1
|
Kobayashi H, Nakata N, Izuka S, Hongo K, Nishikawa M. Using artificial intelligence and promoter-level transcriptome analysis to identify a biomarker as a possible prognostic predictor of cardiac complications in male patients with Fabry disease. Mol Genet Metab Rep 2024; 41:101152. [PMID: 39484074 PMCID: PMC11525769 DOI: 10.1016/j.ymgmr.2024.101152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 10/06/2024] [Accepted: 10/07/2024] [Indexed: 11/03/2024] Open
Abstract
Fabry disease is the most frequently occurring form of lysosomal disease in Japan, and is characterized by a wide variety of conditions. Primarily, the three major types of concerns associated with Fabry disease observed during adulthood that must be prevented are central nervous system, renal, and cardiac complications. Cardiac complications, such as cardiomyopathy, cardiac muscle fibrosis, and severe arrhythmia, are the most common mortality causes in patients with Fabry disease. To predict cardiac complications of Fabry disease, we extracted RNA from the venous blood of patients for cap analysis of gene expression (CAGE), performed likelihood ratio tests for each RNA expression dataset obtained from individuals with and without cardiac complications, and analyzed the correlation between cardiac functional factors observed using magnetic resonance imaging data extracted using artificial intelligence algorithms and RNA expression. Our findings showed that CHN1 expression was significantly higher in male Fabry disease patients with cardiac complications and that it could be associated with many cardiac functional factors. CHN1 encodes a GTPase-activating protein, chimerin 1, which is specific to the GTP-binding protein Rac (involved in oxidative stress generation and the promotion of myocardial fibrosis). Thus, CHN1 is a potential predictive biomarker of cardiac complications in Fabry disease; however, further studies are required to confirm this observation.
Collapse
Affiliation(s)
- Hiroshi Kobayashi
- Division of Gene Therapy, Research Center for Medical Sciences, The Jikei University of Medicine, 3-25-8, Nishi-shimbashi, Minato-ku, Tokyo 105-8461, Japan
- Department of Pediatrics, The Jikei University of Medicine, 3-25-8, Nishi-shimbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Norio Nakata
- Division of Artificial Intelligence Medicine, Research Center for Medical Sciences, The Jikei University of Medicine, 3-25-8, Nishi-shimbashi, Minato-ku, Tokyo 105-8461, Japan
- Department of Radiology, The Jikei University of Medicine, 3-25-8, Nishi-shimbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Sayoko Izuka
- Division of Gene Therapy, Research Center for Medical Sciences, The Jikei University of Medicine, 3-25-8, Nishi-shimbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Kenichi Hongo
- Division of Cardiology, Department of Internal Medicine, The Jikei University of Medicine, 3-25-8, Nishi-shimbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Masako Nishikawa
- Clinical Research Support Center, The Jikei University of Medicine, 3-25-8, Nishi-shimbashi, Minato-ku, Tokyo 105-8461, Japan
| |
Collapse
|
2
|
Gilyadova A, Ishchenko A, Babayan J, Avin M, Sekacheva M, Reshetov I. Molecular Genetic Factors of Risk Stratification of Lymph Node Metastasis in Endometrial Carcinoma. Cancers (Basel) 2024; 16:3560. [PMID: 39518001 PMCID: PMC11545318 DOI: 10.3390/cancers16213560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 10/19/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND According to epidemiological studies, endometrial carcinoma is one of the most frequently diagnosed malignancies of the female reproductive system, with an increasing incidence. Currently, the risk stratification of this neoplasm takes into account the stage, degree of tumor differentiation, histological type and depth of myometrial invasion. Since the publication of the last International Federation of Gynecology and Obstetrics (FIGO) staging system for endometrial cancer in 2009, numerous reports have appeared on the molecular characteristics of different types of endometrial carcinoma. Taking this into account, the FIGO Committee determined in 2023 that changes and updates to the staging system are justified to reflect new information about this tumor. Due to the high prevalence of the disease and mortality from endometrial cancer, an in-depth study of the molecular genetic characteristics of tumor cells is relevant; the results of such studies can be used to improve the efficiency of diagnosis, assess the risk of metastasis and prognosis of the disease. Lymph node assessment is crucial for the choice of treatment strategy for endometrial cancer, since metastatic lymph node involvement is one of the main factors affecting prognosis. At the same time, the criteria for the appropriateness of lymphadenectomy in low-differentiated malignant tumors are not clearly defined. Various molecular methods have been proposed to assess the status of lymph nodes; candidate genes are being studied as potential diagnostic biomarkers, as well as microRNA. The aim of the study was to analyze the literature data on numerous studies of molecular risk factors for progression in endometrioid carcinoma, as well as to preserve the most important marker changes in relation to the prognostic development of this disease. METHODS A literature review was conducted using data from the electronic databases PubMed, Google Scholar, and Wiley Cochrane Library for the period from 2018 to 2023 using the specific keywords. RESULTS The current scientific genetic studies on metastasis and prognostic factors in uterine cancer were analyzed, and a systematization of the reviewed data from the modern literature was done. CONCLUSIONS To select the most effective treatment - intraoperative, adjuvant or combination therapy, minimize postoperative risks of lymphadenectomy and clearly predict the results - further study of the molecular genetic features of endometrial cancer is necessary.
Collapse
Affiliation(s)
- Aida Gilyadova
- Federal State Autonomous Educational Institution of Higher Education First Moscow State Medical University Named after. I. M. Sechenov Ministry of Health of Russia (Sechenov University), Ministry of Health of the Russian Federation, 119435 Moscow, Russia; (J.B.); (M.A.); (M.S.); (I.R.)
| | - Anton Ishchenko
- National Medical Research Center Treatment and Rehabilitation Center, Ministry of Health of the Russian Federation, 125367 Moscow, Russia;
| | - Julietta Babayan
- Federal State Autonomous Educational Institution of Higher Education First Moscow State Medical University Named after. I. M. Sechenov Ministry of Health of Russia (Sechenov University), Ministry of Health of the Russian Federation, 119435 Moscow, Russia; (J.B.); (M.A.); (M.S.); (I.R.)
| | - Max Avin
- Federal State Autonomous Educational Institution of Higher Education First Moscow State Medical University Named after. I. M. Sechenov Ministry of Health of Russia (Sechenov University), Ministry of Health of the Russian Federation, 119435 Moscow, Russia; (J.B.); (M.A.); (M.S.); (I.R.)
| | - Marina Sekacheva
- Federal State Autonomous Educational Institution of Higher Education First Moscow State Medical University Named after. I. M. Sechenov Ministry of Health of Russia (Sechenov University), Ministry of Health of the Russian Federation, 119435 Moscow, Russia; (J.B.); (M.A.); (M.S.); (I.R.)
| | - Igor Reshetov
- Federal State Autonomous Educational Institution of Higher Education First Moscow State Medical University Named after. I. M. Sechenov Ministry of Health of Russia (Sechenov University), Ministry of Health of the Russian Federation, 119435 Moscow, Russia; (J.B.); (M.A.); (M.S.); (I.R.)
| |
Collapse
|
3
|
Zhao H, Sun R, Wu L, Huang P, Liu W, Ma Q, Liao Q, Du J. Bioinformatics Identification and Experimental Validation of a Prognostic Model for the Survival of Lung Squamous Cell Carcinoma Patients. Biochem Genet 2024:10.1007/s10528-024-10828-z. [PMID: 38806973 DOI: 10.1007/s10528-024-10828-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/08/2024] [Indexed: 05/30/2024]
Abstract
Lung squamous cell carcinoma (LUSC) kills more than four million people yearly. Creating more trustworthy tumor molecular markers for LUSC early detection, diagnosis, prognosis, and customized treatment is essential. Cuproptosis, a novel form of cell death, opened up a new field of study for searching for trustworthy tumor indicators. Our goal was to build a risk model to assess drug sensitivity, monitor immune function, and predict prognosis in LUSC patients. The 19 cuproptosis-related genes were found in the literature, and patient genomic and clinical information was collected using the Cancer Genomic Atlas (TCGA) database. The LUSC patients were grouped using unsupervised clustering techniques, and 7626 differentially expressed genes were identified. Using univariate COX analysis, LASSO regression analysis, and multivariate COX analysis, a prognostic model for LUSC patients was developed. The tumor immune escape was evaluated using the Tumor Immune Dysfunction and Exclusion (TIDE) method. The R packages 'pRRophetic,' 'ggpubr,' and 'ggplot2' were utilized to examine drug sensitivity. For modeling, a 6-cuproptosis-based gene signature was found. Patients with high-risk LUSC had significantly worse survival rates than those with low-risk conditions. The possibility of tumor immunological escape was increased in patients with higher risk scores due to more immune cell inactivation. For patients with high-risk LUSC, we discovered seven potent potential drugs (AZD6482, CHIR.99021, CMK, Embelin, FTI.277, Imatinib, and Pazopanib). In conclusion, the cuproptosis-based genes predictive risk model can be utilized to predict outcomes, track immune function, and evaluate medication sensitivity in LUSC patients.
Collapse
Affiliation(s)
- Hongtao Zhao
- Department of Immunology, College of Basic Medicine, Guilin Medical University, Guilin, 541199, Guangxi, China
| | - Ruonan Sun
- Department of Immunology, College of Basic Medicine, Guilin Medical University, Guilin, 541199, Guangxi, China
| | - Lei Wu
- College of Department of Information and Library Science, Guilin Medical University, Guilin, 541004, China
| | - Peiluo Huang
- Department of Immunology, College of Basic Medicine, Guilin Medical University, Guilin, 541199, Guangxi, China
| | - Wenjing Liu
- Department of Immunology, College of Basic Medicine, Guilin Medical University, Guilin, 541199, Guangxi, China
| | - Qiuhong Ma
- Department of Clinical Laboratory, Zibo Central Hospital, Zibo, 255036, China.
| | - Qinyuan Liao
- Department of Immunology, College of Basic Medicine, Guilin Medical University, Guilin, 541199, Guangxi, China.
| | - Juan Du
- Department of Immunology, College of Basic Medicine, Guilin Medical University, Guilin, 541199, Guangxi, China.
| |
Collapse
|
4
|
Ueno Y, Yoshida E, Nojiri S, Kato T, Ohtsu T, Takeshita T, Suzuki S, Yoshida H, Kato K, Itoh M, Notomi T, Usui K, Sozu T, Terao Y, Kawaji H, Kato H. Use of clinical variables for preoperative prediction of lymph node metastasis in endometrial cancer. Jpn J Clin Oncol 2024; 54:38-46. [PMID: 37815156 PMCID: PMC10773201 DOI: 10.1093/jjco/hyad135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 09/19/2023] [Indexed: 10/11/2023] Open
Abstract
OBJECTIVE Endometrial cancer is the most common gynaecological cancer, and most patients are identified during early disease stages. Noninvasive evaluation of lymph node metastasis likely will improve the quality of clinical treatment, for example, by omitting unnecessary lymphadenectomy. METHODS The study population comprised 611 patients with endometrial cancer who underwent lymphadenectomy at four types of institutions, comprising seven hospitals in total. We systematically assessed the association of 18 preoperative clinical variables with postoperative lymph node metastasis. We then constructed statistical models for preoperative lymph node metastasis prediction and assessed their performance with a previously proposed system, in which the score was determined by counting the number of high-risk variables among the four predefined ones. RESULTS Of the preoperative 18 variables evaluated, 10 were significantly associated with postoperative lymph node metastasis. A logistic regression model achieved an area under the curve of 0.85 in predicting lymph node metastasis; this value is significantly higher than that from the previous system (area under the curve, 0.74). When we set the false-negative rate to ~1%, the new predictive model increased the rate of true negatives to 21%, compared with 6.8% from the previous one. We also provide a spreadsheet-based tool for further evaluation of its ability to predict lymph node metastasis in endometrial cancer. CONCLUSIONS Our new lymph node metastasis prediction method, which was based solely on preoperative clinical variables, performed significantly better than the previous method. Although additional evaluation is necessary for its clinical use, our noninvasive system may help improve the clinical treatment of endometrial cancer, complementing minimally invasive sentinel lymph node biopsy.
Collapse
Affiliation(s)
- Yuta Ueno
- Department of Gynecology, Kanagawa Cancer Center, Yokohama, Japan
- Department of Obstetrics and Gynecology, Nippon Medical School, Tokyo, Japan
- Department of Obstetrics and Gynecology, NTT Medical Center Tokyo, Tokyo, Japan
| | - Emiko Yoshida
- Department of Obstetrics and Gynecology, Juntendo University, Tokyo, Japan
- Medical Technology Innovation Center, Juntendo University, Tokyo, Japan
| | - Shuko Nojiri
- Clinical Research and Trial Center, Juntendo University, Tokyo, Japan
| | - Tomoyasu Kato
- Department of Gynecology, National Cancer Center, Tokyo, Japan
| | - Takashi Ohtsu
- Division of Advanced Cancer Therapeutics, Kanagawa Cancer Center Research Institute, Yokohama, Japan
- Center for Cancer Genome Medicine, Kanagawa Cancer Center, Yokohama, Japan
| | - Toshiyuki Takeshita
- Department of Obstetrics and Gynecology, Nippon Medical School, Tokyo, Japan
| | - Shunji Suzuki
- Department of Obstetrics and Gynecology, Nippon Medical School, Tokyo, Japan
| | - Hiroshi Yoshida
- Department of Diagnostic Pathology, National Cancer Center, Tokyo, Japan
| | - Ken Kato
- Clinical Research Support Office, Biobank Translational Research Support Section, National Cancer Center Hospital, Tokyo, Japan
| | - Masayoshi Itoh
- Laboratory for Advanced Genomics Circuit, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Tsuguto Notomi
- Department of Obstetrics and Gynecology, NTT Medical Center Tokyo, Tokyo, Japan
| | - Kengo Usui
- Medical Technology Innovation Center, Juntendo University, Tokyo, Japan
| | - Takashi Sozu
- Department of Information and Computer Technology, Faculty of Engineering, Tokyo University of Science, Tokyo, Japan
| | - Yasuhisa Terao
- Department of Obstetrics and Gynecology, Juntendo University, Tokyo, Japan
| | - Hideya Kawaji
- Research Center for Genome and Medical Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Hisamori Kato
- Department of Gynecology, Kanagawa Cancer Center, Yokohama, Japan
- Kanagawa Health Service Association, Yokohama, Japan
| |
Collapse
|
5
|
Saatci O, Sahin O. TACC3: a multi-functional protein promoting cancer cell survival and aggressiveness. Cell Cycle 2023; 22:2637-2655. [PMID: 38197196 PMCID: PMC10936615 DOI: 10.1080/15384101.2024.2302243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/30/2023] [Accepted: 01/02/2024] [Indexed: 01/11/2024] Open
Abstract
TACC3 is the most oncogenic member of the transforming acidic coiled-coil domain-containing protein (TACC) family. It is one of the major recruitment factors of distinct multi-protein complexes. TACC3 is localized to spindles, centrosomes, and nucleus, and regulates key oncogenic processes, including cell proliferation, migration, invasion, and stemness. Recently, TACC3 inhibition has been identified as a vulnerability in highly aggressive cancers, such as cancers with centrosome amplification (CA). TACC3 has spatiotemporal functions throughout the cell cycle; therefore, targeting TACC3 causes cell death in mitosis and interphase in cancer cells with CA. In the clinics, TACC3 is highly expressed and associated with worse survival in multiple cancers. Furthermore, TACC3 is a part of one of the most common fusions of FGFR, FGFR3-TACC3 and is important for the oncogenicity of the fusion. A detailed understanding of the regulation of TACC3 expression, its key partners, and molecular functions in cancer cells is vital for uncovering the most vulnerable tumors and maximizing the therapeutic potential of targeting this highly oncogenic protein. In this review, we summarize the established and emerging interactors and spatiotemporal functions of TACC3 in cancer cells, discuss the potential of TACC3 as a biomarker in cancer, and therapeutic potential of its inhibition.
Collapse
Affiliation(s)
- Ozge Saatci
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Ozgur Sahin
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
6
|
Preoperative Prediction Value of Pelvic Lymph Node Metastasis of Endometrial Cancer: Combining of ADC Value and Radiomics Features of the Primary Lesion and Clinical Parameters. JOURNAL OF ONCOLOGY 2022; 2022:3335048. [PMID: 35813867 PMCID: PMC9262528 DOI: 10.1155/2022/3335048] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 06/08/2022] [Indexed: 01/17/2023]
Abstract
Objective To investigate the value of apparent diffusion coefficient (ADC) value of endometrial cancer (EC) primary lesion and magnetic resonance imaging (MRI) three-dimensional (3D) radiomics features combined with clinical parameters for preoperative prediction of pelvic lymph node metastasis (PLNM). Methods A total of 136 patients with EC confirmed by postoperative pathology were retrospectively reviewed and analyzed. Patients were randomly divided into training set (n = 95) and test set (n = 41) at a ratio of 7 : 3. Radiomics features based on T2WI, DWI, and contrast-enhanced T1WI (CE-T1WI) sequence were extracted and screened, and then radiomics score (Rads-score) was calculated. Clinical parameters and ADC value of EC primary lesion were measured and collected, and their correlation with PLNM was analyzed. Receiver operating characteristic (ROC) curve was plotted to assess the diagnostic efficacy of the model. A nomogram for PLNM was created based on the multivariate logistic regression model. Results The ADC value of the EC primary lesion showed inverse correlation with PLNM, while CA125 and Rads-score were positively associated with PLNM. A predictive model was proposed based on ADC value, Rads-score, CA125, and MR-reported pelvic lymph node status (PLNS) for PLNM in EC. The area under the curve (AUC) of the model is 0.940; the sensitivity and specificity (87.1% and 90.6%) of the model were significantly higher than that of the MRI morphological signs. Conclusion A combination of ADC value, MRI 3D radiomics features of the EC primary lesion, and clinical parameters generated a prediction model for PLNM in EC and had a good diagnostic performance; it was a useful supplement to MR-reported PLNS based on MRI morphological signs.
Collapse
|
7
|
Nagai T, Shimada M, Tokunaga H, Ishikawa M, Yaegashi N. Clinical issues of surgery for uterine endometrial cancer in Japan. Jpn J Clin Oncol 2022; 52:346-352. [PMID: 35032166 DOI: 10.1093/jjco/hyab211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 12/22/2021] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE The mainstay of treatment for uterine endometrial cancer is surgery, and recurrent-risk cases require multidisciplinary treatment, including surgery, chemotherapy and radiation therapy. METHODS The standard surgery for uterine endometrial cancer is hysterectomy and bilateral salpingooophorectomy, with additional retroperitoneal lymph node dissection and omentectomy, depending on the case. The appropriate treatment is determined based on the risk classification, such as the depth of invasion into the myometrium, diagnosis of histological type and grade, and risk assessment of lymph node metastasis. RESULTS Recently, minimally invasive surgery has been widely used not only in low-risk patients but also in intermediate- and high-risk patients. In low-risk patients, the possibility of ovarian preservation is discussed from a healthcare perspective for young women. Determining the need for retroperitoneal lymph node dissection based on sentinel lymph node evaluation may contribute in minimizing the incidence of post-operative lymphedema while ensuring accurate diagnosis of lymph node metastasis. Recently, many studies using sentinel lymph nodes have been reported for patients with uterine endometrial cancer, and the feasibility of sentinel lymph node mapping surgery has been proven. Unfortunately, sentinel lymph node biopsy and sentinel lymph node mapping surgery have not been widely adopted in surgery for uterine cancer in Japan. In addition, the search for biomarkers, such as RNA sequencing using The Cancer Genome Atlas, metabolic profile and lipidomic profile for early detection and prognostic evaluation, has been actively pursued. CONCLUSIONS Gynecologic oncologists expect to be able to provide uterine endometrial cancer patients with appropriate treatment that preserves their quality of life without compromising oncologic outcomes in the near future.
Collapse
Affiliation(s)
- Tomoyuki Nagai
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Muneaki Shimada
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Hideki Tokunaga
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Mitsuya Ishikawa
- Department of Gynecology, National Cancer Center Hospital, Tokyo, Japan
| | - Nobuo Yaegashi
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Miyagi, Japan
| |
Collapse
|
8
|
Ito Y, Terao Y, Noma S, Tagami M, Yoshida E, Hayashizaki Y, Itoh M, Kawaji H. Nanopore sequencing reveals TACC2 locus complexity and diversity of isoforms transcribed from an intronic promoter. Sci Rep 2021; 11:9355. [PMID: 33931666 PMCID: PMC8087818 DOI: 10.1038/s41598-021-88018-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 04/07/2021] [Indexed: 12/12/2022] Open
Abstract
Gene expression is controlled at the transcriptional and post-transcriptional levels. The TACC2 gene was known to be associated with tumors but the control of its expression is unclear. We have reported that activity of the intronic promoter p10 of TACC2 in primary lesion of endometrial cancer is indicative of lymph node metastasis among a low-risk patient group. Here, we analyze the intronic promoter derived isoforms in JHUEM-1 endometrial cancer cells, and primary tissues of endometrial cancers and normal endometrium. Full-length cDNA amplicons are produced by long-range PCR and subjected to nanopore sequencing followed by computational error correction. We identify 16 stable, 4 variable, and 9 rare exons including 3 novel exons validated independently. All variable and rare exons reside N-terminally of the TACC domain and contribute to isoform variety. We found 240 isoforms as high-confidence, supported by more than 20 reads. The large number of isoforms produced from one minor promoter indicates the post-transcriptional complexity coupled with transcription at the TACC2 locus in cancer and normal cells.
Collapse
Affiliation(s)
- Yosuke Ito
- Faculty of Medicine, Department of Obstetrics and Gynecology, Juntendo University, 2-1-1 Hongo, Bunkyo, Tokyo, 113-8421, Japan.,Preventive Medicine and Applied Genomics Unit, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
| | - Yasuhisa Terao
- Faculty of Medicine, Department of Obstetrics and Gynecology, Juntendo University, 2-1-1 Hongo, Bunkyo, Tokyo, 113-8421, Japan.
| | - Shohei Noma
- Laboratory for Comprehensive Genomic Analysis, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
| | - Michihira Tagami
- Laboratory for Comprehensive Genomic Analysis, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
| | - Emiko Yoshida
- Faculty of Medicine, Department of Obstetrics and Gynecology, Juntendo University, 2-1-1 Hongo, Bunkyo, Tokyo, 113-8421, Japan.,RIKEN Center for Integrative Medical Sciences, Nucleic Acid Diagnostic System Development Unit, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan.,Diagnostics and Therapeutics of Intractable Diseases, Intractable Disease Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yoshihide Hayashizaki
- RIKEN Preventive Medicine and Diagnosis Innovation Program, 2-1 Hirosawa, Wako, Yokohama, Saitama, 351-0198, Japan
| | - Masayoshi Itoh
- RIKEN Preventive Medicine and Diagnosis Innovation Program, 2-1 Hirosawa, Wako, Yokohama, Saitama, 351-0198, Japan.,Laboratory for Advanced Genomics Circuit, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
| | - Hideya Kawaji
- Preventive Medicine and Applied Genomics Unit, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan. .,RIKEN Preventive Medicine and Diagnosis Innovation Program, 2-1 Hirosawa, Wako, Yokohama, Saitama, 351-0198, Japan. .,Research Center for Genome & Medical Sciences, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan.
| |
Collapse
|
9
|
Mastrantonio R, You H, Tamagnone L. Semaphorins as emerging clinical biomarkers and therapeutic targets in cancer. Theranostics 2021; 11:3262-3277. [PMID: 33537086 PMCID: PMC7847692 DOI: 10.7150/thno.54023] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 12/06/2020] [Indexed: 12/15/2022] Open
Abstract
Semaphorins are a large family of developmental regulatory signals, characterized by aberrant expression in human cancers. These molecules crucially control cell-cell communication, cell migration, invasion and metastasis, tumor angiogenesis, inflammatory and anti-cancer immune responses. Semaphorins comprise secreted and cell surface-exposed molecules and their receptors are mainly found in the Plexin and Neuropilin families, which are further implicated in a signaling network controlling the tumor microenvironment. Accumulating evidence indicates that semaphorins may be considered as novel clinical biomarkers for cancer, especially for the prediction of patient survival and responsiveness to therapy. Moreover, preclinical experimental studies have demonstrated that targeting semaphorin signaling can interfere with tumor growth and/or metastatic dissemination, suggesting their relevance as novel therapeutic targets in cancer; this has also prompted the development of semaphorin-interfering molecules for application in the clinic. Here we will survey, in diverse human cancers, the current knowledge about the relevance of semaphorin family members, and conceptualize potential lines of future research development in this field.
Collapse
|
10
|
Morioka MS, Kawaji H, Nishiyori-Sueki H, Murata M, Kojima-Ishiyama M, Carninci P, Itoh M. Cap Analysis of Gene Expression (CAGE): A Quantitative and Genome-Wide Assay of Transcription Start Sites. Methods Mol Biol 2020; 2120:277-301. [PMID: 32124327 DOI: 10.1007/978-1-0716-0327-7_20] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cap analysis of gene expression (CAGE) is an approach to identify and monitor the activity (transcription initiation frequency) of transcription start sites (TSSs) at single base-pair resolution across the genome. It has been effectively used to identify active promoter and enhancer regions in cancer cells, with potential utility to identify key factors to immunotherapy. Here, we overview a series of CAGE protocols and describe detailed experimental steps of the latest protocol based on the Illumina sequencing platform; both experimental steps (see Subheadings 3.1-3.11) and computational processing steps (see Subheadings 3.12-3.20) are described.
Collapse
Affiliation(s)
- Masaki Suimye Morioka
- Preventive Medicine and Applied Genomics Unit, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Kanagawa, Japan
| | - Hideya Kawaji
- Preventive Medicine and Applied Genomics Unit, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Kanagawa, Japan.,RIKEN Preventive Medicine and Diagnosis Innovation Program (PMI), Yokohama, Kanagawa, Japan.,Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Hiromi Nishiyori-Sueki
- Laboratory for Transcriptome Technology, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Kanagawa, Japan
| | - Mitsuyoshi Murata
- Laboratory for Transcriptome Technology, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Kanagawa, Japan
| | - Miki Kojima-Ishiyama
- Laboratory for Transcriptome Technology, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Kanagawa, Japan
| | - Piero Carninci
- Laboratory for Transcriptome Technology, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Kanagawa, Japan
| | - Masayoshi Itoh
- RIKEN Preventive Medicine and Diagnosis Innovation Program (PMI), Yokohama, Kanagawa, Japan.
| |
Collapse
|
11
|
Prediction of lymphovascular space invasion in endometrial cancer using the 55-gene signature selected by DNA microarray analysis. PLoS One 2019; 14:e0223178. [PMID: 31557240 PMCID: PMC6762169 DOI: 10.1371/journal.pone.0223178] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 09/15/2019] [Indexed: 12/11/2022] Open
Abstract
Lymphovascular space invasion (LVSI) is considered to be the beginning of lymphogenous and hematogenous metastases. It is strongly related to dissemination, and therefore could be a valuable predictive sign of lymph node metastases and distant spread. Recently, the presence of LVSI in endometrial cancer (EC) has been shown to be an independent prognostic factor. The preoperative diagnosis of LVSI by pathological examination is difficult and LVSI is detected after surgery. The aim of the current study was to explore candidate genes as potential diagnostic biomarkers and determine whether they are predictors of LVSI in patients with EC. A total of 88 surgical specimens obtained from EC patients who had undergone surgical resection at Fukushima Medical University Hospital between 2010 and 2015 were analyzed using DNA microarray. LVSI was significantly associated with poor prognostic factors in EC such as higher tumor grade, lymph node metastasis, deep myometrium invasion, advanced stage and recurrence. Fifty-five candidate genes were significantly differentially expressed between 26 LVSI-positive and 62 LVSI-negative samples. All 88 samples were divided into two groups according to hierarchical clustering of 55 genes. Regarding diagnostic accuracy, sensitivity and negative predictive value were both high (92% and 95%, respectively); further, specificity and positive predictive value were both moderate (63% and 71%, respectively). Our data suggests that the 55-gene signature could contribute to predicting LVSI in EC, and provide clinically important information for better management. The molecular signatures of 55 genes may be also useful for understanding the underlying mechanism of LVSI.
Collapse
|
12
|
Ohashi F, Miyagawa S, Yasuda S, Miura T, Kuroda T, Itoh M, Kawaji H, Ito E, Yoshida S, Saito A, Sameshima T, Kawai J, Sawa Y, Sato Y. CXCL4/PF4 is a predictive biomarker of cardiac differentiation potential of human induced pluripotent stem cells. Sci Rep 2019; 9:4638. [PMID: 30874579 PMCID: PMC6420577 DOI: 10.1038/s41598-019-40915-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 02/21/2019] [Indexed: 12/23/2022] Open
Abstract
Selection of human induced pluripotent stem cell (hiPSC) lines with high cardiac differentiation potential is important for regenerative therapy and drug screening. We aimed to identify biomarkers for predicting cardiac differentiation potential of hiPSC lines by comparing the gene expression profiles of six undifferentiated hiPSC lines with different cardiac differentiation capabilities. We used three platforms of gene expression analysis, namely, cap analysis of gene expression (CAGE), mRNA array, and microRNA array to efficiently screen biomarkers related to cardiac differentiation of hiPSCs. Statistical analysis revealed candidate biomarker genes with significant correlation between the gene expression levels in the undifferentiated hiPSCs and their cardiac differentiation potential. Of the candidate genes, PF4 was validated as a biomarker expressed in undifferentiated hiPSCs with high potential for cardiac differentiation in 13 additional hiPSC lines. Our observations suggest that PF4 may be a useful biomarker for selecting hiPSC lines appropriate for the generation of cardiomyocytes.
Collapse
Affiliation(s)
- Fumiya Ohashi
- Division of Cell-Based Therapeutic Products, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, 210-9501, Japan.,Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka, 565-0871, Japan.,Department of Cellular & Gene Therapy Products, Osaka University Graduate School of Pharmaceutical Sciences, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Terumo Corporation, 1500 Inokuchi, Nakai-machi, Ashigarakami-gun, Kanagawa, 259-0151, Japan
| | - Shigeru Miyagawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Satoshi Yasuda
- Division of Cell-Based Therapeutic Products, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, 210-9501, Japan
| | - Takumi Miura
- Division of Cell-Based Therapeutic Products, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, 210-9501, Japan
| | - Takuya Kuroda
- Division of Cell-Based Therapeutic Products, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, 210-9501, Japan
| | - Masayoshi Itoh
- Preventive Medicine and Diagnosis Innovation Program, RIKEN Center, 1-7-22, Suehirocho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Hideya Kawaji
- Preventive Medicine and Diagnosis Innovation Program, RIKEN Center, 1-7-22, Suehirocho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan.,Preventive Medicine and Applied Genomics Unit, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehirocho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Emiko Ito
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Shohei Yoshida
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Atsuhiro Saito
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Tadashi Sameshima
- Terumo Corporation, 1500 Inokuchi, Nakai-machi, Ashigarakami-gun, Kanagawa, 259-0151, Japan
| | - Jun Kawai
- Preventive Medicine and Diagnosis Innovation Program, RIKEN Center, 1-7-22, Suehirocho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Yoshiki Sawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Yoji Sato
- Division of Cell-Based Therapeutic Products, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, 210-9501, Japan. .,Department of Cellular & Gene Therapy Products, Osaka University Graduate School of Pharmaceutical Sciences, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan. .,Department of Quality Assurance Science for Pharmaceuticals, Nagoya City University Graduate School of Pharmaceutical Sciences, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi, 467-8603, Japan. .,Department of Translational Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka, 812-8582, Japan. .,LiSE Laboratory, Kanagawa Institute of Industrial Science and Technology, 3-25-13 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, 210-0821, Japan.
| |
Collapse
|
13
|
Deura I, Shimada M, Azuma Y, Komatsu H, Nagira K, Sawada M, Harada T. Comparison of laparoscopic surgery and conventional laparotomy for surgical staging of patients with presumed low-risk endometrial cancer: The current state of Japan. Taiwan J Obstet Gynecol 2019; 58:99-104. [DOI: 10.1016/j.tjog.2018.11.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2018] [Indexed: 12/17/2022] Open
|