1
|
Tang Y, Moreira GA, Vanegas D, Datta SPA, McLamore ES. Batch-to-Batch Variation in Laser-Inscribed Graphene (LIG) Electrodes for Electrochemical Sensing. MICROMACHINES 2024; 15:874. [PMID: 39064384 PMCID: PMC11279040 DOI: 10.3390/mi15070874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/25/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024]
Abstract
Laser-inscribed graphene (LIG) is an emerging material for micro-electronic applications and is being used to develop supercapacitors, soft actuators, triboelectric generators, and sensors. The fabrication technique is simple, yet the batch-to-batch variation of LIG quality is not well documented in the literature. In this study, we conduct experiments to characterize batch-to-batch variation in the manufacturing of LIG electrodes for applications in electrochemical sensing. Numerous batches of 36 LIG electrodes were synthesized using a CO2 laser system on polyimide film. The LIG material was characterized using goniometry, stereomicroscopy, open circuit potentiometry, and cyclic voltammetry. Hydrophobicity and electrochemical screening (cyclic voltammetry) indicate that LIG electrode batch-to-batch variation is less than 5% when using a commercial reference and counter electrode. Metallization of LIG led to a significant increase in peak current and specific capacitance (area between anodic/cathodic curve). However, batch-to-batch variation increased to approximately 30%. Two different platinum electrodeposition techniques were studied, including galvanostatic and frequency-modulated electrodeposition. The study shows that formation of metallized LIG electrodes with high specific capacitance and peak current may come at the expense of high batch variability. This design tradeoff has not been discussed in the literature and is an important consideration if scaling sensor designs for mass use is desired. This study provides important insight into the variation of LIG material properties for scalable development of LIG sensors. Additional studies are needed to understand the underlying mechanism(s) of this variability so that strategies to improve the repeatability may be developed for improving quality control. The dataset from this study is available via an open access repository.
Collapse
Affiliation(s)
- Yifan Tang
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC 29631, USA;
| | - Geisianny A. Moreira
- Department of Agricultural Sciences, Clemson University, Clemson, SC 29631, USA;
| | - Diana Vanegas
- Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, SC 29634, USA;
| | - Shoumen P. A. Datta
- Department of Mechanical Engineering, MIT Auto-ID Labs, Massachusetts Institute of Technology, Cambridge, MA 02139, USA;
- Biomedical Engineering Program, Medical Device (MDPnP) Interoperability and Cybersecurity Labs, Department of Anesthesiology, Massachusetts General Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Eric S. McLamore
- Department of Agricultural Sciences, Clemson University, Clemson, SC 29631, USA;
- Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, SC 29634, USA;
| |
Collapse
|
2
|
Rahman S, Haleem A, Siddiq M, Hussain MK, Qamar S, Hameed S, Waris M. Research on dye sensitized solar cells: recent advancement toward the various constituents of dye sensitized solar cells for efficiency enhancement and future prospects. RSC Adv 2023; 13:19508-19529. [PMID: 37388146 PMCID: PMC10304709 DOI: 10.1039/d3ra00903c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/31/2023] [Indexed: 07/01/2023] Open
Abstract
It is universally accepted that the financial advancement of a state is essentially dependent upon the energy sector as it is essential in the growth, development, and improvement of the farming, mechanical, and defense sectors. A dependable source of energy is expected to enhance society's expectation of everyday comforts. Modern industrial advancement, which is indispensable for any nation, relies upon electricity. The principal explanation behind the energy emergency is rapidly increasing the use of hydrocarbon resources. Thus, the use of renewable resources is essential to overcome this dilemma. The consumption of hydrocarbon fuels and their discharge has destructive consequences on our surroundings. Third-generation photovoltaic (solar) cells are latest encouraging option in solar cells. Currently, dye-sensitized solar cells (DSSC) utilize organic (natural and synthetic) dye and inorganic (ruthenium) as a sensitizer. The nature of this dye combined with different variables has brought about a change in its use. Natural dyes are a feasible alternative in comparison to expensive and rare ruthenium dye owing to their low cast, easy utility, abundant supply of resources, and no environmental threat. In this review, the dyes generally utilized in DSSC are discussed. The DSSC criteria and components are explained, and the progress in inorganic and natural dyes is monitored. Scientists involved in this emerging technology will benefit from this examination.
Collapse
Affiliation(s)
- Sultana Rahman
- Department of Chemistry Quaid-i-Azam University 45320 Islamabad Pakistan
| | - Abdul Haleem
- Department of Chemistry Quaid-i-Azam University 45320 Islamabad Pakistan
| | - Muhammad Siddiq
- Department of Chemistry Quaid-i-Azam University 45320 Islamabad Pakistan
| | - Muhammad Khalid Hussain
- Department of Physics, Faculty of Science, University of Gujrat HH Campus Gujrat 50700 Pakistan
- Department of Physics, Faculty of Science, University of Gujrat, Sub-Campus Mandi Bahauddin 50400 Pakistan
| | - Samina Qamar
- Department of Chemistry Quaid-i-Azam University 45320 Islamabad Pakistan
| | - Safia Hameed
- Department of Information Engineering University of Brescia Italy
| | - Muhammad Waris
- National Centre of Excellence in Analytical Chemistry, University of Sindh Jamshoro 76080 Pakistan
| |
Collapse
|
3
|
Lebedeva O, Kultin D, Kustov L. Electrochemical Synthesis of Unique Nanomaterials in Ionic Liquids. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:3270. [PMID: 34947620 PMCID: PMC8705126 DOI: 10.3390/nano11123270] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/24/2021] [Accepted: 11/27/2021] [Indexed: 11/16/2022]
Abstract
The review considers the features of the processes of the electrochemical synthesis of nanostructures in ionic liquids (ILs), including the production of carbon nanomaterials, silicon and germanium nanoparticles, metallic nanoparticles, nanomaterials and surface nanostructures based on oxides. In addition, the analysis of works on the synthesis of nanoscale polymer films of conductive polymers prepared using ionic liquids by electrochemical methods is given. The purpose of the review is to dwell upon an aspect of the applicability of ILs that is usually not fully reflected in modern literature, the synthesis of nanostructures (including unique ones that cannot be obtained in other electrolytes). The current underestimation of ILs as an electrochemical medium for the synthesis of nanomaterials may limit our understanding and the scope of their potential application. Another purpose of our review is to expand their possible application and to show the relative simplicity of the experimental part of the work.
Collapse
Affiliation(s)
- Olga Lebedeva
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (O.L.); (D.K.)
| | - Dmitry Kultin
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (O.L.); (D.K.)
| | - Leonid Kustov
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (O.L.); (D.K.)
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia
- Institute of Ecology and Engineering, National Science and Technology University “MISiS”, Leninsky Prospect 4, 119049 Moscow, Russia
| |
Collapse
|
4
|
Zaharani L, Khaligh NG, Johan MR. Synthesis, structure elucidation, vibrational and thermal behavior study of new one-core dication molten-salt. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
5
|
Yang M, Sun LP, Chen B, Liao J, Yuan H, Guan BO. A universal strategy: Rational construction of noble metal nanoparticle-shell/conducting polymer nanofiber-core electrodes with enhanced electrochemical performances. NANOTECHNOLOGY 2020; 31:445602. [PMID: 32693391 DOI: 10.1088/1361-6528/aba7e3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
To address a challenge for decoration of noble metal nanoparticles (NMNPs)-shell on conducting polymer nanofiber (CPNF) electrodes (i.e. NMNP-shell/CPNF-core electrodes) for boosting electrochemical performances, a two-step strategy comprising chemical pre-deposition and electrochemical deposition is designed. The strategy shows a high universality in terms of the diversity of NMNP-shell elements (single-element: AgNP-shell, AuNP-shell, PtNP-shell, PdNP-shell; multi-element: Au/Pt/PdNP-shell) and the independence of conductive substrates of electrodes. The shells are composed of high-density NMNPs and have strong adhesion to CPNF-cores. It is demonstrated that in response to a specific applied electrical stimulus, the resulting low doping level of CPNFs facilitates the generation of high-density nucleation sites (small NMNPs) by chemical pre-deposition (as high capability of electron transfer and low resistance to electron transfer from CP chains to NM ions), which is indispensable for the formation of NMNP-shells on CPNF-cores by electrochemical deposition. The decoration of NMNP-shells can significantly enhance the electrochemical performances of CPNF electrodes. Moreover, the great practicality and reliability of NMNP-shell/CPNF-core electrodes in use as an electrocatalytic platform are confirmed. This universal strategy opens up a new avenue to construct high-dimension shell/core-nanostructured electrodes.
Collapse
Affiliation(s)
- Mingjin Yang
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communication, Institute of Photonics Technology, Jinan University, Guangzhou 511443, People's Republic of China
| | | | | | | | | | | |
Collapse
|
6
|
Tankov I, Yankova R. A combined DFT and FT-IR study on the surface interactions in alumina supported ionic liquid [H-Pyr] +[HSO 4] . SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 226:117545. [PMID: 31710889 DOI: 10.1016/j.saa.2019.117545] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/14/2019] [Accepted: 09/17/2019] [Indexed: 06/10/2023]
Abstract
The surface interactions in [H-Pyr]+[HSO4]-/γ-Al2O3 system (prepared by wetness impregnation method) are investigated theoretically and experimentally. For that purpose, atoms in molecules theory, natural bond orbital and natural charge population analyses in a combination with a vibrational spectroscopy (FT-IR) are used. It is established that a bond formation between the hydrogen sulfate anion and the alumina influences the IL-support interaction in a great extent. However, a support-cation and a cation-anion interaction in the immobilized [H-Pyr]+[HSO4]- present as well. A comparative analysis between the experimental and the calculated vibrational modes is carried out and a significant number of infrared bands are assigned. The results indicate a good correlation between the experimental and the theoretical IR frequencies. It is found that the aforementioned interactions affected the vibrational frequencies in the supported IL.
Collapse
Affiliation(s)
- Ivaylo Tankov
- University "Prof. Dr. Assen Zlatarov" Burgas, 8010, Bulgaria
| | - Rumyana Yankova
- University "Prof. Dr. Assen Zlatarov" Burgas, 8010, Bulgaria.
| |
Collapse
|
7
|
Poly (3, 4-ethylenedioxythiophene) modified polyvinylidene fluoride membrane for visible photoelectrocatalysis and filtration. J Colloid Interface Sci 2019; 553:220-227. [PMID: 31203006 DOI: 10.1016/j.jcis.2019.06.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 06/06/2019] [Accepted: 06/07/2019] [Indexed: 11/23/2022]
Abstract
A polyvinylidene fluoride (PVDF) organic conductive membrane with photoelectric activity was successfully developed via printing of oxidant (FeCl3·6H2O) layer by layer and then chemical vapor deposition (CVD) of Poly (3, 4-ethylenedioxythiophene) (PEDOT). Four kinds of membranes were prepared by changing the number of oxidant coatings layers. The structure and photoelectric properties of four membranes were well characterized. The photocurrent density of 3.7 × 10-4 A indicated that the four-oxidant coating layers membrane achieved the best performance in photo-electricity activity. A comprehensive study of degradation efficiency under different photoelectric conditions was carried out. Results showed that the photoelectrocatalytic removal of tetracycline hydrochloride was 1.6 and 7.9 times higher than that of photocatalysis and photolysis, respectively, under a voltage of 3 V assisted with visible light irradiation. The anti-interference and stability tests in continuous filtration process demonstrated that the dissolved organic matters (DOMs) can result in a 30% fluctuation on removal rate. The streaming potential tests of DOMs adsorption on membrane surface indicated that the more obvious the adsorption phenomenon was, the degradation of tetracycline hydrochloride was weaker. The degradation intermediates were identified and pathways were proposed in this work. The photoelectrocatalysis of PEDOT modified PVDF membrane provided a new potential for water purification.
Collapse
|
8
|
Electrochemically polymerized poly (3, 4-phenylenedioxythiophene) as efficient and transparent counter electrode for dye sensitized solar cells. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.01.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
The influence of chloride and hydrogen sulfate anions in two polymerised ionic liquids based on the poly(1-(hydroxyethyl)-3-vinylimidazolium cation, synthesis, thermal and vibrational studies. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2018.08.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
10
|
Effect of lithium hexafluorophosphate LiPF6 and 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide [Bmim][TFSI] immobilized in poly(2-hydroxyethyl methacrylate) PHEMA. Polym Bull (Berl) 2018. [DOI: 10.1007/s00289-018-2553-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|