1
|
Barrett T, Lee KL, de Rooij M, Giganti F. Update on Optimization of Prostate MR Imaging Technique and Image Quality. Radiol Clin North Am 2024; 62:1-15. [PMID: 37973236 DOI: 10.1016/j.rcl.2023.06.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Prostate MR imaging quality has improved dramatically over recent times, driven by advances in hardware, software, and improved functional imaging techniques. MRI now plays a key role in prostate cancer diagnostic work-up, but outcomes of the MRI-directed pathway are heavily dependent on image quality and optimization. MR sequences can be affected by patient-related degradations relating to motion and susceptibility artifacts which may enable only partial mitigation. In this Review, we explore issues relating to prostate MRI acquisition and interpretation, mitigation strategies at a patient and scanner level, PI-QUAL reporting, and future directions in image quality, including artificial intelligence solutions.
Collapse
Affiliation(s)
- Tristan Barrett
- Department of Radiology, Addenbrooke's Hospital and University of Cambridge, Cambridge, UK.
| | - Kang-Lung Lee
- Department of Radiology, Addenbrooke's Hospital and University of Cambridge, Cambridge, UK; Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Maarten de Rooij
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, Netherlands
| | - Francesco Giganti
- Department of Radiology, University College London Hospital NHS Foundation Trust, London, UK; Division of Surgery and Interventional Science, University College London, London, UK
| |
Collapse
|
2
|
Reduced field-of-view and multi-shot DWI acquisition techniques: Prospective evaluation of image quality and distortion reduction in prostate cancer imaging. Magn Reson Imaging 2022; 93:108-114. [DOI: 10.1016/j.mri.2022.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/03/2022] [Accepted: 08/03/2022] [Indexed: 11/20/2022]
|
3
|
Sathiadoss P, Schieda N, Haroon M, Osman H, Alrasheed S, Flood TA, Melkus G. Utility of Quantitative T2-Mapping Compared to Conventional and Advanced Diffusion Weighted Imaging Techniques for Multiparametric Prostate MRI in Men with Hip Prosthesis. J Magn Reson Imaging 2021; 55:265-274. [PMID: 34223675 DOI: 10.1002/jmri.27803] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/11/2021] [Accepted: 06/11/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Diffusion weighted imaging (DWI) is fundamental for prostate cancer (PCa) detection with MRI; however, limited by susceptibility artifact from hip prosthesis. PURPOSE To evaluate image quality and ability to detect PCa with quantitative T2-mapping and DWI in men with hip prosthesis undergoing prostate MRI. STUDY TYPE Prospective, cross-sectional study. POPULATION Thirty consecutive men with hip replacement (18 unilateral, 12 bilateral) undergoing prostate MRI from 2019 to 2021. FIELD STRENGTH/SEQUENCE 3-T; multiparametric MRI (T2W, DCE-MRI, echo-planar [EPI]-DWI), T2-mapping (Carr-Purcell-Meiboom-Gill), FOCUS-EPI-DWI, PROPELLER-DWI. ASSESSMENT Five blinded radiologists independently evaluated MRI image quality using a 5-point Likert scale. PI-RADS v2.1 scores were applied in four interpretation strategies: 1) T2W-FSE+DCE-MRI+EPI-DWI, 2) T2W-FSE+DCE-MRI+EPI-DWI+FOCUS-EPI-DWI, 3) T2W-FSE+DCE-MRI+EPI-DWI+PROPELLER-DWI, 4) T2W-FSE+DCE-MRI+EPI-DWI+T2-maps. Five-point confidence scores were recorded. STATISTICAL ANALYSIS ANOVA, Kruskal-Wallis with pair-wise comparisons by Wilcoxon sign-rank, and paired t-tests, P < 0.05 was considered significant. Cohen's Kappa (k) for PI-RADSv2.1 scoring and proportion of correctly classified lesions tabulated for pathology-confirmed cases with 95% confidence intervals (CIs). RESULTS For all radiologists, T2-map image quality was significantly higher than EPI-DWI, FOCUS-EPI-DWI, and PROPELLER-DWI and similar (P = 0.146-0.706) or significantly better (for two readers) than T2W-FSE and DCE-MRI. PI-RADS v2.1 agreement improved comparing strategy A (k = 0.46) to strategy B (k = 0.58) to strategy C (k = 0.58) and was highest with strategy D which included T2-maps (k = 1.00). Radiologists' confidence was significantly highest with strategy D. Strategies B and C had similar confidence (P = 0.051-0.063) both significantly outperforming strategy A. Twelve men with 17 lesions had pathology confirmed diagnoses (13 PCa, 4 benign). Strategy D had the highest proportion of correctly classified lesions (76.5-82.4%) with overlapping 95% confidence intervals. DATA CONCLUSION T2-mapping may be a valuable adjunct to prostate MRI in men with hip replacement resulting in improved image quality, higher reader confidence, interobserver agreement, and accuracy in PI-RADS scoring. LEVEL OF EVIDENCE 1 TECHNICAL EFFICACY STAGE: 2.
Collapse
Affiliation(s)
- Paul Sathiadoss
- Department of Medical Imaging, The Ottawa Hospital, University of Ottawa, Ottawa, Ontario, Canada
| | - Nicola Schieda
- Department of Medical Imaging, The Ottawa Hospital, University of Ottawa, Ottawa, Ontario, Canada
| | - Mohammad Haroon
- Department of Medical Imaging, The Ottawa Hospital, University of Ottawa, Ottawa, Ontario, Canada
| | - Heba Osman
- Department of Medical Imaging, The Ottawa Hospital, University of Ottawa, Ottawa, Ontario, Canada
| | - Sumaya Alrasheed
- Department of Medical Imaging, The Ottawa Hospital, University of Ottawa, Ottawa, Ontario, Canada
| | - Trevor A Flood
- Department of Anatomical Pathology, The Ottawa Hospital, University of Ottawa, Ottawa, Ontario, Canada
| | - Gerd Melkus
- Department of Medical Imaging, The Ottawa Hospital, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
4
|
Snoj Ž, Rundo L, Gill AB, Barrett T. Quantifying the effect of biopsy lateral decubitus patient positioning compared to supine prostate magnetic resonance image scanning on prostate translocation and distortion. Can Urol Assoc J 2020; 14:E445-E452. [PMID: 32223873 DOI: 10.5489/cuaj.6298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
INTRODUCTION More than a quarter of tumors are missed by magnetic resonance imaging/ultrasound (MRI/US) fusion-guided biopsy, the majority due to software-based misregistration. Transrectal approaches to biopsy are typically performed in the lateral decubitus position; conversely, diagnostic MRI is performed with the patient lying supine. Any position-related difference in prostate location or gland deformation could potentially exacerbate misregistration at subsequent biopsy. METHODS Fifteen healthy male volunteers (mean age 35.9 years, range 27-53) were included in this prospective, institutional review board-approved study. Each volunteer had an MRI performed in the supine position, followed by the second in the lateral decubitus position (mimicking a typical biopsy position). MRI images were co-registered and analyzed in order to assess prostate translocation and distortion. RESULTS Whole prostate translocation of ≥5 mm was observed in 20% of patients and of ≥3 mm in 60% of patients. When dividing the prostate into prostatic sectors, the prostatic base demonstrated the largest positional difference. When plotting the translocation directions with relative volume difference, there was a moderate negative correlation trend in the latero-lateral direction. Only minimal distortion was observed, with similar distortion among all prostatic sectors. CONCLUSIONS Positional change affects the prostate translocation, however, the effect on prostate distortion appears to be negligible. Prostate translocation in latero-lateral direction can be minimized with larger bladder volumes. Prostate translocation needs to be considered alongside software misregistration error; however, positional change should not affect software registration of MRI/US fusion-guided prostate biopsy.
Collapse
Affiliation(s)
- Žiga Snoj
- Department of Radiology, Addenbrooke's Hospital and University of Cambridge, Cambridge, United Kingdom.,Radiology Institute, University Medical Centre Ljubljana, Ljubljana, Slovenia.,Medical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Leonardo Rundo
- Department of Radiology, Addenbrooke's Hospital and University of Cambridge, Cambridge, United Kingdom.,Cancer Research, UK Cambridge Centre, Cambridge, United Kingdom
| | - Andrew B Gill
- Department of Radiology, Addenbrooke's Hospital and University of Cambridge, Cambridge, United Kingdom.,Department of Medical Physics, Cambridge University Hospitals, Cambridge, United Kingdom
| | - Tristan Barrett
- Department of Radiology, Addenbrooke's Hospital and University of Cambridge, Cambridge, United Kingdom.,CamPARI Clinic, Addenbrooke's Hospital and University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
5
|
Snoj Z, Gill AB, Rundo L, Sushentsev N, Barrett T. Three-dimensional MRI evaluation of the effect of bladder volume on prostate translocation and distortion. Radiol Oncol 2020; 54:48-56. [PMID: 31940289 PMCID: PMC7087418 DOI: 10.2478/raon-2020-0001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 12/19/2019] [Indexed: 11/20/2022] Open
Abstract
Background The accuracy of any radiation therapy delivery is limited by target organ translocation and distortion. Bladder filling is one of the recognised factors affecting prostate translocation and distortion. The purpose of our study was to evaluate the effect of bladder volume on prostate translocation and distortion by using detailed three-dimensional prostate delineation on MRI. Patients and methods Fifteen healthy male volunteers were recruited in this prospective, institutional review board-approved study. Each volunteer underwent 4 different drinking preparations prior to imaging, with MR images acquired pre- and post-void. MR images were co-registered by using bony landmarks and three-dimensional contouring was performed in order to assess the degree of prostate translocation and distortion. According to changes in bladder or rectum distention, subdivisions were made into bladder and rectal groups. Studies with concomitant change in both bladder and rectal volume were excluded. Results Forty studies were included in the bladder volume study group and 8 in the rectal volume study group. The differences in rectal volumes yielded higher levels of translocation (p < 0.01) and distortion (p = 0.02) than differences in bladder volume. Moderate correlation of prostate translocation with bladder filling was shown (r = 0.64, p < 0.01). There was no important prostate translocation when bladder volume change was < 2-fold (p < 0.01). Moderate correlation of prostate distortion with bladder filling was shown (r = 0.61, p < 0.01). Conclusions Bladder volume has a minimal effect on prostate translocation and effect on prostate distortion is negligible. Prostate translocation may be minimalised if there is < 2-fold increase in the bladder volume.
Collapse
Affiliation(s)
- Ziga Snoj
- Department of Radiology, Addenbrooke’s Hospital and University of Cambridge, Cambridge, UK
- Radiology Institute, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Andrew B. Gill
- Department of Radiology, Addenbrooke’s Hospital and University of Cambridge, Cambridge, UK
- Department of Medical Physics, Cambridge University Hospitals, Cambridge, UK
| | - Leonardo Rundo
- Department of Radiology, Addenbrooke’s Hospital and University of Cambridge, Cambridge, UK
- Cancer Research UK Cambridge Centre, Cambridge, UK
| | - Nikita Sushentsev
- Department of Radiology, Addenbrooke’s Hospital and University of Cambridge, Cambridge, UK
| | - Tristan Barrett
- Department of Radiology, Addenbrooke’s Hospital and University of Cambridge, Cambridge, UK
- CamPARI Clinic, Addenbrooke’s Hospital and University of Cambridge, Cambridge, UK
| |
Collapse
|
6
|
Deen SS, Priest AN, McLean MA, Gill AB, Brodie C, Crawford R, Latimer J, Baldwin P, Earl HM, Parkinson C, Smith S, Hodgkin C, Patterson I, Addley H, Freeman S, Moyle P, Jimenez-Linan M, Graves MJ, Sala E, Brenton JD, Gallagher FA. Diffusion kurtosis MRI as a predictive biomarker of response to neoadjuvant chemotherapy in high grade serous ovarian cancer. Sci Rep 2019; 9:10742. [PMID: 31341212 PMCID: PMC6656714 DOI: 10.1038/s41598-019-47195-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 07/11/2019] [Indexed: 02/05/2023] Open
Abstract
This study assessed the feasibility of using diffusion kurtosis imaging (DKI) as a measure of tissue heterogeneity and proliferation to predict the response of high grade serous ovarian cancer (HGSOC) to neoadjuvant chemotherapy (NACT). Seventeen patients with HGSOC were imaged at 3 T and had biopsy samples taken prior to any treatment. The patients were divided into two groups: responders and non-responders based on Response Evaluation Criteria In Solid Tumours (RECIST) criteria. The following imaging metrics were calculated: apparent diffusion coefficient (ADC), apparent diffusion (Dapp) and apparent kurtosis (Kapp). Tumour cellularity and proliferation were quantified using histology and Ki-67 immunohistochemistry. Mean Kapp before therapy was higher in responders compared to non-responders: 0.69 ± 0.13 versus 0.51 ± 0.11 respectively, P = 0.02. Tumour cellularity correlated positively with Kapp (rho = 0.50, P = 0.04) and negatively with both ADC (rho = -0.72, P = 0.001) and Dapp (rho = -0.80, P < 0.001). Ki-67 expression correlated with Kapp (rho = 0.53, P = 0.03) but not with ADC or Dapp. In conclusion, Kapp was found to be a potential predictive biomarker of NACT response in HGSOC, which suggests that DKI is a promising clinical tool for use oncology and radiology that should be evaluated further in future larger studies.
Collapse
Affiliation(s)
- Surrin S Deen
- Department of Radiology, Box 218, University of Cambridge, Cambridge, CB2 0QQ, United Kingdom.
- Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital, Cambridge, CB2 0QQ, United Kingdom.
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, CB2 0RE, United Kingdom.
| | - Andrew N Priest
- Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital, Cambridge, CB2 0QQ, United Kingdom
| | - Mary A McLean
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, CB2 0RE, United Kingdom
| | - Andrew B Gill
- Department of Radiology, Box 218, University of Cambridge, Cambridge, CB2 0QQ, United Kingdom
- Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital, Cambridge, CB2 0QQ, United Kingdom
| | - Cara Brodie
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, CB2 0RE, United Kingdom
| | - Robin Crawford
- Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital, Cambridge, CB2 0QQ, United Kingdom
| | - John Latimer
- Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital, Cambridge, CB2 0QQ, United Kingdom
| | - Peter Baldwin
- Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital, Cambridge, CB2 0QQ, United Kingdom
| | - Helena M Earl
- Department of Radiology, Box 218, University of Cambridge, Cambridge, CB2 0QQ, United Kingdom
- Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital, Cambridge, CB2 0QQ, United Kingdom
| | - Christine Parkinson
- Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital, Cambridge, CB2 0QQ, United Kingdom
| | - Sarah Smith
- Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital, Cambridge, CB2 0QQ, United Kingdom
| | - Charlotte Hodgkin
- Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital, Cambridge, CB2 0QQ, United Kingdom
| | - Ilse Patterson
- Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital, Cambridge, CB2 0QQ, United Kingdom
| | - Helen Addley
- Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital, Cambridge, CB2 0QQ, United Kingdom
| | - Susan Freeman
- Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital, Cambridge, CB2 0QQ, United Kingdom
| | - Penny Moyle
- Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital, Cambridge, CB2 0QQ, United Kingdom
| | - Mercedes Jimenez-Linan
- Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital, Cambridge, CB2 0QQ, United Kingdom
| | - Martin J Graves
- Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital, Cambridge, CB2 0QQ, United Kingdom
| | - Evis Sala
- Department of Radiology, Box 218, University of Cambridge, Cambridge, CB2 0QQ, United Kingdom
- Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital, Cambridge, CB2 0QQ, United Kingdom
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, CB2 0RE, United Kingdom
| | - James D Brenton
- Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital, Cambridge, CB2 0QQ, United Kingdom
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, CB2 0RE, United Kingdom
| | - Ferdia A Gallagher
- Department of Radiology, Box 218, University of Cambridge, Cambridge, CB2 0QQ, United Kingdom
- Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital, Cambridge, CB2 0QQ, United Kingdom
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, CB2 0RE, United Kingdom
| |
Collapse
|
7
|
Multiparametric MRI - local staging of prostate cancer and beyond. Radiol Oncol 2019; 53:159-170. [PMID: 31103999 PMCID: PMC6572496 DOI: 10.2478/raon-2019-0021] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 04/15/2019] [Indexed: 02/07/2023] Open
Abstract
Background Accurate local staging is critical for treatment planning and prognosis in patients with prostate cancer (PCa). The primary aim is to differentiate between organ-confined and locally advanced disease with the latter carrying a worse clinical prognosis. Multiparametric MRI (mpMRI) is the imaging modality of choice for the local staging of PCa and has an incremental value in assessing pelvic nodal disease and bone involvement. It has shown superior performance compared to traditional staging based on clinical nomograms, and provides additional information on the site and extent of disease. MRI has a high specificity for diagnosing extracapsular extension (ECE), seminal vesicle invasion (SVI) and lymph node (LN) metastases, however, sensitivity remains poor. As a result, extended pelvic LN dissection remains the gold standard for assessing pelvic nodal involvement, and there has been recent progress in developing advanced imaging techniques for more distal staging. Conclusions T2W-weighted imaging is the cornerstone for local staging of PCa. Imaging at 3T and incorporating both diffusion weighted and dynamic contrast enhanced imaging can further increase accuracy. "Next generation" imaging including whole body MRI and PET-MRI imaging using prostate specific membrane antigen (68Ga-PSMA), has shown promising for assessment of LN and bone involvement as compared to the traditional work-up using bone scintigraphy and body CT.
Collapse
|
8
|
Usman M, Kakkar L, Kirkham A, Arridge S, Atkinson D. Model-based reconstruction framework for correction of signal pile-up and geometric distortions in prostate diffusion MRI. Magn Reson Med 2019; 81:1979-1992. [PMID: 30393895 PMCID: PMC6492108 DOI: 10.1002/mrm.27547] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 08/20/2018] [Accepted: 09/03/2018] [Indexed: 12/30/2022]
Abstract
PURPOSE Prostate diffusion-weighted MRI scans can suffer from geometric distortions, signal pileup, and signal dropout attributed to differences in tissue susceptibility values at the interface between the prostate and rectal air. The aim of this work is to present and validate a novel model based reconstruction method that can correct for these distortions. METHODS In regions of severe signal pileup, standard techniques for distortion correction have difficulty recovering the underlying true signal. Furthermore, because of drifts and inaccuracies in the determination of center frequency, echo planar imaging (EPI) scans can be shifted in the phase-encoding direction. In this work, using a B0 field map and a set of EPI data acquired with blip-up and blip-down phase encoding gradients, we model the distortion correction problem linking the distortion-free image to the acquired raw corrupted k-space data and solve it in a manner analogous to the sensitivity encoding method. Both a quantitative and qualitative assessment of the proposed method is performed in vivo in 10 patients. RESULTS Without distortion correction, mean Dice similarity scores between a reference T2W and the uncorrected EPI images were 0.64 and 0.60 for b-values of 0 and 500 s/mm2 , respectively. Compared to the Topup (distortion correction method commonly used for neuro imaging), the proposed method achieved Dice scores (0.87 and 0.85 versus 0.82 and 0.80) and better qualitative results in patients where signal pileup was present because of high rectal gas residue. CONCLUSION Model-based reconstruction can be used for distortion correction in prostate diffusion MRI.
Collapse
Affiliation(s)
- Muhammad Usman
- Centre for Medical Image Computing, Department of Computer ScienceUniversity College LondonLondonUnited Kingdom
| | - Lebina Kakkar
- Centre for Medical Imaging, Division of MedicineUniversity College HospitalLondonUnited Kingdom
| | - Alex Kirkham
- Department of RadiologyUniversity College HospitalLondonUnited Kingdom
| | - Simon Arridge
- Centre for Medical Image Computing, Department of Computer ScienceUniversity College LondonLondonUnited Kingdom
| | - David Atkinson
- Centre for Medical Imaging, Division of MedicineUniversity College HospitalLondonUnited Kingdom
| |
Collapse
|
9
|
Czarniecki M, Caglic I, Grist JT, Gill AB, Lorenc K, Slough RA, Priest AN, Barrett T. Role of PROPELLER-DWI of the prostate in reducing distortion and artefact from total hip replacement metalwork. Eur J Radiol 2018; 102:213-219. [PMID: 29685538 DOI: 10.1016/j.ejrad.2018.03.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 03/13/2018] [Accepted: 03/15/2018] [Indexed: 01/17/2023]
Abstract
OBJECTIVE To compare image quality, artefact, and distortion in standard echo-planar imaging (EPI) with periodically rotated overlapping parallel lines with enhanced reconstruction (PROPELLER) for prostate magnetic resonance imaging (MRI) diffusion-weighted imaging (DWI) in patients with previous total hip replacement (THR). METHODS 21 male subjects with a clinical suspicion for, or known prostate cancer and previous THR were scanned at 1.5 T using a phased-array body coil. DWI was obtained using single-shot EPI and PROPELLER techniques using fat saturation (PROPELLER-DWI-FS), and without (PROPELLER-DWI-NFS). Image quality (the overall impression of diagnostic quality) was compared to T2-weighted (T2WI) imaging using a 5-point Likert scale, with diffusion sequences additionally scored for artefact and distortion according to a 4-point scale, with artefact defined as the amount of prostate affected and distortion as the degree of warping of the organ. The T2W and DW image volumes were compared to produce quantitative distortion maps. A two-sample Wilcoxon test compared the qualitative scores, with inter-reader variability calculated using Cohen's kappa. RESULTS 21 patients were included in the study, with an average age of 70.4 years and PSA 9.2 ng/ml. Hip metalwork was present bilaterally in 3 patients, left-sided in 9, and right-sided in 9. PROPELLER-DWI-FS significantly improved image quality (p < 0.01) and reduced distortion (p < 0.01) when compared to standard EP-DWI. Artefact was not shown to be significantly improved. The last 5 patients in the study were additionally imaged with PROPELLER-DWI-NFS, which resulted in a significant reduction in artefact compared to EP-DWI (p < 0.05). Quantitative distortion was significantly lower compared to EP-DWI for both PROPELLER with fat saturation (p < 0.01) and without fat saturation (p < 0.01). CONCLUSION PROPELLER-DWI demonstrates better image quality and decreases both artefact and distortion compared to conventional echo planar sequences in patients with hip metalwork.
Collapse
Affiliation(s)
- Marcin Czarniecki
- Department of Radiology, Addenbrooke's Hospital and University of Cambridge, Cambridge, UK; Department of Radiology, Masovian Brodno Hospital, Warsaw, Poland.
| | - Iztok Caglic
- Department of Radiology, Addenbrooke's Hospital and University of Cambridge, Cambridge, UK
| | - James T Grist
- Department of Radiology, Addenbrooke's Hospital and University of Cambridge, Cambridge, UK
| | - Andrew B Gill
- Department of Radiology, Addenbrooke's Hospital and University of Cambridge, Cambridge, UK
| | - Kamil Lorenc
- Nalecz Institute of Biocybernetics and Biomedical Engineering Polish Academy of Sciences, Warsaw, Poland.
| | - Rhys A Slough
- Department of Radiology, Addenbrooke's Hospital and University of Cambridge, Cambridge, UK
| | - Andrew N Priest
- Department of Radiology, Addenbrooke's Hospital and University of Cambridge, Cambridge, UK
| | - Tristan Barrett
- Department of Radiology, Addenbrooke's Hospital and University of Cambridge, Cambridge, UK; CamPARI Clinic, Addenbrooke's Hospital and University of Cambridge, Cambridge, UK
| |
Collapse
|