1
|
Egashira Y, Kaga Y, Gunji A, Kita Y, Kimura M, Hironaga N, Takeichi H, Hayashi S, Kaneko Y, Takahashi H, Hanakawa T, Okada T, Inagaki M. Detection of deviance in Japanese kanji compound words. Front Hum Neurosci 2022; 16:913945. [PMID: 36046210 PMCID: PMC9421146 DOI: 10.3389/fnhum.2022.913945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022] Open
Abstract
Reading fluency is based on the automatic visual recognition of words. As a manifestation of the automatic processing of words, an automatic deviance detection of visual word stimuli can be observed in the early stages of visual recognition. To clarify whether this phenomenon occurs with Japanese kanji compounds—since their lexicality is related to semantic association—we investigated the brain response by utilizing three types of deviants: differences in font type, lexically correct or incorrect Japanese kanji compound words and pseudo-kanji characters modified from correct and incorrect compounds. We employed magnetoencephalography (MEG) to evaluate the spatiotemporal profiles of the related brain regions. The study included 22 adult native Japanese speakers (16 females). The abovementioned three kinds of stimuli containing 20% deviants were presented during the MEG measurement. Activity in the occipital pole region of the brain was observed upon the detection of font-type deviance within 250 ms of stimulus onset. Although no significant activity upon detecting lexically correct/incorrect kanji compounds or pseudo-kanji character deviations was observed, the activity in the posterior transverse region of the collateral sulcus (pCoS)—which is a fusiform neighboring area—was larger when detecting lexically correct kanji compounds than when detecting pseudo-kanji characters. Taken together, these results support the notion that the automatic detection of deviance in kanji compounds may be limited to a low-level feature, such as the stimulus stroke thickness.
Collapse
Affiliation(s)
- Yuka Egashira
- Department of Developmental Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry (NCNP), Kodaira, Japan
- *Correspondence: Yuka Egashira,
| | - Yoshimi Kaga
- Department of Developmental Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry (NCNP), Kodaira, Japan
- Department of Pediatrics, Faculty of Medicine, University of Yamanashi, Chuo, Japan
| | - Atsuko Gunji
- Department of Developmental Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry (NCNP), Kodaira, Japan
- College of Education, Yokohama National University, Yokohama, Japan
- Integrative Brain Imaging Center, National Center of Neurology and Psychiatry (NCNP), Kodaira, Japan
| | - Yosuke Kita
- Cognitive Brain Research Unit (CBRU), Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Psychology, Faculty of Letters, Keio University, Minato-ku, Japan
| | - Motohiro Kimura
- Department of Information Technology and Human Factors, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Naruhito Hironaga
- Brain Center, Faculty of Medicine, Kyushu University, Fukuoka, Japan
| | - Hiroshige Takeichi
- Department of Developmental Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry (NCNP), Kodaira, Japan
- Open Systems Information Science Team, Advanced Data Science Project, RIKEN Information R&D and Strategy Headquarters (R-IH), RIKEN, Yokohama, Japan
| | - Sayuri Hayashi
- Department of Developmental Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry (NCNP), Kodaira, Japan
| | - Yuu Kaneko
- Department of Neurosurgery, National Center Hospital, National Center of Neurology and Psychiatry (NCNP), Kodaira, Japan
| | - Hidetoshi Takahashi
- Integrative Brain Imaging Center, National Center of Neurology and Psychiatry (NCNP), Kodaira, Japan
- Department of Child and Adolescent Psychiatry, Kochi Medical School, Kochi University, Nankoku-shi, Japan
| | - Takashi Hanakawa
- Integrative Brain Imaging Center, National Center of Neurology and Psychiatry (NCNP), Kodaira, Japan
- Integrated Neuroanatomy and Neuroimaging, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takashi Okada
- Department of Developmental Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry (NCNP), Kodaira, Japan
| | - Masumi Inagaki
- Department of Developmental Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry (NCNP), Kodaira, Japan
- Department of Pediatrics, Tottori Prefectural Rehabilitation Center, Tottori, Japan
| |
Collapse
|
2
|
Late responses in the anterior insula reflect the cognitive component of pain: evidence of nonpain processing. Pain Rep 2022; 7:e984. [PMID: 35187379 PMCID: PMC8812601 DOI: 10.1097/pr9.0000000000000984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 11/11/2021] [Accepted: 11/29/2021] [Indexed: 11/25/2022] Open
Abstract
Supplemental Digital Content is Available in the Text. Distinguishing sensory and cognitive aspects of pain-related insular activity and the temporal profile of anterior insula activity suggested a key role of cognitive modulation. Introduction: Pain is a complex experience influenced by sensory and psychological factors. The insula is considered to be a core part of the pain network in the brain. Previous studies have suggested a relationship between the posterior insula (PI) and sensory processing, and between the anterior insula (AI) and cognitive–affective factors. Objectives: Our aim was to distinguish sensory and cognitive responses in pain-related insular activities. Methods: We recorded spatiotemporal insular activation patterns of healthy participants (n = 20) during pain or tactile processing with painful or nonpainful movie stimuli, using a magnetoencephalography. We compared the peak latency between PI and AI activities in each stimulus condition, and between pain and tactile processing in each response. The peak latency and amplitude between different movies were then examined to explore the effects of cognitive influence. A visual analogue scale was used to assess subjective perception. Results: The results revealed one clear PI activity and 2 AI activities (early and late) in insular responses induced by pain/tactile stimulation. The early response transmitted from the PI to AI was observed during sensory-associated brain activity, whereas the late AI response was observed during cognitive-associated activity. In addition, we found that painful movie stimuli had a significant influence on both late AI activity and subjective perception, caused by nonpainful actual stimulation. Conclusions: The current findings suggested that late AI activation reflects the processing of cognitive pain information, whereas the PI and early AI responses reflect sensory processing.
Collapse
|
3
|
Audio-visual combination of syllables involves time-sensitive dynamics following from fusion failure. Sci Rep 2020; 10:18009. [PMID: 33093570 PMCID: PMC7583249 DOI: 10.1038/s41598-020-75201-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 10/05/2020] [Indexed: 11/08/2022] Open
Abstract
In face-to-face communication, audio-visual (AV) stimuli can be fused, combined or perceived as mismatching. While the left superior temporal sulcus (STS) is presumably the locus of AV integration, the process leading to combination is unknown. Based on previous modelling work, we hypothesize that combination results from a complex dynamic originating in a failure to integrate AV inputs, followed by a reconstruction of the most plausible AV sequence. In two different behavioural tasks and one MEG experiment, we observed that combination is more time demanding than fusion. Using time-/source-resolved human MEG analyses with linear and dynamic causal models, we show that both fusion and combination involve early detection of AV incongruence in the STS, whereas combination is further associated with enhanced activity of AV asynchrony-sensitive regions (auditory and inferior frontal cortices). Based on neural signal decoding, we finally show that only combination can be decoded from the IFG activity and that combination is decoded later than fusion in the STS. These results indicate that the AV speech integration outcome primarily depends on whether the STS converges or not onto an existing multimodal syllable representation, and that combination results from subsequent temporal processing, presumably the off-line re-ordering of incongruent AV stimuli.
Collapse
|
4
|
Yoshida N, Suzuki T, Ogahara K, Higashi T, Sugawara K. Somatosensory temporal discrimination threshold changes during motor learning. Somatosens Mot Res 2020; 37:313-319. [PMID: 33064045 DOI: 10.1080/08990220.2020.1830755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
PURPOSE Mechanisms underlying the somatosensory temporal discrimination threshold and its relationship with motor control have been reported; however, little is known regarding the change in temporal processing of tactile information during motor learning. We investigated the somatosensory temporal discrimination threshold changes during motor learning in a feedback-control task. MATERIALS AND METHODS We included 15 healthy individuals. The somatosensory temporal discrimination threshold was measured on the index finger. A 10-session coin rotation task was performed, with 2 min' training per session. The coin rotation scores were determined through tests (continuous coin rotation at 180° at maximum speed for 10 s). The coin rotation test score and the somatosensory temporal discrimination threshold were determined at baseline and after 5 and 10 sets of training, as follows: pre-test; training5set (1 set × 5); post-test5block; training5set (1 set × 5); and post-test10block. The coin rotation score and the somatosensory temporal discrimination threshold were compared between the tests. The latter was also compared between the right (the within-subject control) and left fingers. RESULTS The coin rotation score showed significant differences among all tests. In the somatosensory temporal discrimination threshold, there was a significant difference between the pre-test and post-test5block values, pre-test and post-test10block values of the left side and between the right and left sides in the post-test5block and the post-test10block values. CONCLUSIONS The somatosensory temporal discrimination threshold decreased along with task-performance progress following motor learning during a feedback-control task.
Collapse
Affiliation(s)
- Naoshin Yoshida
- Unit of Rehabilitation Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.,Department of Rehabilitation, Yokosuka Kyosai Hospital, Yokosuka, Japan
| | - Tomotaka Suzuki
- Faculty of Health and Social Work School of Rehabilitation, Kanagawa University of Human Services, Yokosuka, Japan
| | - Kakuya Ogahara
- Unit of Rehabilitation Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.,Faculty of Health and Social Work School of Rehabilitation, Kanagawa University of Human Services, Yokosuka, Japan
| | - Toshio Higashi
- Unit of Rehabilitation Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Kenichi Sugawara
- Faculty of Health and Social Work School of Rehabilitation, Kanagawa University of Human Services, Yokosuka, Japan
| |
Collapse
|
5
|
Matsubara T, Ogata K, Hironaga N, Uehara T, Mitsudo T, Shigeto H, Maekawa T, Tobimatsu S. Monaural 40-Hz auditory steady-state magnetic responses can be useful for identifying epileptic focus in mesial temporal lobe epilepsy. Clin Neurophysiol 2018; 130:341-351. [PMID: 30669010 DOI: 10.1016/j.clinph.2018.11.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 10/19/2018] [Accepted: 11/28/2018] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Patients with mesial temporal lobe epilepsy (mTLE) often exhibit central auditory processing (CAP) dysfunction. Monaural 40-Hz auditory steady-state magnetic responses (ASSRs) were recorded to explore the pathophysiology of mTLE. METHODS Eighteen left mTLE patients, 11 right mTLE patients and 16 healthy controls (HCs) were examined. Monaural clicks were presented at a rate of 40 Hz. Phase-locking factor (PLF) and power values were analyzed within bilateral Heschl's gyri. RESULTS Monaural 40-Hz ASSR demonstrated temporal frequency dynamics in both PLF and power data. Symmetrical hemispheric contralaterality was revealed in HCs. However, predominant contralaterality was absent in mTLE patients. Specifically, right mTLE patients exhibited a lack of contralaterality in response to left ear but not right ear stimulation, and vice versa in left mTLE patients. CONCLUSION This is the first study to use monaural 40-Hz ASSR with unilateral mTLE patients to clarify the relationship between CAP and epileptic focus. CAP dysfunction was characterized by a lack of contralaterality corresponding to epileptic focus. SIGNIFICANCE Monaural 40-Hz ASSR can provide useful information for localizing epileptic focus in mTLE patients.
Collapse
Affiliation(s)
- Teppei Matsubara
- Department of Clinical Neurophysiology, Neurological Institute, Faculty of Medicine, Graduate School of Medical Sciences, Kyushu University, Japan.
| | - Katsuya Ogata
- Department of Clinical Neurophysiology, Neurological Institute, Faculty of Medicine, Graduate School of Medical Sciences, Kyushu University, Japan
| | - Naruhito Hironaga
- Department of Clinical Neurophysiology, Neurological Institute, Faculty of Medicine, Graduate School of Medical Sciences, Kyushu University, Japan
| | - Taira Uehara
- Department of Clinical Neurophysiology, Neurological Institute, Faculty of Medicine, Graduate School of Medical Sciences, Kyushu University, Japan
| | - Takako Mitsudo
- Department of Clinical Neurophysiology, Neurological Institute, Faculty of Medicine, Graduate School of Medical Sciences, Kyushu University, Japan
| | - Hiroshi Shigeto
- Epilepsy and Sleep Center, Fukuoka Sanno Hospital, Fukuoka, Japan
| | | | - Shozo Tobimatsu
- Department of Clinical Neurophysiology, Neurological Institute, Faculty of Medicine, Graduate School of Medical Sciences, Kyushu University, Japan
| |
Collapse
|
6
|
Abstract
Precise time estimation is crucial in perception, action and social interaction. Previous neuroimaging studies in humans indicate that perceptual timing tasks involve multiple brain regions; however, whether the representation of time is localized or distributed in the brain remains elusive. Using ultra-high-field functional magnetic resonance imaging combined with multivariate pattern analyses, we show that duration information is decoded in multiple brain areas, including the bilateral parietal cortex, right inferior frontal gyrus and, albeit less clearly, the medial frontal cortex. Individual differences in the duration judgment accuracy were positively correlated with the decoding accuracy of duration in the right parietal cortex, suggesting that individuals with a better timing performance represent duration information in a more distinctive manner. Our study demonstrates that although time representation is widely distributed across frontoparietal regions, neural populations in the right parietal cortex play a crucial role in time estimation. Masamichi Hayashi et al. combine high field neuroimaging (7T fMRI) and multivariate pattern analyses to show that the pattern of functional MRI activity in the right parietal lobe can predict the perception of time in individual participants. They find that while time representation is distributed across frontoparietal regions, the right parietal cortex plays a key role.
Collapse
|
7
|
Daikoku T, Takahashi Y, Tarumoto N, Yasuda H. Motor Reproduction of Time Interval Depends on Internal Temporal Cues in the Brain: Sensorimotor Imagery in Rhythm. Front Psychol 2018; 9:1873. [PMID: 30333779 PMCID: PMC6176082 DOI: 10.3389/fpsyg.2018.01873] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 09/12/2018] [Indexed: 11/13/2022] Open
Abstract
How the human brain perceives time intervals is a fascinating topic that has been explored in many fields of study. This study examined how time intervals are replicated in three conditions: with no internalized cue (PT), with an internalized cue without a beat (AS), and with an internalized cue with a beat (RS). In PT, participants accurately reproduced the time intervals up to approximately 3 s. Over 3 s, however, the reproduction errors became increasingly negative. In RS, longer presentations of over 5.6 s and 13 beats induced accurate time intervals in reproductions. This suggests longer exposure to beat presentation leads to stable internalization and efficiency in the sensorimotor processing of perception and reproduction. In AS, up to approximately 3 s, the results were similar to those of RS whereas over 3 s, the results shifted and became similar to those of PT. The time intervals between the first two stimuli indicate that the strategies of time-interval reproduction in AS may shift from RS to PT. Neural basis underlying the reproduction of time intervals without a beat may depend on length of time interval between adjacent stimuli in sequences.
Collapse
Affiliation(s)
- Tatsuya Daikoku
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Yuji Takahashi
- Faculty of Health Care and Medical Sports, Teikyo Heisei University, Chiba, Japan
| | | | - Hideki Yasuda
- Faculty of Health Care and Medical Sports, Teikyo Heisei University, Chiba, Japan
| |
Collapse
|
8
|
Wehrman JJ, Wearden JH, Sowman P. Short-term effects on temporal judgement: Sequential drivers of interval bisection and reproduction. Acta Psychol (Amst) 2018; 185:87-95. [PMID: 29432991 DOI: 10.1016/j.actpsy.2018.01.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 01/16/2018] [Accepted: 01/19/2018] [Indexed: 11/26/2022] Open
Abstract
Our prior experiences provide the background with which we judge subsequent events. In the time perception literature one common finding is that providing participants with a higher percentage of a particular interval can skew judgment; intervals will appear longer if the distribution of intervals contains more short experiences. However, changing the distribution of intervals that participants witness also changes the short-term, interval-to-interval, sequence that participants experience. In the experiment presented here, we kept the overall distribution of intervals constant while manipulating the immediately-prior experience of participants. In temporal bisection, this created a noted assimilation effect; participants judged intervals as shorter given an immediately preceding short interval. In interval reproduction, there was no effect of the immediately prior interval length unless the prior interval had a linked motor command. We thus proposed that the immediately prior interval provided a context by which a subsequent interval is judged. However, in the case of reproduction, where a subsequent interval is reproduced, rather than seen, the effects of contextualization are attenuated.
Collapse
|