein tags affect the condensation properties of a phase-separating viral protein. Mol Biol Cell 2024; 35:ar100. [PMID: 38809580 PMCID: PMC11244164 DOI: 10.1091/mbc.e24-01-0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/17/2024] [Accepted: 05/24/2024] [Indexed: 05/30/2024] Open
Abstract
Fluorescent protein (FP) tags are extensively used to visualize and characterize the properties of biomolecular condensates despite a lack of investigation into the effects of these tags on phase separation. Here, we characterized the dynamic properties of µNS, a viral protein hypothesized to undergo phase separation and the main component of mammalian orthoreovirus viral factories. Our interest in the sequence determinants and nucleation process of µNS phase separation led us to compare the size and density of condensates formed by FP::µNS to the untagged protein. We found an FP-dependent increase in droplet size and density, which suggests that FP tags can promote µNS condensation. To further assess the effect of FP tags on µNS droplet formation, we fused FP tags to µNS mutants to show that the tags could variably induce phase separation of otherwise noncondensing proteins. By comparing fluorescent constructs with untagged µNS, we identified mNeonGreen as the least artifactual FP tag that minimally perturbed µNS condensation. These results show that FP tags can promote phase separation and that some tags are more suitable for visualizing and characterizing biomolecular condensates with minimal experimental artifacts.
Collapse
Affiliation(s)
- Russell J. R. Barkley
- Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14850
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14850
| | - Jack C. Crowley
- School of Applied and Engineering Physics, College of Engineering, Cornell University, Ithaca, NY 14850
| | - Andrew J. Brodrick
- Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14850
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14850
| | - Warren R. Zipfel
- School of Applied and Engineering Physics, College of Engineering, Cornell University, Ithaca, NY 14850
- Meinig School of Biomedical Engineering, College of Engineering, Cornell University, Ithaca, NY 14850
| | - John S. L. Parker
- Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14850
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14850
| |
Collapse
|
4
|
Li D, Mo R, Li X, Cheng R, Xie J, Li H, Yang Y, Li S, Li H, Yan Z, Wei S, Idris A, Li X, Feng R. Mammalian orthoreovirus capsid protein σ3 antagonizes RLR-mediated antiviral responses by degrading MAVS. mSphere 2024; 9:e0023624. [PMID: 38757961 PMCID: PMC11332348 DOI: 10.1128/msphere.00236-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 04/02/2024] [Indexed: 05/18/2024] Open
Abstract
Mammalian orthoreovirus (MRV) outer capsid protein σ3 is a multifunctional protein containing a double-stranded RNA-binding domain, which facilitates viral entry and assembly. We reasoned that σ3 has an innate immune evasion function. Here, we show that σ3 protein localizes in the mitochondria and interacts with mitochondrial antiviral signaling protein (MAVS) to activate the intrinsic mitochondria-mediated apoptotic pathway. Consequently, σ3 protein promotes the degradation of MAVS through the intrinsic caspase-9/caspase-3 apoptotic pathway. Moreover, σ3 protein can also inhibit the expression of the components of the RNA-sensing retinoic acid-inducible gene (RIG)-like receptor (RLR) signaling pathway to block antiviral type I interferon responses. Mechanistically, σ3 inhibits RIG-I and melanoma differentiation-associated gene 5 expression is independent of its inhibitory effect on MAVS. Overall, we demonstrate that the MRV σ3 protein plays a vital role in negatively regulating the RLR signaling pathway to inhibit antiviral responses. This enables MRV to evade host defenses to facilitate its own replication providing a target for the development of effective antiviral drugs against MRV. IMPORTANCE Mammalian orthoreovirus (MRV) is an important zoonotic pathogen, but the regulatory role of its viral proteins in retinoic acid-inducible gene-like receptor (RLR)-mediated antiviral responses is still poorly understood. Herein, we show that MRV σ3 protein co-localizes with mitochondrial antiviral signaling protein (MAVS) in the mitochondria and promotes the mitochondria-mediated intrinsic apoptotic pathway to cleave and consequently degrade MAVS. Furthermore, tryptophan at position 133 of σ3 protein plays a key role in the degradation of MAVS. Importantly, we show that MRV outer capsid protein σ3 is a key factor in antagonizing RLR-mediated antiviral responses, providing evidence to better unravel the infection and transmission mechanisms of MRV.
Collapse
Affiliation(s)
- Dianyu Li
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- College of Life science and Engineering, Northwest Minzu University, Lanzhou, China
| | - Rongqian Mo
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- College of Life science and Engineering, Northwest Minzu University, Lanzhou, China
| | - Xiaoyi Li
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- College of Life science and Engineering, Northwest Minzu University, Lanzhou, China
| | - Rongrong Cheng
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- College of Life science and Engineering, Northwest Minzu University, Lanzhou, China
| | - Jingying Xie
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- College of Life science and Engineering, Northwest Minzu University, Lanzhou, China
| | - Hongshan Li
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- College of Life science and Engineering, Northwest Minzu University, Lanzhou, China
| | - Yanmei Yang
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- College of Life science and Engineering, Northwest Minzu University, Lanzhou, China
| | - Shasha Li
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- College of Life science and Engineering, Northwest Minzu University, Lanzhou, China
| | - Huixia Li
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- Engineering Research Center of Key Technology and Industrialization of Cell-based Vaccine, Ministry of Education, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Zhenfang Yan
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- College of Life science and Engineering, Northwest Minzu University, Lanzhou, China
| | - Suocheng Wei
- College of Life science and Engineering, Northwest Minzu University, Lanzhou, China
| | - Adi Idris
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland University of Technology, Kelvin Grove, Queensland, Australia
| | - Xiangrong Li
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- Engineering Research Center of Key Technology and Industrialization of Cell-based Vaccine, Ministry of Education, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Ruofei Feng
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- Engineering Research Center of Key Technology and Industrialization of Cell-based Vaccine, Ministry of Education, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| |
Collapse
|
5
|
Wu B, Li D, Bai H, Mo R, Li H, Xie J, Zhang X, Yang Y, Li H, Idris A, Li X, Feng R. Mammalian reovirus µ1 protein attenuates RIG-I and MDA5-mediated signaling transduction by blocking IRF3 phosphorylation and nuclear translocation. Mol Immunol 2024; 170:131-143. [PMID: 38663254 DOI: 10.1016/j.molimm.2024.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 04/02/2024] [Accepted: 04/15/2024] [Indexed: 05/13/2024]
Abstract
Mammalian reovirus (MRV) is a non-enveloped, gene segmented double-stranded RNA (dsRNA) virus. It is an important zoonotic pathogen that infects many mammals and vertebrates that act as natural hosts and causes respiratory and digestive tract diseases. Studies have reported that RIG-I and MDA5 in the innate immune cytoplasmic RNA-sensing RIG-like receptor (RLR) signaling pathway can recognize dsRNA from MRV and promote antiviral type I interferon (IFN) responses. However, the mechanism by which many MRV-encoded proteins evade the host innate immune response remains unclear. Here, we show that exogenous μ1 protein promoted the proliferation of MRV in vitro, while knockdown of MRV μ1 protein expression by shRNA could impair MRV proliferation. Specifically, μ1 protein inhibited MRV or poly(I:C)-induced IFN-β expression, and attenuated RIG-I/MDA5-mediated signaling axis transduction during MRV infection. Importantly, we found that μ1 protein significantly decreased IFN-β mRNA expression induced by MDA5, RIG-I, MAVS, TBK1, IRF3(5D), and degraded the protein expression of exogenous MDA5, RIG-I, MAVS, TBK1 and IRF3 via the proteasomal and lysosomal pathways. Additionally, we show that μ1 protein can physically interact with MDA5, RIG-I, MAVS, TBK1, and IRF3 and attenuate the RIG-I/MDA5-mediated signaling cascades by blocking the phosphorylation and nuclear translocation of IRF3. In conclusion, our findings reveal that MRV outer capsid protein μ1 is a key factor in antagonizing RLRs signaling cascades and provide new strategies for effective prevention and treatment of MRV infection.
Collapse
Affiliation(s)
- Bei Wu
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China; College of Life science and Engineering, Northwest Minzu University, Lanzhou, China
| | - Dianyu Li
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China; College of Life science and Engineering, Northwest Minzu University, Lanzhou, China
| | - Huisheng Bai
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China; College of Life science and Engineering, Northwest Minzu University, Lanzhou, China
| | - Rongqian Mo
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China; College of Life science and Engineering, Northwest Minzu University, Lanzhou, China
| | - Hongshan Li
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China; College of Life science and Engineering, Northwest Minzu University, Lanzhou, China
| | - Jingying Xie
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China; College of Life science and Engineering, Northwest Minzu University, Lanzhou, China
| | - Xiangbo Zhang
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China; College of Life science and Engineering, Northwest Minzu University, Lanzhou, China
| | - Yanmei Yang
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China; College of Life science and Engineering, Northwest Minzu University, Lanzhou, China
| | - Huixia Li
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China; Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Adi Idris
- School of Biomedical Sciences, Centre for Immunology and Infection Control, Herston, Queensland University of Technology, China; Menzies Health Institute Queensland, School of Pharmacy and Medical Science, Griffith University, Southport, Queensland, Australia
| | - Xiangrong Li
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China; Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, China.
| | - Ruofei Feng
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China; Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, China.
| |
Collapse
|
6
|
Sugimura N, Kubota E, Mori Y, Aoyama M, Tanaka M, Shimura T, Tanida S, Johnston RN, Kataoka H. Reovirus combined with a STING agonist enhances anti-tumor immunity in a mouse model of colorectal cancer. Cancer Immunol Immunother 2023; 72:3593-3608. [PMID: 37526659 PMCID: PMC10992117 DOI: 10.1007/s00262-023-03509-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 07/24/2023] [Indexed: 08/02/2023]
Abstract
Reovirus, a naturally occurring oncolytic virus, initiates the lysis of tumor cells while simultaneously releasing tumor antigens or proapoptotic cytokines in the tumor microenvironment to augment anticancer immunity. However, reovirus has developed a strategy to evade antiviral immunity via its inhibitory effect on interferon production, which negatively affects the induction of antitumor immune responses. The mammalian adaptor protein Stimulator of Interferon Genes (STING) was identified as a key regulator that orchestrates immune responses by sensing cytosolic DNA derived from pathogens or tumors, resulting in the production of type I interferon. Recent studies reported the role of STING in innate immune responses to RNA viruses leading to the restriction of RNA virus replication. In the current study, we found that reovirus had a reciprocal reaction with a STING agonist regarding type I interferon responses in vitro; however, we found that the combination of reovirus and STING agonist enhanced anti-tumor immunity by enhancing cytotoxic T cell trafficking into tumors, leading to significant tumor regression and survival benefit in a syngeneic colorectal cancer model. Our data indicate the combination of reovirus and a STING agonist to enhance inflammation in the tumor microenvironment might be a strategy to improve oncolytic reovirus immunotherapy.
Collapse
Affiliation(s)
- Naomi Sugimura
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Mizuho-Ku, Nagoya, 467-8601, Japan
| | - Eiji Kubota
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Mizuho-Ku, Nagoya, 467-8601, Japan.
| | - Yoshinori Mori
- Department of Gastroenterology, Nagoya City University West Medical Center, Kita-Ku, Nagoya, 462-8508, Japan
| | - Mineyoshi Aoyama
- Department of Pathobiology, Nagoya City University Graduate School of Pharmaceutical Sciences, Mizuho-Ku, Nagoya, 467-8603, Japan
| | - Mamoru Tanaka
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Mizuho-Ku, Nagoya, 467-8601, Japan
| | - Takaya Shimura
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Mizuho-Ku, Nagoya, 467-8601, Japan
| | - Satoshi Tanida
- Department of Gastroenterology, Gamagori Municipal Hospital, Hirata-Cho, Gamagori, 443-8501, Japan
| | - Randal N Johnston
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Hiromi Kataoka
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Mizuho-Ku, Nagoya, 467-8601, Japan
| |
Collapse
|
7
|
Boccaccio GL, Thomas MG, García CC. Membraneless Organelles and Condensates Orchestrate Innate Immunity Against Viruses. J Mol Biol 2023; 435:167976. [PMID: 36702393 DOI: 10.1016/j.jmb.2023.167976] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/10/2023] [Accepted: 01/17/2023] [Indexed: 01/24/2023]
Abstract
The cellular defense against viruses involves the assembly of oligomers, granules and membraneless organelles (MLOs) that govern the activation of several arms of the innate immune response. Upon interaction with specific pathogen-derived ligands, a number of pattern recognition receptors (PRRs) undergo phase-separation thus triggering downstream signaling pathways. Among other relevant condensates, inflammasomes, apoptosis-associated speck-like protein containing a caspase-recruitment domain (ASC) specks, cyclic GMP-AMP synthase (cGAS) foci, protein kinase R (PKR) clusters, ribonuclease L-induced bodies (RLBs), stress granules (SGs), processing bodies (PBs) and promyelocytic leukemia protein nuclear bodies (PML NBs) play different roles in the immune response. In turn, viruses have evolved diverse strategies to evade the host defense. Viral DNA or RNA, as well as viral proteases or proteins carrying intrinsically disordered regions may interfere with condensate formation and function in multiple ways. In this review we discuss current and hypothetical mechanisms of viral escape that involve the disassembly, repurposing, or inactivation of membraneless condensates that govern innate immunity. We summarize emerging interconnections between these diverse condensates that ultimately determine the cellular outcome.
Collapse
Affiliation(s)
- Graciela Lidia Boccaccio
- Laboratorio de Biología Celular del ARN, Instituto Leloir (FIL) and Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA) - Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Buenos Aires, Argentina; Departamento de Fisiología y Biología Molecular y Celular (FBMyC), Facultad de Ciencias Exactas y Naturales (FCEN), Universidad de Buenos Aires, Buenos Aires, Argentina.
| | - María Gabriela Thomas
- Laboratorio de Biología Celular del ARN, Instituto Leloir (FIL) and Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA) - Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Buenos Aires, Argentina. https://www.twitter.com/_gabithomas
| | - Cybele Carina García
- Departamento de Química Biológica (QB), Facultad de Ciencias Exactas y Naturales (FCEN), and IQUIBICEN, Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET) and Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
8
|
Cortez V, Livingston B, Sharp B, Hargest V, Papizan JB, Pedicino N, Lanning S, Jordan SV, Gulman J, Vogel P, DuBois RM, Crawford JC, Boyd DF, Pruett-Miller SM, Thomas PG, Schultz-Cherry S. Indoleamine 2,3-dioxygenase 1 regulates cell permissivity to astrovirus infection. Mucosal Immunol 2023; 16:551-562. [PMID: 37290501 PMCID: PMC10528345 DOI: 10.1016/j.mucimm.2023.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 05/26/2023] [Accepted: 05/31/2023] [Indexed: 06/10/2023]
Abstract
Astroviruses cause a spectrum of diseases spanning asymptomatic infections to severe diarrhea, but little is understood about their pathogenesis. We previously determined that small intestinal goblet cells were the main cell type infected by murine astrovirus-1. Here, we focused on the host immune response to infection and inadvertently discovered a role for indoleamine 2,3-dioxygenase 1 (Ido1), a host tryptophan catabolizing enzyme, in the cellular tropism of murine and human astroviruses. We identified that Ido1 expression was highly enriched among infected goblet cells, and spatially corresponded to the zonation of infection. Because Ido1 can act as a negative regulator of inflammation, we hypothesized it could dampen host antiviral responses. Despite robust interferon signaling in goblet cells, as well as tuft cell and enterocyte bystanders, we observed delayed cytokine induction and suppressed levels of fecal lipocalin-2. Although we found Ido-/- animals were more resistant to infection, this was not associated with fewer goblet cells nor could it be rescued by knocking out interferon responses, suggesting that IDO1 instead regulates cell permissivity. We characterized IDO1-/- Caco-2 cells and observed significantly reduced human astrovirus-1 infection. Together this study highlights a role for Ido1 in astrovirus infection and epithelial cell maturation.
Collapse
Affiliation(s)
- Valerie Cortez
- Department of Molecular, Cell & Development Biology, University of California, Santa Cruz, USA.
| | - Brandi Livingston
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Bridgett Sharp
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Virginia Hargest
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - James B Papizan
- Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Natalie Pedicino
- Department of Molecular, Cell & Development Biology, University of California, Santa Cruz, USA
| | - Sarah Lanning
- Department of Molecular, Cell & Development Biology, University of California, Santa Cruz, USA; Department of Biomolecular Engineering, University of California, Santa Cruz, California, USA
| | - Summer Vaughn Jordan
- Department of Molecular, Cell & Development Biology, University of California, Santa Cruz, USA
| | - Jacob Gulman
- Department of Molecular, Cell & Development Biology, University of California, Santa Cruz, USA
| | - Peter Vogel
- Veterinary Pathology Core, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Rebecca M DuBois
- Department of Biomolecular Engineering, University of California, Santa Cruz, California, USA
| | - Jeremy Chase Crawford
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - David F Boyd
- Department of Molecular, Cell & Development Biology, University of California, Santa Cruz, USA
| | - Shondra M Pruett-Miller
- Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Paul G Thomas
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Stacey Schultz-Cherry
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
9
|
The Reovirus σ3 Protein Inhibits NF-κB-Dependent Antiviral Signaling. J Virol 2022; 96:e0051522. [PMID: 35416720 PMCID: PMC9093121 DOI: 10.1128/jvi.00515-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Viral antagonism of innate immune pathways is a common mechanism by which viruses evade immune surveillance. Infection of host cells with reovirus leads to the blockade of NF-κB, a key transcriptional regulator of the hosts' innate immune response. One mechanism by which reovirus infection results in inhibition of NF-κB is through a diminishment in levels of upstream activators, IKKβ and NEMO. Here, we demonstrate a second, distinct mechanism by which reovirus blocks NF-κB. We report that expression of a single viral protein, σ3, is sufficient to inhibit expression of NF-κB target genes. Further, σ3-mediated blockade of NF-κB occurs without changes to IκB kinase (IKK) levels or activity. Among NF-κB targets, the expression of type I interferon is significantly diminished by σ3 expression. Expression of NF-κB target genes varies following infection with closely related reovirus strains. Our genetic analysis identifies that these differences are controlled by polymorphisms in the amino acid sequence of σ3. This work identifies a new role for reovirus σ3 as a viral antagonist of NF-κB-dependent antiviral pathways. IMPORTANCE Host cells mount a response to curb virus replication in infected cells and prevent spread of virus to neighboring, as yet uninfected, cells. The NF-κB family of proteins is important for the cell to mediate this response. In this study, we show that a single protein, σ3, produced by mammalian reovirus, impairs the function of NF-κB. We demonstrate that by blocking NF-κB, σ3 diminishes the hosts' response to infection to promote viral replication. This work identifies a second, previously unknown, mechanism by which reovirus blocks this aspect of the host cell response.
Collapse
|
10
|
Surgical Strikes on Host Defenses: Role of the Viral Protease Activity in Innate Immune Antagonism. Pathogens 2022; 11:pathogens11050522. [PMID: 35631043 PMCID: PMC9145062 DOI: 10.3390/pathogens11050522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 04/22/2022] [Accepted: 04/26/2022] [Indexed: 02/05/2023] Open
Abstract
As a frontline defense mechanism against viral infections, the innate immune system is the primary target of viral antagonism. A number of virulence factors encoded by viruses play roles in circumventing host defenses and augmenting viral replication. Among these factors are viral proteases, which are primarily responsible for maturation of viral proteins, but in addition cause proteolytic cleavage of cellular proteins involved in innate immune signaling. The study of these viral protease-mediated host cleavages has illuminated the intricacies of innate immune networks and yielded valuable insights into viral pathogenesis. In this review, we will provide a brief summary of how proteases of positive-strand RNA viruses, mainly from the Picornaviridae, Flaviviridae and Coronaviridae families, proteolytically process innate immune components and blunt their functions.
Collapse
|
11
|
Zhang J, Man Wu X, Fang Q, Bi YH, Nie P, Chang MX. Grass Carp Reovirus Nonstructural Proteins Avoid Host Antiviral Immune Response by Targeting the RLR Signaling Pathway. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:707-719. [PMID: 35022273 DOI: 10.4049/jimmunol.2100723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 11/20/2021] [Indexed: 01/17/2023]
Abstract
Grass carp reovirus (GCRV) is a highly virulent RNA virus that mainly infects grass carp and causes hemorrhagic disease. The roles of nonstructural proteins NS38 and NS80 of GCRV-873 in the viral replication cycle and viral inclusion bodies have been established. However, the strategies that NS38 and NS80 used to avoid host antiviral immune response are still unknown. In this study, we report the negative regulations of NS38 and NS80 on the RIG-I-like receptors (RLRs) antiviral signaling pathway and the production of IFNs and IFN-stimulated genes. First, both in the case of overexpression and GCRV infection, NS38 and NS80 inhibited the IFN promoter activation induced by RIG-I, MDA5, MAVS, TBK1, IRF3, and IRF7 and mRNA abundance of key antiviral genes involved in the RLR-mediated signaling. Second, both in the case of overexpression and GCRV infection, NS38 interacted with piscine TBK1 and IRF3, but not with piscine RIG-I, MDA5, MAVS, and TNF receptor-associated factor (TRAF) 3. Whereas NS80 interacted with piscine MAVS, TRAF3, and TBK1, but not with piscine RIG-I, MDA5, and IRF3. Finally, both in the case of overexpression and GCRV infection, NS38 inhibited the formation of the TBK1-IRF3 complex, but NS80 inhibited the formation of the TBK1-TRAF3 complex. Most importantly, NS38 and NS80 could hijack piscine TBK1 and IRF3 into the cytoplasmic viral inclusion bodies and inhibit the translocation of IRF3 into the nucleus. Collectively, all of these data demonstrate that GCRV nonstructural proteins can avoid host antiviral immune response by targeting the RLR signaling pathway, which prevents IFN-stimulated gene production and facilitates GCRV replication.
Collapse
Affiliation(s)
- Jie Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Xiao Man Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Qin Fang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Yong Hong Bi
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Pin Nie
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Ming Xian Chang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; .,Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, China; and.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
12
|
Somasekharan SP, Gleave M. SARS-CoV-2 nucleocapsid protein interacts with immunoregulators and stress granules and phase separates to form liquid droplets. FEBS Lett 2021; 595:2872-2896. [PMID: 34780058 PMCID: PMC8652540 DOI: 10.1002/1873-3468.14229] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 11/02/2021] [Accepted: 11/04/2021] [Indexed: 12/16/2022]
Abstract
The current work investigated SARS‐CoV‐2 Nucleocapsid (NCAP or N protein) interactors in A549 human lung cancer cells using a SILAC‐based mass spectrometry approach. NCAP interactors included proteins of the stress granule (SG) machinery and immunoregulators. NCAP showed specific interaction with the SG proteins G3BP1, G3BP2, YTHDF3, USP10 and PKR, and translocated to SGs following oxidative stress and heat shock. Treatment of recombinant NCAP with RNA isolated from A549 cells exposed to oxidative stress‐stimulated NCAP to undergo liquid–liquid phase separation (LLPS). RNA degradation using RNase A treatment completely blocked the LLPS property of NCAP as well as its SG association. The RNA intercalator mitoxantrone also disrupted NCAP assembly in vitro and in cells. This study provides insight into the biological processes and biophysical properties of the SARS‐CoV‐2 NCAP.
Collapse
Affiliation(s)
- Syam Prakash Somasekharan
- Department of Urologic Sciences, Faculty of Medicine, Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada
| | - Martin Gleave
- Department of Urologic Sciences, Faculty of Medicine, Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
13
|
Oosenbrug T, van den Wollenberg DJM, Duits EW, Hoeben RC, Ressing ME. Induction of Robust Type I Interferon Levels by Oncolytic Reovirus Requires Both Viral Replication and Interferon-α/β Receptor Signaling. Hum Gene Ther 2021; 32:1171-1185. [PMID: 34405701 DOI: 10.1089/hum.2021.140] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Oncolytic viruses are promising agents for cancer therapy because they selectively infect and kill tumor cells, and because they trigger immune responses that can boost anticancer immunity. Key to the latter process is the production of type I interferons (IFN-Is) that can turn noninflamed "cold" tumors into "hot" ones. Besides this desired anticancer effect, IFN-Is are antiviral and successful oncolytic virotherapy thus relies on tightly controlled IFN-I levels. This requires a profound understanding of when and how tumor cells induce IFN-I in response to specific viruses. In this study, we uncovered two key factors that augment IFN-I production in transformed human myeloid cells infected with a tumor-selective reovirus. Viral replication and IFN-α/β receptor (IFNAR) signaling progressively reinforced the levels of IFN-I expressed by infected cells. Mechanistically, both augmented the activation of interferon regulatory factor 3, a key transcription factor for IFNβ expression. Our findings imply that reovirus-permissive tumor cells themselves are a major source of IFN-I expression. As tumors can perturb the IFNAR pathway for their own survival, reovirus-exposed IFNAR-unresponsive tumors may need additional therapeutic intervention to promote the secretion of sufficient IFN-I into the tumor microenvironment. Our increased understanding of the parameters that affect reovirus-induced IFN-I levels could aid in the design of tailored virus-based cancer therapies.
Collapse
Affiliation(s)
- Timo Oosenbrug
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Eline W Duits
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Rob C Hoeben
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Maaike E Ressing
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
14
|
The reovirus μ2 C-terminal loop inversely regulates NTPase and transcription functions versus binding to factory-forming μNS and promotes replication in tumorigenic cells. J Virol 2021; 95:JVI.02006-20. [PMID: 33658345 PMCID: PMC8139653 DOI: 10.1128/jvi.02006-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Wild type reovirus serotype 3 'Dearing PL strain' (T3wt) is being heavily evaluated as an oncolytic and immunotherapeutic treatment for cancers. Mutations that promote reovirus entry into tumor cells were previously reported to enhance oncolysis; herein we aimed to discover mutations that enhance the post-entry steps of reovirus infection in tumor cells. Using directed evolution, we identified that reovirus variant T3v10M1 exhibited enhanced replication relative to T3wt on a panel of cancer cells. T3v10M1 contains an alanine-to-valine substitution (A612V) in the core-associated μ2, which was previously found to have NTPase activities in virions and to facilitate virus factory formation by association with μNS. Paradoxically, the A612V mutation in μ2 from T3v10M1 was discovered to impair NTPase activities and RNA synthesis, leading to five-fold higher probability of abortive infection for T3v10M1 relative to T3wt. The A612V mutation resides in a previously uncharacterized C-terminal region that juxtaposes the template entry site of the polymerase μ2; our findings thus support an important role for this domain during virus transcription. Despite crippled onset of infection, T3v10M1 exhibited greater accumulation of viral proteins and progeny during replication, leading to increased overall virus burst size. Both Far-Western and co-immunoprecipitation approaches corroborated that the A612V mutation in μ2 increased association with the non-structural virus protein μNS and enhances burst size. Altogether the data supports that mutations in the C-terminal loop domain of μ2 inversely regulate NTPase and RNA synthesis versus interactions with μNS, but with a net gain of replication in tumorigenic cells.SIGNIFICANCEReovirus is a model system for understanding virus replication but also a clinically relevant virus for cancer therapy. We identified the first mutation that increases reovirus infection in tumorigenic cells by enhancing post-entry stages of reovirus replication. The mutation is in a previously uncharacterized c-terminal region of the M1-derived μ2 protein, which we demonstrated affects multiple functions of μ2; NTPase, RNA synthesis, inhibition of antiviral immune response and association with the virus replication factory-forming μNS protein. These findings promote a mechanistic understanding of viral protein functions. In the future, the benefits of μ2 mutations may be useful for enhancing reovirus potency in tumors.
Collapse
|
15
|
Faber E, Tshilwane SI, Kleef MV, Pretorius A. Virulent African horse sickness virus serotype 4 interferes with the innate immune response in horse peripheral blood mononuclear cells in vitro. INFECTION GENETICS AND EVOLUTION 2021; 91:104836. [PMID: 33798756 DOI: 10.1016/j.meegid.2021.104836] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 03/09/2021] [Accepted: 03/29/2021] [Indexed: 12/17/2022]
Abstract
African horse sickness (AHS) is caused by African horse sickness virus (AHSV), a double stranded RNA (dsRNA) virus of the genus Orbivirus, family Reoviridae. For the development of new generation AHS vaccines or antiviral treatments, it is crucial to understand the host immune response against the virus and the immune evasion strategies the virus employs. To achieve this, the current study used transcriptome analysis of RNA sequences to characterize and compare the innate immune responses activated during the attenuated AHSV serotype 4 (attAHSV4) (in vivo) and the virulent AHSV4 (virAHSV4) (in vitro) primary and secondary immune responses in horse peripheral blood mononuclear cells (PBMC) after 24 h. The pro-inflammatory cytokine and chemokine responses were negatively regulated by anti-inflammatory cytokines, whereas the parallel type I and type III IFN responses were maintained downstream of nucleic acid sensing pattern recognition receptor (PRR) signalling pathways during the attAHSV4 primary and secondary immune responses. It appeared that after translation, virAHSV4 proteins were able to interfere with the C-terminal IRF association domain (IAD)-type 1 (IAD1) containing IRFs, which inhibited the expression of type I and type III IFNs downstream of PRR signalling during the virAHSV4 primary and secondary immune responses. Viral interference resulted in an impaired innate immune response that was not able to eliminate virAHSV4-infected PBMC and gave rise to prolonged expression of pro-inflammatory cytokines and chemokines during the virAHSV4 induced primary immune response. Indicating that virAHSV4 interference with the innate immune response may give rise to an excessive inflammatory response that causes immunopathology, which could be a major contributing factor to the pathogenesis of AHS in a naïve horse. Viral interference was overcome by the fast kinetics and increased effector responses of innate immune cells due to trained innate immunity and memory T cells and B cells during the virAHSV4 secondary immune response.
Collapse
Affiliation(s)
- Erika Faber
- Agricultural Research Council - Onderstepoort Veterinary Research, Private Bag X5, Onderstepoort 0110, South Africa; Department of Veterinary Tropical Disease, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort 0110, South Africa.
| | - Selaelo Ivy Tshilwane
- School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4000, South Africa
| | - Mirinda Van Kleef
- Agricultural Research Council - Onderstepoort Veterinary Research, Private Bag X5, Onderstepoort 0110, South Africa; Department of Veterinary Tropical Disease, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort 0110, South Africa
| | - Alri Pretorius
- Agricultural Research Council - Onderstepoort Veterinary Research, Private Bag X5, Onderstepoort 0110, South Africa; Department of Veterinary Tropical Disease, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort 0110, South Africa
| |
Collapse
|
16
|
The Paradoxes of Viral mRNA Translation during Mammalian Orthoreovirus Infection. Viruses 2021; 13:v13020275. [PMID: 33670092 PMCID: PMC7916891 DOI: 10.3390/v13020275] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 02/06/2023] Open
Abstract
De novo viral protein synthesis following entry into host cells is essential for viral replication. As a consequence, viruses have evolved mechanisms to engage the host translational machinery while at the same time avoiding or counteracting host defenses that act to repress translation. Mammalian orthoreoviruses are dsRNA-containing viruses whose mRNAs were used as models for early investigations into the mechanisms that underpin the recognition and engagement of eukaryotic mRNAs by host cell ribosomes. However, there remain many unanswered questions and paradoxes regarding translation of reoviral mRNAs in the context of infection. This review summarizes the current state of knowledge about reovirus translation, identifies key unanswered questions, and proposes possible pathways toward a better understanding of reovirus translation.
Collapse
|
17
|
Inoue C, Negoro R, Takayama K, Mizuguchi H, Sakurai F. Asymmetric profiles of infection and innate immunological responses in human iPS cell-derived small intestinal epithelial-like cell monolayers following infection with mammalian reovirus. Virus Res 2021; 296:198334. [PMID: 33581186 DOI: 10.1016/j.virusres.2021.198334] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 11/20/2022]
Abstract
The intestinal mucosa plays an important role as an immune barrier due to its continual exposure to invading pathogens, including viruses. It is thus highly important to evaluate virus infection profiles in the intestinal mucosa for prevention of virus infection and development of antivirus medicines; however, only a few enterocyte lines are available as in vitro intestinal models for the evaluation of virus infection. In this study, we evaluated profiles of infection and innate immune responses following infection with a mammalian orthoreovirus (hereafter reovirus), which has often been used as a tractable model for studies of viral pathogenesis, in human iPS cell-derived small intestinal epithelial-like cell (hiPS-SIEC) monolayers and cells of a human colon adenocarcinoma cell line, Caco-2. The levels of reovirus infection were similar between hiPS-SIEC and Caco-2 cell monolayers, which are often used as an intestinal model, after apical and basolateral infection. In hiPS-SIEC monolayers, more efficient replication of the virus genome was observed following basolateral infection than apical infection, while apical infection resulted in higher levels of virus protein expression and progeny virus production than basolateral infection. Reovirus significantly induced innate immune responses, including expression of type I and III interferons (IFNs), in hiPS-SIEC monolayers more efficiently than Caco-2 cells. Higher levels of type I and III interferon (IFN) expression were found in hiPS-SIEC monolayers following apical infection than basolateral infection. These results suggested that hiPS-SIECs are a promising in vitro model for the evaluation of virus infection.
Collapse
Affiliation(s)
- Chieko Inoue
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Ryosuke Negoro
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Kazuo Takayama
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan; PRESTO, Japan Science and Technology Agency, Saitama, Japan; Laboratory of Hepatocyte Regulation, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Hiroyuki Mizuguchi
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan; PRESTO, Japan Science and Technology Agency, Saitama, Japan; The Center for Advanced Medical Engineering and Informatics, Osaka University, Osaka, Japan; Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Osaka, Japan.
| | - Fuminori Sakurai
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan.
| |
Collapse
|
18
|
Müller L, Berkeley R, Barr T, Ilett E, Errington-Mais F. Past, Present and Future of Oncolytic Reovirus. Cancers (Basel) 2020; 12:E3219. [PMID: 33142841 PMCID: PMC7693452 DOI: 10.3390/cancers12113219] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/28/2020] [Accepted: 10/30/2020] [Indexed: 12/12/2022] Open
Abstract
Oncolytic virotherapy (OVT) has received significant attention in recent years, especially since the approval of talimogene Laherparepvec (T-VEC) in 2015 by the Food and Drug administration (FDA). Mechanistic studies of oncolytic viruses (OVs) have revealed that most, if not all, OVs induce direct oncolysis and stimulate innate and adaptive anti-tumour immunity. With the advancement of tumour modelling, allowing characterisation of the effects of tumour microenvironment (TME) components and identification of the cellular mechanisms required for cell death (both direct oncolysis and anti-tumour immune responses), it is clear that a "one size fits all" approach is not applicable to all OVs, or indeed the same OV across different tumour types and disease locations. This article will provide an unbiased review of oncolytic reovirus (clinically formulated as pelareorep), including the molecular and cellular requirements for reovirus oncolysis and anti-tumour immunity, reports of pre-clinical efficacy and its overall clinical trajectory. Moreover, as it is now abundantly clear that the true potential of all OVs, including reovirus, will only be reached upon the development of synergistic combination strategies, reovirus combination therapeutics will be discussed, including the limitations and challenges that remain to harness the full potential of this promising therapeutic agent.
Collapse
|
19
|
Reovirus σ3 Protein Limits Interferon Expression and Cell Death Induction. J Virol 2020; 94:JVI.01485-20. [PMID: 32847863 DOI: 10.1128/jvi.01485-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 08/20/2020] [Indexed: 01/31/2023] Open
Abstract
Induction of necroptosis by mammalian reovirus requires both type I interferon (IFN)-signaling and viral replication events that lead to production of progeny genomic double-stranded RNA (dsRNA). The reovirus outer capsid protein μ1 negatively regulates reovirus-induced necroptosis by limiting RNA synthesis. To determine if the outer capsid protein σ3, which interacts with μ1, also functions in regulating necroptosis, we used small interfering RNA (siRNA)-mediated knockdown. Similarly to what was observed in diminishment of μ1 expression, knockdown of newly synthesized σ3 enhances necroptosis. Knockdown of σ3 does not impact reovirus RNA synthesis. Instead, this increase in necroptosis following σ3 knockdown is accompanied by an increase in IFN production. Furthermore, ectopic expression of σ3 is sufficient to block IFN expression following infection. Surprisingly, the capacity of σ3 protein to bind dsRNA does not impact its capacity to diminish production of IFN. Consistent with this, infection with a virus harboring a mutation in the dsRNA binding domain of σ3 does not result in enhanced production of IFN or necroptosis. Together, these data suggest that σ3 limits the production of IFN to control innate immune signaling and necroptosis following infection through a mechanism that is independent of its dsRNA binding capacity.IMPORTANCE We use mammalian reovirus as a model to study how virus infection modulates innate immune signaling and cell death induction. Here, we sought to determine how viral factors regulate these processes. Our work highlights a previously unknown role for the reovirus outer capsid protein σ3 in limiting the induction of a necrotic form of cell death called necroptosis. Induction of cell death by necroptosis requires production of interferon. The σ3 protein limits the induction of necroptosis by preventing excessive production of interferon following infection.
Collapse
|
20
|
Rodríguez Stewart RM, Raghuram V, Berry JTL, Joshi GN, Mainou BA. Noncanonical Cell Death Induction by Reassortant Reovirus. J Virol 2020; 94:e01613-20. [PMID: 32847857 PMCID: PMC7592226 DOI: 10.1128/jvi.01613-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 08/15/2020] [Indexed: 12/12/2022] Open
Abstract
Triple-negative breast cancer (TNBC) constitutes 10 to 15% of all breast cancer and is associated with worse prognosis than other subtypes of breast cancer. Current therapies are limited to cytotoxic chemotherapy, radiation, and surgery, leaving a need for targeted therapeutics to improve outcomes for TNBC patients. Mammalian orthoreovirus (reovirus) is a nonenveloped, segmented, double-stranded RNA virus in the Reoviridae family. Reovirus preferentially kills transformed cells and is in clinical trials to assess its efficacy against several types of cancer. We previously engineered a reassortant reovirus, r2Reovirus, that infects TNBC cells more efficiently and induces cell death with faster kinetics than parental reoviruses. In this study, we sought to understand the mechanisms by which r2Reovirus induces cell death in TNBC cells. We show that r2Reovirus infection of TNBC cells of a mesenchymal stem-like (MSL) lineage downregulates the mitogen-activated protein kinase/extracellular signal-related kinase pathway and induces nonconventional cell death that is caspase-dependent but caspase 3-independent. Infection of different MSL lineage TNBC cells with r2Reovirus results in caspase 3-dependent cell death. We map the enhanced oncolytic properties of r2Reovirus in TNBC to epistatic interactions between the type 3 Dearing M2 gene segment and type 1 Lang genes. These findings suggest that the genetic composition of the host cell impacts the mechanism of reovirus-induced cell death in TNBC. Together, our data show that understanding host and virus determinants of cell death can identify novel properties and interactions between host and viral gene products that can be exploited for the development of improved viral oncolytics.IMPORTANCE TNBC is unresponsive to hormone therapies, leaving patients afflicted with this disease with limited treatment options. We previously engineered an oncolytic reovirus (r2Reovirus) with enhanced infective and cytotoxic properties in TNBC cells. However, how r2Reovirus promotes TNBC cell death is not known. In this study, we show that reassortant r2Reovirus can promote nonconventional caspase-dependent but caspase 3-independent cell death and that the mechanism of cell death depends on the genetic composition of the host cell. We also map the enhanced oncolytic properties of r2Reovirus in TNBC to interactions between a type 3 M2 gene segment and type 1 genes. Our data show that understanding the interplay between the host cell environment and the genetic composition of oncolytic viruses is crucial for the development of efficacious viral oncolytics.
Collapse
Affiliation(s)
- Roxana M Rodríguez Stewart
- Emory University, Atlanta, Georgia, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | | | - Jameson T L Berry
- Emory University, Atlanta, Georgia, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | | | - Bernardo A Mainou
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
- Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| |
Collapse
|
21
|
Closely related reovirus lab strains induce opposite expression of RIG-I/IFN-dependent versus -independent host genes, via mechanisms of slow replication versus polymorphisms in dsRNA binding σ3 respectively. PLoS Pathog 2020; 16:e1008803. [PMID: 32956403 PMCID: PMC7529228 DOI: 10.1371/journal.ppat.1008803] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 10/01/2020] [Accepted: 07/13/2020] [Indexed: 12/28/2022] Open
Abstract
The Dearing isolate of Mammalian orthoreovirus (T3D) is a prominent model of virus-host relationships and a candidate oncolytic virotherapy. Closely related laboratory strains of T3D, originating from the same ancestral T3D isolate, were recently found to exhibit significantly different oncolytic properties. Specifically, the T3DPL strain had faster replication kinetics in a panel of cancer cells and improved tumor regression in an in vivo melanoma model, relative to T3DTD. In this study, we discover that T3DPL and T3DTD also differentially activate host signalling pathways and downstream gene transcription. At equivalent infectious dose, T3DTD induces higher IRF3 phosphorylation and expression of type I IFNs and IFN-stimulated genes (ISGs) than T3DPL. Using mono-reassortants with intermediate replication kinetics and pharmacological inhibitors of reovirus replication, IFN responses were found to inversely correlate with kinetics of virus replication. In other words, slow-replicating T3D strains induce more IFN signalling than fast-replicating T3D strains. Paradoxically, during co-infections by T3DPL and T3DTD, there was still high IRF3 phosphorylation indicating a phenodominant effect by the slow-replicating T3DTD. Using silencing and knock-out of RIG-I to impede IFN, we found that IFN induction does not affect the first round of reovirus replication but does prevent cell-cell spread in a paracrine fashion. Accordingly, during co-infections, T3DPL continues to replicate robustly despite activation of IFN by T3DTD. Using gene expression analysis, we discovered that reovirus can also induce a subset of genes in a RIG-I and IFN-independent manner; these genes were induced more by T3DPL than T3DTD. Polymorphisms in reovirus σ3 viral protein were found to control activation of RIG-I/ IFN-independent genes. Altogether, the study reveals that single amino acid polymorphisms in reovirus genomes can have large impact on host gene expression, by both changing replication kinetics and by modifying viral protein activity, such that two closely related T3D strains can induce opposite cytokine landscapes.
Collapse
|
22
|
Abad AT, Danthi P. Recognition of Reovirus RNAs by the Innate Immune System. Viruses 2020; 12:E667. [PMID: 32575691 PMCID: PMC7354570 DOI: 10.3390/v12060667] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/05/2020] [Accepted: 06/18/2020] [Indexed: 12/15/2022] Open
Abstract
Mammalian orthoreovirus (reovirus) is a dsRNA virus, which has long been used as a model system to study host-virus interactions. One of the earliest interactions during virus infection is the detection of the viral genomic material, and the consequent induction of an interferon (IFN) based antiviral response. Similar to the replication of related dsRNA viruses, the genomic material of reovirus is thought to remain protected by viral structural proteins throughout infection. Thus, how innate immune sensor proteins gain access to the viral genomic material, is incompletely understood. This review summarizes currently known information about the innate immune recognition of the reovirus genomic material. Using this information, we propose hypotheses about host detection of reovirus.
Collapse
Affiliation(s)
| | - Pranav Danthi
- Department of Biology, Indiana University, Bloomington, IN 47405, USA;
| |
Collapse
|
23
|
Loss of IKK Subunits Limits NF-κB Signaling in Reovirus-Infected Cells. J Virol 2020; 94:JVI.00382-20. [PMID: 32161168 DOI: 10.1128/jvi.00382-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 03/05/2020] [Indexed: 02/07/2023] Open
Abstract
Viruses commonly antagonize innate immune pathways that are primarily driven by nuclear factor kappa B (NF-κB), interferon regulatory factor (IRF), and the signal transducer and activator of transcription proteins (STAT) family of transcription factors. Such a strategy allows viruses to evade immune surveillance and maximize their replication. Using an unbiased transcriptome sequencing (RNA-seq)-based approach to measure gene expression induced by transfected viral genomic RNA (vgRNA) and reovirus infection, we discovered that mammalian reovirus inhibits host cell innate immune signaling. We found that, while vgRNA and reovirus infection both induce a similar IRF-dependent gene expression program, gene expression driven by the NF-κB family of transcription factors is lower in infected cells. Potent agonists of NF-κB such as tumor necrosis factor alpha (TNF-α) and vgRNA failed to induce NF-κB-dependent gene expression in infected cells. We demonstrate that NF-κB signaling is blocked due to loss of critical members of the inhibitor of kappa B kinase (IKK) complex, NF-κB essential modifier (NEMO), and IKKβ. The loss of the IKK complex components prevents nuclear translocation and phosphorylation of NF-κB, thereby preventing gene expression. Our study demonstrates that reovirus infection selectively blocks NF-κB, likely to counteract its antiviral effects and promote efficient viral replication.IMPORTANCE Host cells mount a response to curb virus replication in infected cells and prevent spread of virus to neighboring, as yet uninfected, cells. The NF-κB family of proteins is important for the cell to mediate this response. In this study, we show that in cells infected with mammalian reovirus, NF-κB is inactive. Further, we demonstrate that NF-κB is rendered inactive because virus infection results in reduced levels of upstream intermediaries (called IKKs) that are needed for NF-κB function. Based on previous evidence that active NF-κB limits reovirus infection, we conclude that inactivating NF-κB is a viral strategy to produce a cellular environment that is favorable for virus replication.
Collapse
|
24
|
Ipr1 Regulation by Cyclic GMP-AMP Synthase/Interferon Regulatory Factor 3 and Modulation of Irgm1 Expression via p53. Mol Cell Biol 2020; 40:MCB.00471-19. [PMID: 31988106 DOI: 10.1128/mcb.00471-19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 01/21/2020] [Indexed: 12/28/2022] Open
Abstract
Intracellular pathogen resistance 1 (Ipr1) has been found to be a mediator to integrate cyclic GMP-AMP synthase (cGAS)-interferon regulatory factor 3 (IRF3), activated by intracellular pathogens, with the p53 pathway. Previous studies have shown the process of Ipr1 induction by various immune reactions, including intracellular bacterial and viral infections. The present study demonstrated that Ipr1 is regulated by the cGAS-IRF3 pathway during pathogenic infection. IRF3 was found to regulate Ipr1 expression by directly binding the interferon-stimulated response element motif of the Ipr1 promoter. Knockdown of Ipr1 decreased the expression of immunity-related GTPase family M member 1 (Irgm1), which plays critical roles in autophagy initiation. Irgm1 promoter characterization revealed a p53 motif in front of the transcription start site. P53 was found to participate in regulation of Irgm1 expression and IPR1-related effects on P53 stability by affecting interactions between ribosomal protein L11 (RPL11) and transformed mouse 3T3 cell double minute 2 (MDM2). Our results indicate that Ipr1 integrates cGAS-IRF3 with p53-modulated Irgm1 expression.
Collapse
|
25
|
Enhanced Killing of Triple-Negative Breast Cancer Cells by Reassortant Reovirus and Topoisomerase Inhibitors. J Virol 2019; 93:JVI.01411-19. [PMID: 31511390 DOI: 10.1128/jvi.01411-19] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 09/09/2019] [Indexed: 12/12/2022] Open
Abstract
Breast cancer is the second leading cause of cancer-related deaths in women in the United States. Triple-negative breast cancer constitutes a subset of breast cancer that is associated with higher rates of relapse, decreased survival, and limited therapeutic options for patients afflicted with this type of breast cancer. Mammalian orthoreovirus (reovirus) selectively infects and kills transformed cells, and a serotype 3 reovirus is in clinical trials to assess its efficacy as an oncolytic agent against several cancers. It is unclear if reovirus serotypes differentially infect and kill triple-negative breast cancer cells and if reovirus-induced cytotoxicity of breast cancer cells can be enhanced by modulating the activity of host molecules and pathways. Here, we generated reassortant reoviruses by forward genetics with enhanced infective and cytotoxic properties in triple-negative breast cancer cells. From a high-throughput screen of small-molecule inhibitors, we identified topoisomerase inhibitors as a class of drugs that enhance reovirus infectivity and cytotoxicity of triple-negative breast cancer cells. Treatment of triple-negative breast cancer cells with topoisomerase inhibitors activates DNA damage response pathways, and reovirus infection induces robust production of type III, but not type I, interferon (IFN). Although type I and type III IFNs can activate STAT1 and STAT2, triple-negative breast cancer cellular proliferation is only negatively affected by type I IFN. Together, these data show that reassortant viruses with a novel genetic composition generated by forward genetics in combination with topoisomerase inhibitors more efficiently infect and kill triple-negative breast cancer cells.IMPORTANCE Patients afflicted by triple-negative breast cancer have decreased survival and limited therapeutic options. Reovirus infection results in cell death of a variety of cancers, but it is unknown if different reovirus types lead to triple-negative breast cancer cell death. In this study, we generated two novel reoviruses that more efficiently infect and kill triple-negative breast cancer cells. We show that infection in the presence of DNA-damaging agents enhances infection and triple-negative breast cancer cell killing by reovirus. These data suggest that a combination of a genetically engineered oncolytic reovirus and topoisomerase inhibitors may provide a potent therapeutic option for patients afflicted with triple-negative breast cancer.
Collapse
|
26
|
Lanoie D, Boudreault S, Bisaillon M, Lemay G. How Many Mammalian Reovirus Proteins are involved in the Control of the Interferon Response? Pathogens 2019; 8:E83. [PMID: 31234302 PMCID: PMC6631787 DOI: 10.3390/pathogens8020083] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 06/17/2019] [Accepted: 06/18/2019] [Indexed: 12/24/2022] Open
Abstract
As with most viruses, mammalian reovirus can be recognized and attacked by the host-cell interferon response network. Similarly, many viruses have developed resistance mechanisms to counteract the host-cell response at different points of this response. Reflecting the complexity of the interferon signaling pathways as well as the resulting antiviral response, viruses can-and often have-evolved many determinants to interfere with this innate immune response and allow viral replication. In the last few years, it has been evidenced that mammalian reovirus encodes many different determinants that are involved in regulating the induction of the interferon response or in interfering with the action of interferon-stimulated gene products. In this brief review, we present our current understanding of the different reovirus proteins known to be involved, introduce their postulated modes of action, and raise current questions that may lead to further investigations.
Collapse
Affiliation(s)
- Delphine Lanoie
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, QC H3C 3J7, Canada.
| | - Simon Boudreault
- Département de biochimie, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada.
| | - Martin Bisaillon
- Département de biochimie, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada.
| | - Guy Lemay
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, QC H3C 3J7, Canada.
| |
Collapse
|
27
|
Pervolaraki K, Guo C, Albrecht D, Boulant S, Stanifer ML. Type-Specific Crosstalk Modulates Interferon Signaling in Intestinal Epithelial Cells. J Interferon Cytokine Res 2019; 39:650-660. [PMID: 31199715 DOI: 10.1089/jir.2019.0040] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Intestinal epithelial cells (IECs) are the primary target of enteric viruses. Their infection by viruses leads to the upregulation of both type I and type III interferons (IFNs). These IFNs then act in an autocrine and paracrine manner to protect IECs from viral propagation. To date, whether both IFNs use similar signaling pathways and whether these 2 cytokines can act synergistically to protect against viral infection remain unclear. Using human IECs depleted of either the type I or type III IFN receptor, we found that both signal transduction pathways are interconnected and influence each other at the level of interferon-stimulated gene (ISG) expression and efficiency of antiviral protection. Precisely, in human IECs, the presence of a functional type III IFN receptor negatively regulates type I IFN signaling and activity, whereas the presence of type I IFN receptor positively reinforces type III IFN signaling and function. We propose that this complex crosstalk allows for a preferential type III IFN-mediated protection of human intestinal cells.
Collapse
Affiliation(s)
- Kalliopi Pervolaraki
- Schaller Research Group at CellNetworks, Department of Infectious Diseases, Virology, Heidelberg University Hospital, Heidelberg, Germany.,Research Group "Cellular Polarity and Viral Infection" (F140), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Cuncai Guo
- Schaller Research Group at CellNetworks, Department of Infectious Diseases, Virology, Heidelberg University Hospital, Heidelberg, Germany
| | - Dorothee Albrecht
- Research Group "Cellular Polarity and Viral Infection" (F140), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Steeve Boulant
- Schaller Research Group at CellNetworks, Department of Infectious Diseases, Virology, Heidelberg University Hospital, Heidelberg, Germany.,Research Group "Cellular Polarity and Viral Infection" (F140), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Megan L Stanifer
- Schaller Research Group at CellNetworks, Department of Infectious Diseases, Virology, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
28
|
Tenorio R, Fernández de Castro I, Knowlton JJ, Zamora PF, Sutherland DM, Risco C, Dermody TS. Function, Architecture, and Biogenesis of Reovirus Replication Neoorganelles. Viruses 2019; 11:v11030288. [PMID: 30901959 PMCID: PMC6466366 DOI: 10.3390/v11030288] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 03/17/2019] [Accepted: 03/19/2019] [Indexed: 02/06/2023] Open
Abstract
Most viruses that replicate in the cytoplasm of host cells form neoorganelles that serve as sites of viral genome replication and particle assembly. These highly specialized structures concentrate viral proteins and nucleic acids, prevent the activation of cell-intrinsic defenses, and coordinate the release of progeny particles. Reoviruses are common pathogens of mammals that have been linked to celiac disease and show promise for oncolytic applications. These viruses form nonenveloped, double-shelled virions that contain ten segments of double-stranded RNA. Replication organelles in reovirus-infected cells are nucleated by viral nonstructural proteins µNS and σNS. Both proteins partition the endoplasmic reticulum to form the matrix of these structures. The resultant membranous webs likely serve to anchor viral RNA⁻protein complexes for the replication of the reovirus genome and the assembly of progeny virions. Ongoing studies of reovirus replication organelles will advance our knowledge about the strategies used by viruses to commandeer host biosynthetic pathways and may expose new targets for therapeutic intervention against diverse families of pathogenic viruses.
Collapse
Affiliation(s)
- Raquel Tenorio
- Cell Structure Laboratory, National Center for Biotechnology, CNB-CSIC, Cantoblanco Campus, 28049 Madrid, Spain.
| | - Isabel Fernández de Castro
- Cell Structure Laboratory, National Center for Biotechnology, CNB-CSIC, Cantoblanco Campus, 28049 Madrid, Spain.
| | - Jonathan J Knowlton
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| | - Paula F Zamora
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA.
| | - Danica M Sutherland
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA.
- Center for Microbial Pathogenesis, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA.
| | - Cristina Risco
- Cell Structure Laboratory, National Center for Biotechnology, CNB-CSIC, Cantoblanco Campus, 28049 Madrid, Spain.
| | - Terence S Dermody
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA.
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA.
- Center for Microbial Pathogenesis, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA.
| |
Collapse
|
29
|
Lanoie D, Côté S, Degeorges E, Lemay G. A single mutation in the mammalian orthoreovirus S1 gene is responsible for increased interferon sensitivity in a virus mutant selected in Vero cells. Virology 2018; 528:73-79. [PMID: 30578938 DOI: 10.1016/j.virol.2018.12.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 12/12/2018] [Accepted: 12/12/2018] [Indexed: 12/24/2022]
Abstract
In a previous study, a mammalian orthoreovirus mutant was isolated based on its increased ability to infect interferon-defective Vero cells and was referred to as Vero-cells-adapted virus (VeroAV). This virus exhibits reduced ability to resist the antiviral effect of interferon. In the present study, the complete genome sequence of VeroAV was first determined. Reverse genetics was then used to identify a unique mutation on the S1 gene, overlapping the σ1 and σ1 s reading frame, resulting in increased sensitivity to interferon. A virus lacking σ1 s expression consecutive to mutation of its initiation codon was then shown to exhibit a further increase in sensitivity to interferon, supporting the idea that σ1 s is the viral protein responsible. This identification of a new determinant of reovirus sensitivity to interferon gives credentials to the idea that multiple reovirus genes are responsible for the level of interferon induction and susceptibility to the interferon-induced antiviral activities.
Collapse
Affiliation(s)
- Delphine Lanoie
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, Canada H3C 3J7
| | - Stéphanie Côté
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, Canada H3C 3J7
| | - Emmanuelle Degeorges
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, Canada H3C 3J7
| | - Guy Lemay
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, Canada H3C 3J7.
| |
Collapse
|
30
|
Reovirus Nonstructural Protein σNS Acts as an RNA Stability Factor Promoting Viral Genome Replication. J Virol 2018; 92:JVI.00563-18. [PMID: 29769334 DOI: 10.1128/jvi.00563-18] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 05/07/2018] [Indexed: 12/23/2022] Open
Abstract
Viral nonstructural proteins, which are not packaged into virions, are essential for the replication of most viruses. Reovirus, a nonenveloped, double-stranded RNA (dsRNA) virus, encodes three nonstructural proteins that are required for viral replication and dissemination in the host. The reovirus nonstructural protein σNS is a single-stranded RNA (ssRNA)-binding protein that must be expressed in infected cells for production of viral progeny. However, the activities of σNS during individual steps of the reovirus replication cycle are poorly understood. We explored the function of σNS by disrupting its expression during infection using cells expressing a small interfering RNA (siRNA) targeting the σNS-encoding S3 gene and found that σNS is required for viral genome replication. Using complementary biochemical assays, we determined that σNS forms complexes with viral and nonviral RNAs. We also discovered, using in vitro and cell-based RNA degradation experiments, that σNS increases the RNA half-life. Cryo-electron microscopy revealed that σNS and ssRNAs organize into long, filamentous structures. Collectively, our findings indicate that σNS functions as an RNA-binding protein that increases the viral RNA half-life. These results suggest that σNS forms RNA-protein complexes in preparation for genome replication.IMPORTANCE Following infection, viruses synthesize nonstructural proteins that mediate viral replication and promote dissemination. Viruses from the family Reoviridae encode nonstructural proteins that are required for the formation of progeny viruses. Although nonstructural proteins of different viruses in the family Reoviridae diverge in primary sequence, they are functionally homologous and appear to facilitate conserved mechanisms of dsRNA virus replication. Using in vitro and cell culture approaches, we found that the mammalian reovirus nonstructural protein σNS binds and stabilizes viral RNA and is required for genome synthesis. This work contributes new knowledge about basic mechanisms of dsRNA virus replication and provides a foundation for future studies to determine how viruses in the family Reoviridae assort and replicate their genomes.
Collapse
|
31
|
Differential Delivery of Genomic Double-Stranded RNA Causes Reovirus Strain-Specific Differences in Interferon Regulatory Factor 3 Activation. J Virol 2018; 92:JVI.01947-17. [PMID: 29437975 DOI: 10.1128/jvi.01947-17] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 02/02/2018] [Indexed: 12/17/2022] Open
Abstract
Serotype 3 (T3) reoviruses induce substantially more type 1 interferon (IFN-I) secretion than serotype 1 (T1) strains. However, the mechanisms underlying differences in IFN-I production between T1 and T3 reoviruses remain undefined. Here, we found that differences in IFN-I production between T1 and T3 reoviruses correlate with activation of interferon regulatory factor 3 (IRF3), a key transcription factor for the production of IFN-I. T3 strain rsT3D activated IRF3 more rapidly and to a greater extent than the T1 strain rsT1L, in simian virus 40 (SV40) immortalized endothelial cells (SVECs). Differences in IRF3 activation between rsT1L and rsT3D were observed in the first hours of infection and were independent of de novo viral RNA and protein synthesis. NF-κB activation mirrored IRF3 activation, with rsT3D inducing more NF-κB activity than rsT1L. We also found that IRF3 and NF-κB are activated in a mitochondrial antiviral-signaling protein (MAVS)-dependent manner. rsT1L does not suppress IRF3 activation, as IRF3 phosphorylation could be induced in rsT1L-infected cells. Transfected rsT1L and rsT3D RNA induced IRF3 phosphorylation, indicating that genomic RNA from both strains has the capacity to activate IRF3. Finally, bypassing the normal route of reovirus entry by transfecting in vitro-generated viral cores revealed that rsT1L and rsT3D core particles induced equivalent IRF3 activation. Taken together, our findings indicate that entry-related events that occur after outer capsid disassembly, but prior to deposition of viral cores into the cytoplasm, influence the efficiency of IFN-I responses to reovirus. This work provides further insight into mechanisms by which nonenveloped viruses activate innate immune responses.IMPORTANCE Detection of viral nucleic acids by the host cell triggers type 1 interferon (IFN-I) responses, which are critical for containing and clearing viral infections. Viral RNA is sensed in the cytoplasm by cellular receptors that initiate signaling pathways, leading to the activation of interferon regulatory factor 3 (IRF3) and NF-κB, key transcription factors required for IFN-I induction. Serotype 3 (T3) reoviruses induce significantly more IFN-I than serotype 1 (T1) strains. In this work, we found that differences in IFN-I production by T1 and T3 reoviruses correlate with differential IRF3 activation. Differences in IRF3 activation are not caused by a blockade of the IRF3 activation by a T1 strain. Rather, differences in events during the late stages of viral entry determine the capacity of reovirus to activate host IFN-I responses. Together, our work provides insight into mechanisms of IFN-I induction by nonenveloped viruses.
Collapse
|
32
|
Xue Q, Liu H, Zhu Z, Yang F, Ma L, Cai X, Xue Q, Zheng H. Seneca Valley Virus 3C pro abrogates the IRF3- and IRF7-mediated innate immune response by degrading IRF3 and IRF7. Virology 2018; 518:1-7. [PMID: 29427864 DOI: 10.1016/j.virol.2018.01.028] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 01/28/2018] [Accepted: 01/30/2018] [Indexed: 11/26/2022]
Abstract
Seneca Valley Virus (SVV) is a newly emerged virus belonging to the family Picornaviridae. Basic knowledge of the immunological response to SVV is limited. To date, one study has demonstrated that SVV 3Cpro mediates the cleavage of host MAVS, TRIF, and TANK at specific sites and consequently escapes the host's antiviral innate immunity. In this study, we show that SVV 3Cpro reduces IRF3 and IRF7 protein expression level and phosphorylation. SVV infection also reduces expression of IRF3 and IRF7 protein. The degradation of IRF3 and IRF7 is dependent on the 3Cpro protease activity. We also identify interactions between 3Cpro and IRF3 and IRF7 in PK-15 cells. A detailed analysis revealed that the degradation of IRF3 and IRF7 blocks the transcription of IFN-β, IFN-α1, IFN-α4, and ISG54. Together, our results demonstrate a novel mechanism developed by SVV 3Cpro to allow the virus to escape the host's intrinsic innate immune system.
Collapse
Affiliation(s)
- Qiao Xue
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Huisheng Liu
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Zixiang Zhu
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Fan Yang
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Linna Ma
- Department of Pathology, Basic Medical College, Lanzhou University, Lanzhou 730000, China
| | - Xuepeng Cai
- China Institute of Veterinary Drug Control, Beijing 100081, China
| | - Qinghong Xue
- China Institute of Veterinary Drug Control, Beijing 100081, China
| | - Haixue Zheng
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China.
| |
Collapse
|
33
|
Ingle H, Peterson ST, Baldridge MT. Distinct Effects of Type I and III Interferons on Enteric Viruses. Viruses 2018; 10:E46. [PMID: 29361691 PMCID: PMC5795459 DOI: 10.3390/v10010046] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 01/16/2018] [Accepted: 01/18/2018] [Indexed: 12/12/2022] Open
Abstract
Interferons (IFNs) are key host cytokines in the innate immune response to viral infection, and recent work has identified unique roles for IFN subtypes in regulating different aspects of infection. Currently emerging is a common theme that type III IFNs are critical in localized control of infection at mucosal barrier sites, while type I IFNs are important for broad systemic control of infections. The intestine is a particular site of interest for exploring these effects, as in addition to being the port of entry for a multitude of pathogens, it is a complex tissue with a variety of cell types as well as the presence of the intestinal microbiota. Here we focus on the roles of type I and III IFNs in control of enteric viruses, discussing what is known about signaling downstream from these cytokines, including induction of specific IFN-stimulated genes. We review viral strategies to evade IFN responses, effects of IFNs on the intestine, interactions between IFNs and the microbiota, and briefly discuss the role of IFNs in controlling viral infections at other barrier sites. Enhanced understanding of the coordinate roles of IFNs in control of viral infections may facilitate development of antiviral therapeutic strategies; here we highlight potential avenues for future exploration.
Collapse
Affiliation(s)
- Harshad Ingle
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Stefan T Peterson
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Megan T Baldridge
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|