1
|
Ni K, Cai D, Lu J, Tian J. Eugenol-Mediated Inhibition of Biofilm Formed by S. aureus: a Potent Organism for Pediatric Digestive System Diseases. Appl Biochem Biotechnol 2022; 194:1340-1358. [PMID: 34705248 DOI: 10.1007/s12010-021-03682-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 09/08/2021] [Indexed: 11/29/2022]
Abstract
Ocimum tenuiflorum (KT) is a common ethnobotanical plant of Southeast Asia. The ethnic communities of these regions use the various parts of the plants, especially the leaves, for the treatment of various ailments like cold and flu, chronic infections, and surface ailments. The leaves of these plants are consumed to act as immune boosters in the body. With this ethnical background, we performed the antimicrobial and antibiofilm potential of the methanolic extract of Ocimum tenuiflorum against biofilm formed by S. aureus biofilm. The biofilm formed by S. aureus is a potent cause for the development of gastrointestinal (GI)-associated chronic infection. The extract from the KT leaf was analyzed using UV spectroscopy and HPLC to confirm the presence of the active ingredients present within the extract. The HPLC and GC-MS studies revealed the presence of eugenol and linalool in a greater proportion having the maximum drug-like properties. It was observed that KT showed maximum inhibition of biofilms, proteins, and carbohydrates being present with the extracellular polymeric substance (EPS). Interestingly, the maximum inhibition to the quorum sensing (QS) and the genomic DNA, RNA content was reduced by eugenol and linalool in comparison to the plant extract. The studies were supported by in silico interaction between eugenol and linalool with the QS proteins of S. aureus. The studies were further confirmed with microscopic studies SEM and FCM. The IR studies also confirmed much reduction in biofilm when treated with eugenol, linalool, and KT with respect to the untreated sample.
Collapse
Affiliation(s)
- KaiHua Ni
- Pediatric Department, Children's Hospital of Soochow University, Suzhou, 215025, Jiangsu Province, China
| | - Danlei Cai
- The Emergency Department, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Jianhong Lu
- Pediatric Department, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Jianmei Tian
- Department of Infectious Diseases, Children's Hospital of Soochow University, Suzhou, 215000, Jiangsu Province, China.
| |
Collapse
|
2
|
Clegg J, Soldaini E, McLoughlin RM, Rittenhouse S, Bagnoli F, Phogat S. Staphylococcus aureus Vaccine Research and Development: The Past, Present and Future, Including Novel Therapeutic Strategies. Front Immunol 2021; 12:705360. [PMID: 34305945 PMCID: PMC8294057 DOI: 10.3389/fimmu.2021.705360] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 06/22/2021] [Indexed: 11/13/2022] Open
Abstract
Staphylococcus aureus is one of the most important human pathogens worldwide. Its high antibiotic resistance profile reinforces the need for new interventions like vaccines in addition to new antibiotics. Vaccine development efforts against S. aureus have failed so far however, the findings from these human clinical and non-clinical studies provide potential insight for such failures. Currently, research is focusing on identifying novel vaccine formulations able to elicit potent humoral and cellular immune responses. Translational science studies are attempting to discover correlates of protection using animal models as well as in vitro and ex vivo models assessing efficacy of vaccine candidates. Several new vaccine candidates are being tested in human clinical trials in a variety of target populations. In addition to vaccines, bacteriophages, monoclonal antibodies, centyrins and new classes of antibiotics are being developed. Some of these have been tested in humans with encouraging results. The complexity of the diseases and the range of the target populations affected by this pathogen will require a multipronged approach using different interventions, which will be discussed in this review.
Collapse
Affiliation(s)
- Jonah Clegg
- GSK, Siena, Italy
- Host Pathogen Interactions Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | | | - Rachel M. McLoughlin
- Host Pathogen Interactions Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | | | | | | |
Collapse
|
3
|
Mrochen DM, Fernandes de Oliveira LM, Raafat D, Holtfreter S. Staphylococcus aureus Host Tropism and Its Implications for Murine Infection Models. Int J Mol Sci 2020; 21:E7061. [PMID: 32992784 PMCID: PMC7582387 DOI: 10.3390/ijms21197061] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 09/22/2020] [Accepted: 09/22/2020] [Indexed: 12/11/2022] Open
Abstract
Staphylococcus aureus (S. aureus) is a pathobiont of humans as well as a multitude of animal species. The high prevalence of multi-resistant and more virulent strains of S. aureus necessitates the development of new prevention and treatment strategies for S. aureus infection. Major advances towards understanding the pathogenesis of S. aureus diseases have been made using conventional mouse models, i.e., by infecting naïve laboratory mice with human-adapted S.aureus strains. However, the failure to transfer certain results obtained in these murine systems to humans highlights the limitations of such models. Indeed, numerous S. aureus vaccine candidates showed promising results in conventional mouse models but failed to offer protection in human clinical trials. These limitations arise not only from the widely discussed physiological differences between mice and humans, but also from the lack of attention that is paid to the specific interactions of S. aureus with its respective host. For instance, animal-derived S. aureus lineages show a high degree of host tropism and carry a repertoire of host-specific virulence and immune evasion factors. Mouse-adapted S.aureus strains, humanized mice, and microbiome-optimized mice are promising approaches to overcome these limitations and could improve transferability of animal experiments to human trials in the future.
Collapse
Affiliation(s)
- Daniel M. Mrochen
- Department of Immunology, Institute of Immunology and Transfusion Medicine, University Medicine Greifswald, Ferdinand-Sauerbruch-Strasse DZ 7, 17475 Greifswald, Germany; (L.M.F.d.O.); (D.R.); (S.H.)
| | - Liliane M. Fernandes de Oliveira
- Department of Immunology, Institute of Immunology and Transfusion Medicine, University Medicine Greifswald, Ferdinand-Sauerbruch-Strasse DZ 7, 17475 Greifswald, Germany; (L.M.F.d.O.); (D.R.); (S.H.)
| | - Dina Raafat
- Department of Immunology, Institute of Immunology and Transfusion Medicine, University Medicine Greifswald, Ferdinand-Sauerbruch-Strasse DZ 7, 17475 Greifswald, Germany; (L.M.F.d.O.); (D.R.); (S.H.)
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, 21521 Alexandria, Egypt
| | - Silva Holtfreter
- Department of Immunology, Institute of Immunology and Transfusion Medicine, University Medicine Greifswald, Ferdinand-Sauerbruch-Strasse DZ 7, 17475 Greifswald, Germany; (L.M.F.d.O.); (D.R.); (S.H.)
| |
Collapse
|
4
|
Larcombe S, Jiang JH, Hutton ML, Abud HE, Peleg AY, Lyras D. A mouse model of Staphylococcus aureus small intestinal infection. J Med Microbiol 2020; 69:290-297. [PMID: 32004137 PMCID: PMC7431102 DOI: 10.1099/jmm.0.001163] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Introduction Staphylococcus aureus is a recognised cause of foodborne intoxication and antibiotic-associated diarrhoea (AAD), which are both mediated by staphylococcal enterotoxins. However, unlike foodborne intoxication, AAD appears to require infection of the host. While S. aureus intoxication is widely studied, little is known about S. aureus pathogenesis in the context of gastrointestinal infection. Aim To develop a mouse model of S. aureus gastrointestinal infection. Methodology An established AAD mouse model was adapted for S. aureus infection, and damage observed via histopathological analysis and immunostaining of intestinal tissues. Results Various strains colonised the mouse model, and analysis showed that although clinical signs of disease were not seen, S. aureus infection induced damage in the small intestine, disrupting host structures essential for epithelial integrity. Studies using a staphylococcal enterotoxin B mutant showed that this toxin may contribute to damage during gastrointestinal infection. Conclusion This work presents a new mouse model of S. aureus gastrointestinal infection, while also providing insight into the pathogenesis of S. aureus in the gut.
Collapse
Affiliation(s)
- Sarah Larcombe
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Jhih-Hang Jiang
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Melanie L. Hutton
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Helen E. Abud
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
| | - Anton Y. Peleg
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia
- Department of Infectious Diseases, The Alfred Hospital and Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Dena Lyras
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia
- *Correspondence: Dena Lyras,
| |
Collapse
|
5
|
Flaxman A, Yamaguchi Y, van Diemen PM, Rollier C, Allen E, Elshina E, Wyllie DH. Heterogeneous early immune responses to the S. aureus EapH2 antigen induced by gastrointestinal tract colonisation impact the response to subsequent vaccination. Vaccine 2019; 37:494-501. [PMID: 30503080 DOI: 10.1016/j.vaccine.2018.11.063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 11/19/2018] [Accepted: 11/20/2018] [Indexed: 12/31/2022]
Abstract
INTRODUCTION S. aureus is a pathogen to which individuals are exposed shortly after birth, with immune responses to S. aureus increasing during childhood. There is marked heterogeneity between the anti- S. aureus immune responses of different humans, the basis of which is not fully understood. METHODS To investigate development of anti-S. aureus immune responses, we studied S. aureus colonised mice under controlled conditions. Mice were either acquired colonised from breeding colonies, or experimentally colonised by exposure to a cage environment which had been sprayed with a S. aureus suspension. Colonisation was monitored by sequential stool sampling, and immunoglobulin levels against both whole fixed S. aureus and individual S. aureus antigens quantified. The immunological impact of colonisation on subsequent vaccination was investigated. RESULTS Colonised BALB/c and BL/6 mice develop serum anti- S. aureus cell surface IgG1 antibodies. Responses were proportional to the cumulative S. aureus bioburden in the mice, and were higher in BALB/c mice, which have higher colonisation levels, than in C57BL/6 animals. We observed marked variation in the induction of anti-cell surface antibodies, even in genetically identical mice experimentally colonised with the same S. aureus clone. Heterogeneity was also evident when monitoring immune responses to the secreted S. aureus protein EapH2. Approximately 50% of colonised mice developed anti-EapH2 responses (responders); in other mice, responses were not significantly different to those in uncolonised mice (non-responders). Following vaccination with a replication deficient adenovirus expressing EapH2, less anti-EapH2 antibody was generated in non-responder than responder animals. CONCLUSIONS In genetically identical mice, S. aureus colonisation results in all-or-nothing antibody responses against some antigens, including EapH2. For antigens involved in colonisation success by microbes, apparently stochastic early immune responses may impact both vaccine responses and the establishment of an animal-specific microbiome.
Collapse
Affiliation(s)
- Amy Flaxman
- Jenner Institute, University of Oxford, Centre for Cellular and Molecular Physiology, Oxford, UK
| | - Yuko Yamaguchi
- Jenner Institute, University of Oxford, Centre for Cellular and Molecular Physiology, Oxford, UK
| | - Pauline M van Diemen
- Jenner Institute, University of Oxford, Centre for Cellular and Molecular Physiology, Oxford, UK
| | - Christine Rollier
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, and the NIHR Biomedical Research Centre, CCVTM, Churchill Drive, UK
| | - Elizabeth Allen
- Jenner Institute, University of Oxford, Centre for Cellular and Molecular Physiology, Oxford, UK
| | - Elizaveta Elshina
- Jenner Institute, University of Oxford, Centre for Cellular and Molecular Physiology, Oxford, UK
| | - David H Wyllie
- Jenner Institute, University of Oxford, Centre for Cellular and Molecular Physiology, Oxford, UK.
| |
Collapse
|
6
|
Elshina E, Allen ER, Flaxman A, van Diemen PM, Milicic A, Rollier CS, Yamaguchi Y, Wyllie DH. Vaccination with the Staphylococcus aureus secreted proteins EapH1 and EapH2 impacts both S. aureus carriage and invasive disease. Vaccine 2018; 37:502-509. [PMID: 30502067 DOI: 10.1016/j.vaccine.2018.11.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 11/02/2018] [Accepted: 11/13/2018] [Indexed: 12/15/2022]
Abstract
INTRODUCTION There is a need for an efficacious vaccine reducing infections due to Staphylococcus aureus, a common cause of community and hospital infection. Infecting organisms originate from S. aureus populations colonising the nares and bowel. Antimicrobials are widely used to transiently reduce S. aureus colonisation prior to surgery, a practice which is selecting for resistant S. aureus isolates. S. aureus secretes multiple proteins, including the protease inhibitors extracellular adhesion protein homologue 1 and 2 (EapH1 and EapH2). METHODS Mice were vaccinated intramuscularly or intranasally with Adenovirus serotype 5 and Modified Vaccinia Ankara viral vectors expressing EapH1 and EapH2 proteins, or with control viruses. Using murine S. aureus colonisation models, we monitored S. aureus colonisation by sequential stool sampling. Monitoring of S. aureus invasive disease after intravenous challenge was performed using bacterial load and abscess numbers in the kidney. RESULTS Intramuscular vaccination with Adenovirus serotype 5 and Modified Vaccinia Ankara viral vectors expressing EapH1 and EapH2 proteins significantly reduces bacterial recovery in the murine renal abscess model of infection, but the magnitude of the effect is small. A single intranasal vaccination with an adenoviral vaccine expressing these proteins reduced S. aureus gastrointestinal (GI) tract colonisation. CONCLUSION Vaccination against EapH1 / EapH2 proteins may offer an antibiotic independent way to reduce S. aureus colonisation, as well as contributing to protection against S. aureus invasive disease.
Collapse
Affiliation(s)
- Elizaveta Elshina
- Jenner Institute, Centre for Cellular and Molecular Physiology, University of Oxford, United Kingdom
| | - Elizabeth R Allen
- Jenner Institute, Centre for Cellular and Molecular Physiology, University of Oxford, United Kingdom
| | - Amy Flaxman
- Jenner Institute, Centre for Cellular and Molecular Physiology, University of Oxford, United Kingdom
| | - Pauline M van Diemen
- Jenner Institute, Centre for Cellular and Molecular Physiology, University of Oxford, United Kingdom
| | - Anita Milicic
- Jenner Institute, Centre for Cellular and Molecular Physiology, University of Oxford, United Kingdom
| | - Christine S Rollier
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, and NIHR Oxford Biomedical Research Centre, Centre for Clinical Vaccinology and Tropical Medicine, University of Oxford, United Kingdom
| | - Yuko Yamaguchi
- Jenner Institute, Centre for Cellular and Molecular Physiology, University of Oxford, United Kingdom
| | - David H Wyllie
- Jenner Institute, Centre for Cellular and Molecular Physiology, University of Oxford, United Kingdom.
| |
Collapse
|
7
|
Trübe P, Hertlein T, Mrochen DM, Schulz D, Jorde I, Krause B, Zeun J, Fischer S, Wolf SA, Walther B, Semmler T, Bröker BM, Ulrich RG, Ohlsen K, Holtfreter S. Bringing together what belongs together: Optimizing murine infection models by using mouse-adapted Staphylococcus aureus strains. Int J Med Microbiol 2018; 309:26-38. [PMID: 30391222 DOI: 10.1016/j.ijmm.2018.10.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 10/05/2018] [Accepted: 10/18/2018] [Indexed: 02/06/2023] Open
Abstract
Staphylococcus (S.) aureus is a leading cause of bacterial infection world-wide, and currently no vaccine is available for humans. Vaccine development relies heavily on clinically relevant infection models. However, the suitability of mice for S. aureus infection models has often been questioned, because experimental infection of mice with human-adapted S. aureus requires very high infection doses. Moreover, mice were not considered to be natural hosts of S. aureus. The latter has been disproven by our recent findings, showing that both laboratory mice, as well as wild small mammals including mice, voles, and shrews, are naturally colonized with S. aureus. Here, we investigated whether mouse-and vole-derived S. aureus strains show an enhanced virulence in mice as compared to the human-adapted strain Newman. Using a step-wise approach based on the bacterial genotype and in vitro assays for host adaptation, we selected the most promising candidates for murine infection models out of a total of 254 S. aureus isolates from laboratory mice as well as wild rodents and shrews. Four strains representing the clonal complexes (CC) 8, 49, and 88 (n = 2) were selected and compared to the human-adapted S. aureus strain Newman (CC8) in murine pneumonia and bacteremia models. Notably, a bank vole-derived CC49 strain, named DIP, was highly virulent in BALB/c mice in pneumonia and bacteremia models, whereas the other murine and vole strains showed virulence similar to or lower than that of Newman. At one tenth of the standard infection dose DIP induced disease severity, bacterial load and host cytokine and chemokine responses in the murine bacteremia model similar to that of Newman. In the pneumonia model, DIP was also more virulent than Newman but the effect was less pronounced. Whole genome sequencing data analysis identified a pore-forming toxin gene, lukF-PV(P83)/lukM, in DIP but not in the other tested S. aureus isolates. To conclude, the mouse-adapted S. aureus strain DIP allows a significant reduction of the inoculation dose in mice and is hence a promising tool to develop clinically more relevant infection models.
Collapse
Affiliation(s)
- Patricia Trübe
- Department of Immunology, University Medicine Greifswald, Greifswald, Germany
| | - Tobias Hertlein
- Institute for Molecular Infection Biology, University of Würzburg, Germany
| | - Daniel M Mrochen
- Department of Immunology, University Medicine Greifswald, Greifswald, Germany
| | - Daniel Schulz
- Department of Immunology, University Medicine Greifswald, Greifswald, Germany
| | - Ilka Jorde
- Department of Immunology, University Medicine Greifswald, Greifswald, Germany
| | - Bettina Krause
- Department of Immunology, University Medicine Greifswald, Greifswald, Germany
| | - Julia Zeun
- Department of Immunology, University Medicine Greifswald, Greifswald, Germany
| | - Stefan Fischer
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institute, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Silver A Wolf
- Microbial Genomics (NG1), Robert Koch Institute, Berlin, Germany
| | - Birgit Walther
- Advanced Light and Electron Microscopy, Robert Koch Institute, Berlin, Germany
| | - Torsten Semmler
- Microbial Genomics (NG1), Robert Koch Institute, Berlin, Germany
| | - Barbara M Bröker
- Department of Immunology, University Medicine Greifswald, Greifswald, Germany
| | - Rainer G Ulrich
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institute, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Knut Ohlsen
- Institute for Molecular Infection Biology, University of Würzburg, Germany
| | - Silva Holtfreter
- Department of Immunology, University Medicine Greifswald, Greifswald, Germany.
| |
Collapse
|