1
|
Salgado BAB, Fabbri S, Dickenson A, Hasan MI, Walsh JL. Surface barrier discharges for Escherichia coli biofilm inactivation: Modes of action and the importance of UV radiation. PLoS One 2021; 16:e0247589. [PMID: 33730103 PMCID: PMC7968650 DOI: 10.1371/journal.pone.0247589] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 02/10/2021] [Indexed: 11/18/2022] Open
Abstract
Cold plasma generated in air at atmospheric pressure is an extremely effective antimicrobial agent, with proven efficacy against clinically relevant bacterial biofilms. The specific mode of bacterial inactivation is highly dependent upon the configuration of the plasma source used. In this study, the mode of microbial inactivation of a surface barrier discharge was investigated against Escherichia coli biofilms grown on polypropylene coupons. Different modes of exposure were considered and it was demonstrated that the long-lived reactive species created by the plasma are not solely responsible for the observed microbial inactivation. It was observed that a synergistic interaction occurs between the plasma generated long-lived reactive species and ultraviolet (UV) photons, acting to increase the antimicrobial efficacy of the approach by an order of magnitude. It is suggested that plasma generated UV is an important component for microbial inactivation when using a surface barrier discharge; however, it is not through the conventional pathway of direct DNA damage, rather through the synergistic interaction between liquid in the biofilm matrix and long-lived chemical species created by the discharge.
Collapse
Affiliation(s)
- Breno A. B. Salgado
- Centre for Plasma Microbiology, Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool, United Kingdom
| | - Stefania Fabbri
- Centre for Plasma Microbiology, Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool, United Kingdom
| | - Aaron Dickenson
- Centre for Plasma Microbiology, Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool, United Kingdom
| | - Mohammad I. Hasan
- Centre for Plasma Microbiology, Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool, United Kingdom
| | - James L. Walsh
- Centre for Plasma Microbiology, Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
2
|
Hojnik N, Modic M, Walsh JL, Žigon D, Javornik U, Plavec J, Žegura B, Filipič M, Cvelbar U. Unravelling the pathways of air plasma induced aflatoxin B 1 degradation and detoxification. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123593. [PMID: 33264852 DOI: 10.1016/j.jhazmat.2020.123593] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 07/24/2020] [Accepted: 07/28/2020] [Indexed: 06/12/2023]
Abstract
Aflatoxins are considered to be a critical dietary risk factor for humans, with aflatoxin B1 (AFB1) identified by the WHO as one of the most potent natural group 1 carcinogen. Despite this, more than half of the world's population is chronically exposed, resulting in up to 170,000 annual cases of human hepatocellular carcinoma cancer. Here we report an easily implemented approach using non-equilibrium plasma for targeted degradation of AFB1. Apart from reaching the 100 % decontamination in less than 120 s of treatment, this is the first study that combines hypersensitive analytical methods such as high-resolution mass spectroscopy (HRMS) and nuclear magnetic resonance spectroscopy (NMR) to provide a detailed description of CAP mediated AFB1 degradation. We identify rapid scission of the vinyl bond between 8- and 9-position on the terminal furan ring of AFB1 as being of paramount importance for the suppression of toxic potential, which is confirmed by the examination of both cytotoxicity and genotoxicity. The plasma reactive species mediated degradation pathways are elucidated, and it is demonstrated that the approach not only renders AFB1 harmless but does so in order of magnitude less time than UV irradiation as one of the other non-thermal methods currently under investigation.
Collapse
Affiliation(s)
- Nataša Hojnik
- Jozef Stefan Institute, Ljubljana, Slovenia; Jozef Stefan International Postgraduate School, Ljubljana, Slovenia; Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool, United Kingdom
| | | | - James L Walsh
- Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool, United Kingdom
| | | | - Uroš Javornik
- Slovenian NMR Centre, National Institute of Chemistry, Hajdrihova 19, SI-1001, Ljubljana, Slovenia
| | - Janez Plavec
- Slovenian NMR Centre, National Institute of Chemistry, Hajdrihova 19, SI-1001, Ljubljana, Slovenia
| | - Bojana Žegura
- Department of Genetic Toxicology and Cancer Biology National Institute of Biology, Večna pot 111, 1000, Ljubljana, Slovenia
| | - Metka Filipič
- Department of Genetic Toxicology and Cancer Biology National Institute of Biology, Večna pot 111, 1000, Ljubljana, Slovenia
| | - Uroš Cvelbar
- Jozef Stefan Institute, Ljubljana, Slovenia; Jozef Stefan International Postgraduate School, Ljubljana, Slovenia.
| |
Collapse
|
3
|
Dimitrakellis P, Giannoglou M, Zeniou A, Gogolides E, Katsaros G. Food container employing a cold atmospheric plasma source for prolonged preservation of plant and animal origin food products. MethodsX 2020; 8:101177. [PMID: 33354522 PMCID: PMC7744763 DOI: 10.1016/j.mex.2020.101177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 12/04/2020] [Indexed: 10/27/2022] Open
Abstract
Cold Atmospheric Plasma is a non-thermal processing technology with great potential for application to food products as it can effectively reduce the microbial load, leading to substantial shelf-life extension. Herein, we present an easy-to-build and cost-effective Surface Dielectric Barrier Discharge (SDBD) plasma source adjusted to the plastic lid of a common commercial food container made of transparent glass. Implementation and evaluation of plasma treatment in real perishable food products such as sea bream fillets, fresh-cut rocket salads and fresh whole strawberries showed that such device might be efficiently used in-storage for the extension of their shelf-life.•Easy-to-build and cost-effective SDBD plasma source adjusted in a food container for generation of antimicrobial RONS in proximity to treated food product•Treatment of perishable food products by reducing their initial microbial load•In-storage treatment efficient for perishable food products shelf-life extension.
Collapse
Affiliation(s)
- Panagiotis Dimitrakellis
- Institute of Nanoscience and Nanotechnology, NCSR "Demokritos", Aghia Paraskevi 15341, Attiki, Greece
| | - Marianna Giannoglou
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organization-DEMETER, Lykovrissi 14123, Attica, Greece
| | - Angelos Zeniou
- Institute of Nanoscience and Nanotechnology, NCSR "Demokritos", Aghia Paraskevi 15341, Attiki, Greece
| | - Evangelos Gogolides
- Institute of Nanoscience and Nanotechnology, NCSR "Demokritos", Aghia Paraskevi 15341, Attiki, Greece
| | - George Katsaros
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organization-DEMETER, Lykovrissi 14123, Attica, Greece
| |
Collapse
|
4
|
Hojnik N, Modic M, Tavčar-Kalcher G, Babič J, Walsh JL, Cvelbar U. Mycotoxin Decontamination Efficacy of Atmospheric Pressure Air Plasma. Toxins (Basel) 2019; 11:E219. [PMID: 31013734 PMCID: PMC6521119 DOI: 10.3390/toxins11040219] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 03/26/2019] [Accepted: 04/01/2019] [Indexed: 11/17/2022] Open
Abstract
Mycotoxins, the toxic secondary metabolites of mould species, are a growing global concern, rendering almost 25% of all food produced unfit for human or animal consumption, thus placing immense pressure on the food supply chain. Cold Atmospheric pressure Plasma (CAP) represents a promising, low-cost, and environmentally friendly means to degrade mycotoxins with negligible effect on the quality of food products. Despite this promise, the study of CAP-mediated mycotoxin degradation has been limited to a small subset of the vast number of mycotoxins that plague the food supply chain. This study explores the degradation of aflatoxins, trichothecenes, fumonisins, and zearalenone using CAP generated in ambient air. CAP treatment was found to reduce aflatoxins by 93%, trichothecenes by 90%, fumonisins by 93%, and zearalenone by 100% after 8 minutes exposure. To demonstrate the potential of CAP-mediated mycotoxin degradation against more conventional methods, its efficiency was compared against ultraviolet C (UVC) light irradiation. In all cases, CAP was found to be considerably more efficient than UVC, with aflatoxin G1 and zearalenone being completely degraded, levels that could not be achieved using UVC irradiation.
Collapse
Affiliation(s)
- Nataša Hojnik
- Laboratory for Gaseous Electronics F6, Jozef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia.
- Jožef Stefan International Postgraduate School, Jamova 39, 1000 Ljubljana, Slovenia.
| | - Martina Modic
- Laboratory for Gaseous Electronics F6, Jozef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia.
| | - Gabrijela Tavčar-Kalcher
- Institute of Food Safety, Feed and Environment, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia.
| | - Janja Babič
- Institute of Food Safety, Feed and Environment, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia.
| | - James L Walsh
- Department of Electrical, Engineering and Electronics, University of Liverpool, Liverpool L69 3GJ, UK.
| | - Uroš Cvelbar
- Laboratory for Gaseous Electronics F6, Jozef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia.
| |
Collapse
|
5
|
Dickenson A, Britun N, Nikiforov A, Leys C, Hasan MI, Walsh JL. The generation and transport of reactive nitrogen species from a low temperature atmospheric pressure air plasma source. Phys Chem Chem Phys 2018; 20:28499-28510. [PMID: 30417902 DOI: 10.1039/c8cp05762a] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reactive chemical species generated by non-equilibrium plasma under atmospheric pressure conditions are key enablers for many emerging applications spanning the fields of biomedicine, manufacturing and agriculture. Despite showing great application potential, insight in to the underpinning reactive species generation and transport mechanisms remains scarce. This contribution focuses on the spatiotemporal behaviour of reactive nitrogen species (RNS) created and transported by an atmospheric pressure air surface barrier discharge (SBD) using both laser induced fluorescence and particle imaging velocimetry measurements combined with experimentally validated numerical modelling. It was observed that highly reactive species such as N are confined to the discharge region while less reactive species such as NO, NO2 and N2O closely followed the induced flow. The concentration of key RNS was found to be in the 10-100 ppm range at a position of 25 mm downstream of the discharge region. A close agreement between the experimental and computational results was achieved and the findings provide a valuable insight in to the role of electrohydrodynamic forces in dictating the spatiotemporal distribution of reactive chemical species beyond the plasma generation region, which is ultimately a key contributor towards downstream treatment uniformity and application efficacy.
Collapse
Affiliation(s)
- Aaron Dickenson
- Centre for Plasma Microbiology, Department of Electrical Engineering & Electronics, University of Liverpool, L69 3GJ, UK.
| | | | | | | | | | | |
Collapse
|