1
|
Thurman CL, Shih HT, McNamara JC. Minuca panema (Coelho, 1972): Resurrection of a Fiddler Crab Species from Brazil Closely Related to Minuca burgersi (Holthuis, 1967) (Crustacea, Decapoda, Brachyura, Ocypodidae). Zool Stud 2023; 62:e45. [PMID: 37965297 PMCID: PMC10641435 DOI: 10.6620/zs.2023.62-45] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 07/09/2023] [Indexed: 11/16/2023]
Abstract
We redescribe a species of fiddler crab, Minuca panema (Coelho, 1972), from the Atlantic coast of South America. It is closely related to M. mordax (Smith, 1870), and until now, the taxon has been considered to be synonymous with another closely related species Minuca burgersi (Holthuis, 1967). However, we found that two clades of M. burgersi sensu lato were restricted to the Caribbean Basin. This distribution differs from than that of M. panema, which occurs primarily along the eastern coast of South America, ranging from the island of Trinidad to Praia da Armação, Santa Catarina, Brazil. Based on our field studies, the geographical boundary between M. burgersi sensu stricto and M. panema is the Tobago Basin, north of Trinidad. Since the two species diverged only 3 to 4 million years ago, as dated from the phylogeny of the genus Minuca Bott 1954, there are few reliable morphological features that can be used to distinguish them clearly. In live crabs, there is a striking difference in coloration between the cherryred South American M. panema and the rusty-red Caribbean M. burgersi sensu lato. In males, the pattern of tubercles on the inner surface of the major cheliped varies between the two species. In females, the vulva is slightly larger in M. burgersi sensu stricto. Ocean tides and currents together with siltation owing to freshwater outflow from the Amazon and Orinoco rivers most likely have driven the divergence of these species. In the Caribbean, small tidal amplitudes have minimized long-distance gene flow in M. burgersi sensu stricto from isolated insular lagoons. In contrast, large tidal amplitudes and exposed habitats on riverbanks along the eastern Atlantic coast of South America have enabled long-distance dispersal in M. panema. DNA analysis reveals that haplotypes of cytochrome c oxidase subunit 1 are not shared between the species. Since natural selection and/or genetic drift have yet to produce extensive morphological divergences between M. panema and M. burgersi sensu stricto, we speculate that changes in the genes regulating mitochondrial DNA functions have led to speciation at the molecular level. According to the mitonuclear compatibility concept, we propose that mitochondrial DNA may be at the forefront of speciation events and that co-evolved mitonuclear interactions are responsible for some of the earliest genetic incompatibilities arising among isolated populations.
Collapse
Affiliation(s)
- Carl L Thurman
- Department of Biology, University of Northern Iowa, 1227 West 27th St., Cedar Falls, IA 50614-0421, USA. E-mail: (Thurman). Tel: +1 319 273-2276
| | - Hsi-Te Shih
- Department of Biology, University of Northern Iowa, 1227 West 27th St., Cedar Falls, IA 50614-0421, USA. E-mail: (Thurman). Tel: +1 319 273-2276
| | - John C McNamara
- Departamento de Biologia, FFCLRP, Universidade de São Paulo, Ribeirao Preto 14040-901, Brazil. E-mail: (McNamara). Tel: +55 16 3315 3687
- Centro de Biologia Marinha, Universidade de São Paulo, 11600-000 SP, Brazil
| |
Collapse
|
2
|
Pedro Selvatti A, Romero Rebello Moreira F, Cardoso de Carvalho D, Prosdocimi F, Augusta de Moraes Russo C, Carolina Martins Junqueira A. Phylogenomics reconciles molecular data with the rich fossil record on the origin of living turtles. Mol Phylogenet Evol 2023; 183:107773. [PMID: 36977459 DOI: 10.1016/j.ympev.2023.107773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 02/07/2023] [Accepted: 03/21/2023] [Indexed: 03/28/2023]
Abstract
Although a consensus exists that all living turtles fall within either Pleurodira or Cryptodira clades, estimating when these lineages split is still under debate. Most molecular studies date the split in the Triassic Period, whereas a Jurassic age is unanimous among morphological studies. Each hypothesis implies different paleobiogeographical scenarios to explain early turtle evolution. Here we explored the rich turtle fossil record with the Fossilized Birth-Death (FBD) and the traditional node dating (ND) methods using complete mitochondrial genomes (147 taxa) and a set of nuclear orthologs with over 10 million bp (25 taxa) to date the major splits in Testudines. Our results support an Early Jurassic split (191-182 Ma) for the crown Testudines with great consistency across different dating methods and datasets, with a narrow confidence interval. This result is independently supported by the oldest fossils of Testudines that postdate the Middle Jurassic (174 Ma), which were not used for calibration in this study. This age coincides with the Pangaea fragmentation and the formation of saltwater barriers such as the Atlantic Ocean and the Turgai Strait, supporting that diversification in Testudines was triggered by vicariance. Our ages of the splits in Pleurodira coincide with the geologic events of the Late Jurassic and Early Cretaceous. Conversely, the early Cryptodira radiation remained in Laurasia, and its diversification ensued as all its major lineages expanded their distribution into every continent during the Cenozoic. We provide the first detailed hypothesis of the evolution of Cryptodira in the Southern Hemisphere, in which our time estimates are correlated with each contact between landmasses derived from Gondwana and Laurasia. Although most South American Cryptodira arrived through the Great American Biotic Interchange, our results indicate that the Chelonoidis ancestor probably arrived from Africa through the chain islands of the South Atlantic during the Paleogene. Together, the presence of ancient turtle diversity and the vital role that turtles occupy in marine and terrestrial ecosystems underline South America as a chief area for conservation.
Collapse
|
3
|
Kirby A, Hernández-Molina FJ, Rodrigues S. Lateral migration of large sedimentary bodies in a deep-marine system offshore of Argentina. Sci Rep 2021; 11:20291. [PMID: 34645920 PMCID: PMC8514427 DOI: 10.1038/s41598-021-99730-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 09/29/2021] [Indexed: 11/24/2022] Open
Abstract
Contourite features are increasingly identified in seismic data, but the mechanisms controlling their evolution remain poorly understood. Using 2D multichannel reflection seismic and well data, this study describes large Oligocene- to middle Miocene-aged sedimentary bodies that show prominent lateral migration along the base of the Argentine slope. These form part of a contourite depositional system with four morphological elements: a plastered drift, a contourite channel, an asymmetric mounded drift, and an erosive surface. The features appear within four seismic units (SU1–SU4) bounded by discontinuities. Their sedimentary stacking patterns indicate three evolutionary stages: an onset stage (I) (~ 34–25 Ma), a growth stage (II) (~ 25–14 Ma), and (III) a burial stage (< 14 Ma). The system reveals that lateral migration of large sedimentary bodies is not only confined to shallow or littoral marine environments and demonstrates how bottom currents and secondary oceanographic processes influence contourite morphologies. Two cores of a single water mass, in this case, the Antarctic Bottom Water and its upper interface, may drive upslope migration of asymmetric mounded drifts. Seismic images also show evidence of recirculating bottom currents which have modulated the system’s evolution. Elucidation of these novel processes will enhance basin analysis and palaeoceanographic reconstructions.
Collapse
Affiliation(s)
- Adam Kirby
- Department of Earth Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX, UK.
| | | | - Sara Rodrigues
- Department of Earth Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX, UK
| |
Collapse
|
4
|
Cramwinckel MJ, Coxall HK, Śliwińska KK, Polling M, Harper DT, Bijl PK, Brinkhuis H, Eldrett JS, Houben AJP, Peterse F, Schouten S, Reichart G, Zachos JC, Sluijs A. A Warm, Stratified, and Restricted Labrador Sea Across the Middle Eocene and Its Climatic Optimum. PALEOCEANOGRAPHY AND PALEOCLIMATOLOGY 2020; 35:e2020PA003932. [PMID: 33134852 PMCID: PMC7590098 DOI: 10.1029/2020pa003932] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 07/14/2020] [Accepted: 07/29/2020] [Indexed: 06/11/2023]
Abstract
Several studies indicate that North Atlantic Deep Water (NADW) formation might have initiated during the globally warm Eocene (56-34 Ma). However, constraints on Eocene surface ocean conditions in source regions presently conducive to deep water formation are sparse. Here we test whether ocean conditions of the middle Eocene Labrador Sea might have allowed for deep water formation by applying (organic) geochemical and palynological techniques, on sediments from Ocean Drilling Program (ODP) Site 647. We reconstruct a long-term sea surface temperature (SST) drop from ~30°C to ~27°C between 41.5 to 38.5 Ma, based on TEX86. Superimposed on this trend, we record ~2°C warming in SST associated with the Middle Eocene Climatic Optimum (MECO; ~40 Ma), which is the northernmost MECO record as yet, and another, likely regional, warming phase at ~41.1 Ma, associated with low-latitude planktic foraminifera and dinoflagellate cyst incursions. Dinoflagellate cyst assemblages together with planktonic foraminiferal stable oxygen isotope ratios overall indicate low surface water salinities and strong stratification. Benthic foraminifer stable carbon and oxygen isotope ratios differ from global deep ocean values by 1-2‰ and 2-4‰, respectively, indicating geographic basin isolation. Our multiproxy reconstructions depict a consistent picture of relatively warm and fresh but also highly variable surface ocean conditions in the middle Eocene Labrador Sea. These conditions were unlikely conducive to deep water formation. This implies either NADW did not yet form during the middle Eocene or it formed in a different source region and subsequently bypassed the southern Labrador Sea.
Collapse
Affiliation(s)
- Margot J. Cramwinckel
- Department of Earth Sciences, Faculty of GeoscienceUtrecht UniversityUtrechtThe Netherlands
- Now at School of Ocean and Earth Science, National Oceanography Centre SouthamptonUniversity of SouthamptonSouthamptonUK
| | - Helen K. Coxall
- Department of Geological SciencesStockholm UniversityStockholmSweden
| | | | - Marcel Polling
- Department of Earth Sciences, Faculty of GeoscienceUtrecht UniversityUtrechtThe Netherlands
- Now at Naturalis Biodiversity CenterLeidenThe Netherlands
| | - Dustin T. Harper
- Department of Earth and Planetary SciencesUniversity of CaliforniaSanta CruzCAUSA
- Now at Department of GeologyThe University of KansasLawrenceKSUSA
| | - Peter K. Bijl
- Department of Earth Sciences, Faculty of GeoscienceUtrecht UniversityUtrechtThe Netherlands
| | - Henk Brinkhuis
- Department of Earth Sciences, Faculty of GeoscienceUtrecht UniversityUtrechtThe Netherlands
- NIOZ Royal Netherlands Institute for Sea Research, Department of Marine Microbiology and Biogeochemistry, and Utrecht UniversityDen BurgThe Netherlands
| | - James S. Eldrett
- Shell International Exploration and Production B. V.RijswijkThe Netherlands
| | - Alexander J. P. Houben
- Applied Geosciences TeamNetherlands Organisation for Applied Scientific Research (TNO)UtrechtThe Netherlands
| | - Francien Peterse
- Department of Earth Sciences, Faculty of GeoscienceUtrecht UniversityUtrechtThe Netherlands
| | - Stefan Schouten
- Department of Earth Sciences, Faculty of GeoscienceUtrecht UniversityUtrechtThe Netherlands
- NIOZ Royal Netherlands Institute for Sea Research, Department of Marine Microbiology and Biogeochemistry, and Utrecht UniversityDen BurgThe Netherlands
| | - Gert‐Jan Reichart
- Department of Earth Sciences, Faculty of GeoscienceUtrecht UniversityUtrechtThe Netherlands
- NIOZ Royal Netherlands Institute for Sea Research, Department of Marine Microbiology and Biogeochemistry, and Utrecht UniversityDen BurgThe Netherlands
| | | | - Appy Sluijs
- Department of Earth Sciences, Faculty of GeoscienceUtrecht UniversityUtrechtThe Netherlands
| |
Collapse
|
5
|
Batenburg SJ, Voigt S, Friedrich O, Osborne AH, Bornemann A, Klein T, Pérez-Díaz L, Frank M. Major intensification of Atlantic overturning circulation at the onset of Paleogene greenhouse warmth. Nat Commun 2018; 9:4954. [PMID: 30470783 PMCID: PMC6251870 DOI: 10.1038/s41467-018-07457-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 11/01/2018] [Indexed: 11/09/2022] Open
Abstract
During the Late Cretaceous and early Cenozoic the Earth experienced prolonged climatic cooling most likely caused by decreasing volcanic activity and atmospheric CO2 levels. However, the causes and mechanisms of subsequent major global warming culminating in the late Paleocene to Eocene greenhouse climate remain enigmatic. We present deep and intermediate water Nd-isotope records from the North and South Atlantic to decipher the control of the opening Atlantic Ocean on ocean circulation and its linkages to the evolution of global climate. The marked convergence of Nd-isotope signatures 59 million years ago indicates a major intensification of deep-water exchange between the North and South Atlantic, which coincided with the turning point of deep-water temperatures towards early Paleogene warming. We propose that this intensification of Atlantic overturning circulation in concert with increased atmospheric CO2 from continental rifting marked a climatic tipping point contributing to a more efficient distribution of heat over the planet.
Collapse
Affiliation(s)
- S J Batenburg
- Institut für Geowissenschaften, Goethe-Universität Frankfurt, Altenhöferallee 1, Frankfurt am Main, 60438, Germany. .,Department of Earth Sciences, University of Oxford, South Parks Road, Oxford, OX1 3AN, UK.
| | - S Voigt
- Institut für Geowissenschaften, Goethe-Universität Frankfurt, Altenhöferallee 1, Frankfurt am Main, 60438, Germany
| | - O Friedrich
- Institut für Geowissenschaften, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 234-236, 69120, Heidelberg, Germany
| | - A H Osborne
- GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel, Wischhofstr. 1-3, Kiel, 24148, Germany
| | - A Bornemann
- Bundesanstalt für Geowissenschaften und Rohstoffe, Stilleweg 2, 30655, Hannover, Germany
| | - T Klein
- Institut für Geowissenschaften, Goethe-Universität Frankfurt, Altenhöferallee 1, Frankfurt am Main, 60438, Germany
| | - L Pérez-Díaz
- Department of Earth Sciences, Royal Holloway, University of London, Egham, TW20 0EX, UK
| | - M Frank
- GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel, Wischhofstr. 1-3, Kiel, 24148, Germany
| |
Collapse
|