1
|
Wiley MB, Bauer J, Alvarez V, Mehrotra K, Cheng W, Kolics Z, Giarrizzo M, Ingle K, Bialkowska AB, Jung B. Activin A signaling stimulates neutrophil activation and macrophage migration in pancreatitis. Sci Rep 2024; 14:9382. [PMID: 38654064 PMCID: PMC11039671 DOI: 10.1038/s41598-024-60065-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/18/2024] [Indexed: 04/25/2024] Open
Abstract
Acute Pancreatitis (AP) is associated with high mortality and current treatment options are limited to supportive care. We found that blockade of activin A (activin) in mice improves outcomes in two murine models of AP. To test the hypothesis that activin is produced early in response to pancreatitis and is maintained throughout disease progression to stimulate immune cells, we first performed digital spatial profiling (DSP) of human chronic pancreatitis (CP) patient tissue. Then, transwell migration assays using RAW264.7 mouse macrophages and qPCR analysis of "neutrophil-like" HL-60 cells were used for functional correlation. Immunofluorescence and western blots on cerulein-induced pancreatitis samples from pancreatic acinar cell-specific Kras knock-in (Ptf1aCreER™; LSL-KrasG12D) and functional WT Ptf1aCreER™ mouse lines mimicking AP and CP to allow for in vivo confirmation. Our data suggest activin promotes neutrophil and macrophage activation both in situ and in vitro, while pancreatic activin production is increased as early as 1 h in response to pancreatitis and is maintained throughout CP in vivo. Taken together, activin is produced early in response to pancreatitis and is maintained throughout disease progression to promote neutrophil and macrophage activation.
Collapse
Affiliation(s)
- Mark B Wiley
- Department of Medicine, University of Washington, 1959 NE Pacific Street, Seattle, WA, 98195, USA
| | - Jessica Bauer
- Department of Medicine, University of Washington, 1959 NE Pacific Street, Seattle, WA, 98195, USA
| | - Valentina Alvarez
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
| | - Kunaal Mehrotra
- Department of Medicine, University of Washington, 1959 NE Pacific Street, Seattle, WA, 98195, USA
| | - Wenxuan Cheng
- Department of Medicine, University of Washington, 1959 NE Pacific Street, Seattle, WA, 98195, USA
| | - Zoe Kolics
- Department of Medicine, University of Washington, 1959 NE Pacific Street, Seattle, WA, 98195, USA
| | - Michael Giarrizzo
- Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, 11794, USA
| | - Komala Ingle
- Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, 11794, USA
| | - Agnieszka B Bialkowska
- Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, 11794, USA
| | - Barbara Jung
- Department of Medicine, University of Washington, 1959 NE Pacific Street, Seattle, WA, 98195, USA.
| |
Collapse
|
2
|
Zaman S, Gorelick F. Acute pancreatitis: pathogenesis and emerging therapies. JOURNAL OF PANCREATOLOGY 2024; 7:10-20. [PMID: 38524855 PMCID: PMC10959536 DOI: 10.1097/jp9.0000000000000168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/25/2023] [Indexed: 03/26/2024] Open
Abstract
Acute pancreatitis is a severe inflammatory disorder with limited treatment options. Improved understanding of disease mechanisms has led to new and potential therapies. Here we summarize what we view as some of the most promising new therapies for treating acute pancreatitis, emphasizing the rationale of specific treatments based on disease mechanisms. Targeted pharmacologic interventions are highlighted. We explore potential treatment benefits and risks concerning reducing acute injury, minimizing complications, and improving long-term outcomes. Mechanisms associated with acute pancreatitis initiation, perpetuation, and reconstitution are highlighted, along with potential therapeutic targets and how these relate to new treatments.
Collapse
Affiliation(s)
- Saif Zaman
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06511
| | - Fred Gorelick
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06511
- Veteran’s Administration Healthcare System, West Haven, CT 06516
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06511
| |
Collapse
|
3
|
Wiley MB, Mehrotra K, Bauer J, Yazici C, Bialkowska AB, Jung B. Acute Pancreatitis: Current Clinical Approaches, Molecular Pathophysiology, and Potential Therapeutics. Pancreas 2023; 52:e335-e343. [PMID: 38127317 DOI: 10.1097/mpa.0000000000002259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
OBJECTIVE Severe acute pancreatitis (SAP), pancreatic inflammation leading to multiorgan failure, is associated with high morbidity and mortality. There is a critical need to identify novel therapeutic strategies to improve clinical outcomes for SAP patients. MATERIALS AND METHODS A comprehensive literature review was performed to identify current clinical strategies, known molecular pathophysiology, and potential therapeutic targets for SAP. RESULTS Current clinical approaches focus on determining which patients will likely develop SAP. However, therapeutic options are limited to supportive care and fluid resuscitation. The application of a novel 5-cytokine panel accurately predicting disease outcomes in SAP suggests that molecular approaches will improve impact of future clinical trials in AP. CONCLUSIONS Inflammatory outcomes in acute pancreatitis are driven by several unique molecular signals, which compound to promote both local and systemic inflammation. The identification of master cytokine regulators is critical to developing therapeutics, which reduce inflammation through several mechanisms.
Collapse
Affiliation(s)
- Mark B Wiley
- From the Department of Medicine, University of Washington, Seattle, WA
| | - Kunaal Mehrotra
- From the Department of Medicine, University of Washington, Seattle, WA
| | - Jessica Bauer
- From the Department of Medicine, University of Washington, Seattle, WA
| | - Cemal Yazici
- Department of Medicine, University of Illinois Chicago, Chicago, IL
| | - Agnieszka B Bialkowska
- Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY
| | - Barbara Jung
- From the Department of Medicine, University of Washington, Seattle, WA
| |
Collapse
|
4
|
Staudacher JJ, Arnold A, Kühl AA, Pötzsch M, Daum S, Winterfeld M, Berg E, Hummel M, Rau B, Stein U, Treese C. Prognostic impact of activin subunit inhibin beta A in gastric and esophageal adenocarcinomas. BMC Cancer 2022; 22:953. [PMID: 36064338 PMCID: PMC9446826 DOI: 10.1186/s12885-022-10016-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 08/19/2022] [Indexed: 11/10/2022] Open
Abstract
PURPOSE Adenocarcinomas of the esophagus (AEG) and stomach (AS) are among the most common cancers worldwide. Novel markers for risk stratification and guiding treatment are strongly needed. Activin is a multi-functional cytokine with context specific pro- and anti-tumorigenic effects. We aimed to investigate the prognostic role of activin tumor protein expression in AEG/ASs. METHODS Tissue from a retrospective cohort of 277 patients with AEG/AS treated primarily by surgery at the Charité - Universitätsmedizin Berlin was collected and analyzed by immunohistochemistry using a specific antibody to the activin homodimer inhibin beta A. Additionally, we evaluated T-cell infiltration and PD1 expression as well as expression of PD-L1 by immunohistochemistry as possible confounding factors. Clinico-pathologic data were collected and correlated with activin protein expression. RESULTS Out of 277 tumor samples, 72 (26.0%) exhibited high activin subunit inhibin beta A protein expression. Higher expression was correlated with lower Union for International Cancer Control (UICC) stage and longer overall survival. Interestingly, activin subunit expression correlated with CD4+ T-cell infiltration, and the correlation with higher overall survival was exclusively seen in tumors with high CD4+ T-cell infiltration, pointing towards a role of activin in the tumor immune response in AEG/ASs. CONCLUSION In our cohort of AEG/AS, higher activin subunit levels were correlated with longer overall survival, an effect exclusively seen in tumors with high CD4+ cell infiltration. Further mechanistic research is warranted discerning the exact effect of this context specific cytokine.
Collapse
Affiliation(s)
- J J Staudacher
- Medical Department, Division of Gastroenterology, Infectious Diseases and Rheumatology, Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany.
- Berlin Institute of Health at Charité Universitätsmedizin Berlin, Charitéplatz1, 10117, Berlin, Germany.
| | - Alexander Arnold
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - A A Kühl
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, iPATH.Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - M Pötzsch
- Medical Department, Division of Gastroenterology, Infectious Diseases and Rheumatology, Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - S Daum
- Medical Department, Division of Gastroenterology, Infectious Diseases and Rheumatology, Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
- Berlin Institute of Health at Charité Universitätsmedizin Berlin, Charitéplatz1, 10117, Berlin, Germany
| | - M Winterfeld
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - E Berg
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - M Hummel
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - B Rau
- Department of Surgery, Campus Virchow-Klinikum and Campus Mitte, Charité - Universitätsmedizin, Berlin, Germany
| | - U Stein
- Experimental and Clinical Research Center, Charité - Universitätsmedizin and Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| | - C Treese
- Medical Department, Division of Gastroenterology, Infectious Diseases and Rheumatology, Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
- Berlin Institute of Health at Charité Universitätsmedizin Berlin, Charitéplatz1, 10117, Berlin, Germany
| |
Collapse
|
5
|
Activin A Modulates Inflammation in Acute Pancreatitis and Strongly Predicts Severe Disease Independent of Body Mass Index. Clin Transl Gastroenterol 2021; 11:e00152. [PMID: 32358238 PMCID: PMC7263641 DOI: 10.14309/ctg.0000000000000152] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Acute pancreatitis (AP) is a healthcare challenge with considerable mortality. Treatment is limited to supportive care, highlighting the need to investigate disease drivers and prognostic markers. Activin A is an established mediator of inflammatory responses, and its serum levels correlate with AP severity. We hypothesized that activin A is independent of body mass index (BMI) and is a targetable promoter of the AP inflammatory response.
Collapse
|
6
|
Role of stromal activin A in human pancreatic cancer and metastasis in mice. Sci Rep 2021; 11:7986. [PMID: 33846512 PMCID: PMC8042028 DOI: 10.1038/s41598-021-87213-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 03/22/2021] [Indexed: 12/11/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has extensive stromal involvement and remains one of the cancers with the highest mortality rates. Activin A has been implicated in colon cancer and its stroma but its role in the stroma of PDAC has not been elucidated. Activin A expression in cancer and stroma was assessed in human PDAC tissue microarrays (TMA). Activin A expression in human TMA is significantly higher in cancer samples, with expression in stroma correlated with shorter survival. Cultured pancreatic stellate cells (PSC) were found to secrete high levels of activin A resulting in PDAC cell migration that is abolished by anti-activin A neutralizing antibody. KPC mice treated with anti-activin A neutralizing antibody were evaluated for tumors, lesions and metastases quantified by immunohistochemistry. KPC mice with increased tumor burden express high plasma activin A. Treating KPC mice with an activin A neutralizing antibody does not reduce primary tumor size but decreases tumor metastases. From these data we conclude that PDAC patients with high activin A expression in stroma have a worse prognosis. PSCs secrete activin A, promoting increased PDAC migration. Inhibition of activin A in mice decreased metastases. Hence, stroma-rich PDAC patients might benefit from activin A inhibition.
Collapse
|
7
|
Roudebush C, Catala-Valentin A, Andl T, Le Bras GF, Andl CD. Activin A-mediated epithelial de-differentiation contributes to injury repair in an in vitro gastrointestinal reflux model. Cytokine 2019; 123:154782. [PMID: 31369967 DOI: 10.1016/j.cyto.2019.154782] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/08/2019] [Accepted: 07/10/2019] [Indexed: 02/08/2023]
Abstract
Reflux esophagitis is a result of esophageal exposure to acid and bile during episodes of gastroesophageal reflux. Aside from chemical injury to the esophageal epithelium, it has been shown that acid and bile induce cytokine-mediated injury by stimulating the release of pro-inflammatory cytokines. During the repair and healing process following reflux injury, the squamous esophageal cells are replaced with a columnar epithelium causing Barrett's metaplasia, which predisposes patients to esophageal adenocarcinoma. We identified a novel player in gastroesophageal reflux injury, the TGFβ family member Activin A (ActA), which is a known regulator of inflammation and tissue repair. In this study, we show that in response to bile salt and acidified media (pH 4) exposure, emulating the milieu to which the distal esophagus is exposed during gastroesophageal reflux, long-term treated, tolerant esophageal keratinocytes exhibit increased ActA secretion and a pro-inflammatory cytokine signature. Furthermore, we noted increased motility and expression of the stem cell markers SOX9, LGR5 and DCLK1 supporting the notion that repair mechanisms were activated in the bile salt/acid-tolerant keratinocytes. Additionally, these experiments demonstrated that de-differentiation as characterized by the induction of YAP1, FOXO3 and KRT17 was altered by ActA/TGFβ signaling. Collectively, our results suggest a pivotal role for ActA in the inflammatory GERD environment by modulating esophageal tissue repair and de-differentiation.
Collapse
Affiliation(s)
- Cedric Roudebush
- Burnett School of Biomedical Sciences, University of Central Florida, 4110 Libra Dr., BMS, Building 20, rm 223, Orlando, FL 32816, United States
| | - Alma Catala-Valentin
- Burnett School of Biomedical Sciences, University of Central Florida, 4110 Libra Dr., BMS, Building 20, rm 223, Orlando, FL 32816, United States
| | - Thomas Andl
- Burnett School of Biomedical Sciences, University of Central Florida, 4110 Libra Dr., BMS, Building 20, rm 223, Orlando, FL 32816, United States
| | - Gregoire F Le Bras
- Burnett School of Biomedical Sciences, University of Central Florida, 4110 Libra Dr., BMS, Building 20, rm 223, Orlando, FL 32816, United States
| | - Claudia D Andl
- Burnett School of Biomedical Sciences, University of Central Florida, 4110 Libra Dr., BMS, Building 20, rm 223, Orlando, FL 32816, United States.
| |
Collapse
|
8
|
Mickevičius A, Valantinas J, Stanaitis J, Jucaitis T, Mašalaitė L. Changes in the Velocity of Blood in the Portal Vein in Mild Acute Pancreatitis-A Preliminary Clinical Study. MEDICINA (KAUNAS, LITHUANIA) 2019; 55:E211. [PMID: 31130704 PMCID: PMC6571583 DOI: 10.3390/medicina55050211] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 03/18/2019] [Accepted: 05/20/2019] [Indexed: 12/12/2022]
Abstract
Background and objective: Portal vein thrombosis is associated with a decrease in the main blood velocity in this vessel. While most studies examine etiological factors of portal vein thrombosis after its occurrence, we aimed to evaluate portal vessels and assess whether mild acute pancreatitis affects blood flow in the portal vein and increases the risk of thrombosis. Materials and methods: This prospective single centered follow-up study enrolled 66 adult participants. Fifty of them were diagnosed with mild acute pancreatitis based on the Revised Atlanta classification, and 16 healthy participants formed the control group. All participants were examined three times. The first examination was carried out at the beginning of the disease and the next two at three-month intervals. Blood samples were taken and color Doppler ultrasound performed the first time, whereas ultrasound alone was performed during the second and third visits. Mean and maximal blood velocities and resistivity index in the main portal vein and its left and right branches were evaluated. Results: Mean velocity of the blood flow in the main portal vein and its right and left branches was not significantly different from healthy individuals during the acute pancreatitis phase: 23.1 ± 8.5 cm/s vs. 24.5 ± 8.2 cm/s (p = 0.827); 16.4 ± 7.9 cm/s vs. 16.4 ± 8.1 cm/s (p = 1.000); and 8 ± 3.4 cm/s vs. 7.4 ± 2.5 cm/s (p = 0.826), respectively. The same was observed when comparing the maximal blood flow velocity: 67.9 ± 29 cm/s vs. 67.5 ± 21 cm/s (p > 0.05); 45.4 ± 27 cm/s vs. 44 ± 23.8 cm/s (p = 0.853); and 22.2 ± 9.8 cm/s vs. 20 ± 7.3 cm/s (p = 0.926), respectively. Changes in venous blood velocities were not significant during the follow-up period in separate study groups. Conclusions: Portal blood flow velocities do not change during mild acute pancreatitis in the inflammatory and postinflammatory periods. This observation suggests that mild acute pancreatitis does not increase the risk of portal vein thrombosis.
Collapse
Affiliation(s)
- Artautas Mickevičius
- Vilnius University Faculty of Medicine, Clinic of Gastroenterology, Nephro-Urology and Surgery, Biomedical Sciences, Vilnius LT-03101, Lithuania.
- Centre of Hepatology, Gastroenterology and Dietetics, Vilnius University Hospital Santaros Clinics, Vilnius LT-08661, Lithuania.
| | - Jonas Valantinas
- Vilnius University Faculty of Medicine, Clinic of Gastroenterology, Nephro-Urology and Surgery, Biomedical Sciences, Vilnius LT-03101, Lithuania.
- Centre of Hepatology, Gastroenterology and Dietetics, Vilnius University Hospital Santaros Clinics, Vilnius LT-08661, Lithuania.
| | - Juozas Stanaitis
- Centre of Hepatology, Gastroenterology and Dietetics, Vilnius University Hospital Santaros Clinics, Vilnius LT-08661, Lithuania.
| | - Tomas Jucaitis
- Centre of Hepatology, Gastroenterology and Dietetics, Vilnius University Hospital Santaros Clinics, Vilnius LT-08661, Lithuania.
| | - Laura Mašalaitė
- Vilnius University Faculty of Medicine, Clinic of Gastroenterology, Nephro-Urology and Surgery, Biomedical Sciences, Vilnius LT-03101, Lithuania.
- Centre of Hepatology, Gastroenterology and Dietetics, Vilnius University Hospital Santaros Clinics, Vilnius LT-08661, Lithuania.
| |
Collapse
|